
1

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 1

Hidden Surface Removal

� Image space vs. object space
� Efficiency methods (back-face culling, bounding objects, spatial partitioning …)
� Painter’s(& reverse) algorithm
� Depth-sort Algorithm
� Z-buffer & A-Buffer
� Scanline algorithm
� BSP-Trees

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 2

Visibility

polygonal model:
At the most basic level is a collection of vertices

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 3

Visibility (2)

� Using a line drawing routine, we can connect the dots
� The model tells which lines to draw to connect which vertices
� Helps, but still ambiguous

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 4

Visibility (3)

Visibility helps to resolve this ambiguity

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 5

Visibility (4)

And to get a better sense of the 3D model, we can use shading

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 6

Visibility (5)

Surfaces may

be back-facing be occluding

be overlapping be intersecting

2

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 7

Visibility (5)

� Question:
Which surfaces are visible along direction of projection
(parallel) or from center of projection (perspective)?

if two points p1 and p2 are on the same projector
then the closer one obscures the other;
otherwise it doesn’t

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 8

Visibility (6)

Are two points on the same projector?

� Parallel projection:

if (x1 == x2 && y1 == y2)

� Perspective projection:

if (x1/z1 == x2/z2 && y1/z1 == y2/z2)

if Yes, choose the one which is closer

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 9

Visible Surface Algorithms

Two Approaches:

� Image space (image precision) techniques:
Determine visibility in each pixel

� Object space (object precision) techniques:
Determine visibility for parts of objects

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 10

Image Space

for each pixel in the image {

determine the object closest to the viewer pierced by the
projector through the pixel;

draw the pixel using the appropriate color;

}

� works in the projected space

� dependent on image resolution
� simpler, possibly cheaper

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 11

Object Space

for each object in the world {

determine those parts of the object whose view is
unobstructed by other parts of it or other object

draw those parts in the appropriate color;

}

� works in the model data space

� independent of image resolution
� more complex, can be more expensive
� designed first for vector displays

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 12

Efficiency

� Either approach is typically costly

� GOAL:
� organize algorithm (objects/pixels) to speed things up
� costly operations are performed as infrequently and

efficiently as possible

� Some techniques:
� perspective transformations
� bounding objects
� back-face culling (removal)
� spatial partitioning
� hierarchy

3

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 13

Perspective

� Parallel projection just check (x,y) values
� Perspective needs more work

� How can this be made more efficient?
� Bring canonical view-volume into screen coordinates

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 14

Perspective (2)

� Apply a transformation to the canonical view volume to
transform it to 3D screen coordinates

� Then perform the same comparison as with the parallel
projection

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 15

Bounding Objects

� Operations with objects are expensive!
� Can we do a quick test with an approximation of the

object?
� Answer: yes!
� Technique - approximation through “bounding

volumes” or “extents”
� avoid unnecessary clipping
� avoid unnecessary comparisons between objects or

their projections

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 16

Bounding Objects (2)

Example: Projections

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 17

Bounding Objects (3)

� if the extends don’t overlap, the projections don’t
need to be tested for clipping with one another

� if the extents overlap then either one of the following
cases will apply:

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 18

Bounding Objects (4)

� rectangular extents ⇒ bounding boxes, or bounding volumes in
3D

� in general there are many possible bounding boxes

� want to choose one that is efficient for a particular application
(i.e. axis-aligned)

� spherical extend ⇒ bounding sphere

4

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 19

Bounding Objects (5)

� can be used in a single dimension
� min max testing:

if (z2_max < z1_min) II (z1_max < z2_min)

no overlap between two objects

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 20

Back-face Culling

� An object is (approximated by) a solid polyhedron ⇒ faces
completely enclose its volume

� If viewed from the outside, only its exterior will be visible and we
will see only those faces whose surface normals point towards
the observer

V

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 21

Back-face Culling (2)

� Testing:
� Image space: when looking down the –z axis, examine

the sign of the z component in the surface normal
� Object space: A polygon is back-facing to the viewer if

V • N > 0

� can cull about half the polygons in a scene; Why?

V

backface culling alone
doesn’t solve the hidden-
surface problem!

V
Oct 22-29, 2003 CMPT-361 : Hamid Younesy 22

Spatial Partitioning

� break a larger problem down into smaller ones:
� assign objects to spatially coherent groups as a

preprocessing step
� when projecting, only process objects lying within

intersecting cells

� 2D: use a grid on the image plane

� 3D: use a grid over object space

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 23

Spatial Partitioning (2)

adaptive partitioning techniques for irregularly distributed
objects; size of the cells vary according to the distribution of
objects in space
� quadtrees

� octrees

� BSP-trees (binary space partition trees

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 24

Hierarchy

� Use information in the modeling hierarchy to restrict
the need for intersection tests at lower levels

� example: the individual rooms don't need to be
considered unless the building and floor are
intersected

5

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 25

Hidden Surface Removal Algorithms

� Painter’s Algorithm
� Reverse Painter’s Algorithm
� Depth-Sort Algorithm
� Warnock’s Algorithm
� Z-Buffer
� A-Buffer
� Scan-line Algorithm
� Scan-line Z-Buffer & A-Buffer
� BSP Trees

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 26

Painter’s Algorithm

� Simple approach: Draw polygons as an oil painter might.
� render polygons back to front, painting over previous polygons.
� assumes that objects doesn’t overlap in both area and depth

draw blue, then green then orange

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 27

Painter’s Algorithm (2)

Sort objects by their minimum Z value (farthest from the

viewer)

loop through the sorted list { // back to front

for each object {

scan convert the object

}

}

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 28

Reverse Painter’s Algorithm

� Motivation:
� computing pixel colors may require expensive

computations like shading
� don’t spend time on drawing pixels that will be over

painted

� Simply process the objects in the reverse order, front
to back

� Don’t paint over pixels that already been painted

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 29

Reverse Painter’s Algorithm (2)

Sort objects by their maximum Z value // closest to the
viewer

initialize all pixels to a reserved color

loop through the sorted list { // back to front

for each object {

scan convert the pixels that are empty // have reserved
color

}

}

but we will won’t have
• Transparency and Translucency
• Antialiasing

anymore. Why?

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 30

Problems with Painter’s/Reverse

� Sorting objects can be very expensive (depending on the scene)

� Intersecting objects cause problem

� even non intersecting polygons may cause problem if they
overlap in both area and depth

6

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 31

Depth-Sort Algorithm

� An extension of the painter's algorithm
� Performs a similar algorithm but attempts to resolve

overlapping polygons
� Does some tests and resolves ambiguities caused by

overlapping polygons by splitting polygons if
necessary

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 32

Depth-Sort Algorithm (2)

Test for overlapping polygons:

Let P be the polygon furthest back in the sorted list.

For each polygon Q that P might obscure (have z overlaps) do the following
tests. As soon as one succeeds, there is no overlap, so quit

1. Do the X extents of the polygons not overlap?
2. Do the Y extents of the polygons not overlap?
3. Is P entirely on the opposite side of Q's plane from the viewpoint?
4. Is Q entirely on the same side of P's plane as the viewpoint?
5. Do the projections of the polygons onto the (x, y) plane not overlap?

If all 5 tests fail, assume that P obscures Q and repeat tests 3 and 4.

If the new tests fail, one of the polygons must be
split into multiple polygons and the tests are run again

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 33

Warnock's Algorithm

� Scheme based on a general approach common in
graphics: if the situation is too complex, subdivide
� Start with a root viewport and a list of all primitives
� Then recursively:

� Clip objects to viewport
� Fill area if:

� All surfaces are outside

� Only one surface intersects area

� One surface occludes other surfaces within area.

� Otherwise, subdivide into smaller viewports, distribute
primitives among them, and recurse

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 34

Warnock's Algorithm (2)

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 35

Warnock's Algorithm (3)

Problems:
� Hard to embed hierarchical schemes in hardware

� Complex scenes usually have small polygons and high depth
complexity

� most screen regions come down to the single-pixel case

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 36

Z-Buffer Algorithm

� Ed Catmull (mid-70s) proposed a radical new
approach called z-buffering.

� One of the simplest and most widely used
� The big idea: resolve visibility independently at each

pixel
� store closest depth value at each pixel
� Works on image space and at image precision

7

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 37

Z-Buffer (2)

� Uses two image arrays
� One image array stores color (in conventional way)

� Second image array (depth buffer) stores depths
associated with each image location

� Depth Buffer has same dimensions as image
� Memory requirements of method not likely to be an

issue these days
� Today, done easily in hardware

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 38

Z-Buffer (3)

initialize all pixels to background color,

initialize depth-buffer to depth of back clipping plane

for each polygon {

for each pixel in polygon's projection {
pz = depth of projected point

if (pz >= stored depth) {
store depth

draw pixel
}

}

}

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 39

Z-Buffer (4)

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 40

Z-Buffer (5)

� To compute z value, we can exploit the coherence
available in planar polygons:

x
C

A
z

C

DByxxA
z

C

DByAx
z

DCzByAx

x

x

∆−=

++∆+−=

++−=

=+++

∆

∆
)(

0

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 41

Z-Buffer (6)

If the polygon is not planar, or the surface is not defined, it is
possible to interpolate between vertices and then along
scanlines

ab

pb
abbp

s
b

s
a

xx

xx
zzzz

yy

yy
zzzz

yy

yy
zzzz

−
−

−−=

−
−

−−=

−
−−−=

)(

)(

)(

31

1
311

21

1
211

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 42

A-Buffer

� Regular Z-Buffer does not support transparency and antialiasing

� A-Buffer is an extension to the z-buffer algorithm

� For each pixel, rather than keeping its current color and depth, keep a
linked list of all colors, depths, and transparency values up until the
closest completely opaque pixel

� Even more memory intensive

� allows for proper handling of many advanced techniques (e.g.
transparency, antialiasing, …)

� Widely used for high quality rendering

8

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 43

A-Buffer (2)

initialize all pixels linked list with a background color,

initialize depth-buffer linked list with depth of back
clipping plane

for each polygon {

for each pixel in polygon's projection {

Add colors, depths, and transparency values to the
proper linked list

}

}

for each pixel in the screen {

traverse each list starting at the most distal pixel and
use the alpha-channel equation to update the pixel color in
the resulting image

}

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 44

A-Buffer (3)

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 45

Scan-line Algorithm

� extend scan-line algorithm for single polygons to
multiple polygons

� operate at image precision
� create one scan-line at a time
� maintains intersecting edges list for each scan-line
� determine visibility in each scan-line

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 46

Scan-line Algorithm (2)

Two polygons being processed by a scan-line algorithm

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 47

Scan-line Algorithm (3)

We should maintain lists of all edges and the active edges spanning
current scan line

Maintain Three data structures:

� Edge Table (ET): Stores sorted data on all edges for all polygons

� Polygon Table (PT): Stores parameters, attributes, and in-out f lag

� Active Edge Table (AET): Stores sorted data for all polygon edges
intersecting current scan-line

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 48

Scan-line Algorithm (4): ET

� Entries in edge table are stored in buckets based on
each edge’s smaller y coordinate

� Each Edge Table entry contains:
� ymax upper y co-ordinate of edge
� xmin lower x co-ordinate of edge
� x increment, (dx = inverse slope of edge = 1/m), used in

stepping from one scanline to next (above)
� The polygon identification number indicating the polygon to

which the edge belongs.

9

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 49

Scan-line Algorithm (5): ET Example

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 50

Scan-line Algorithm (6): PT

� One entry for each Polygon, stores:
� Polygon ID

� Polygon plane parameters
� Attributes (color, shading, etc)
� In/Out flag initialized to false (will become true when

scan-line pixel enters polygon)

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 51

Scan-line Algorithm (7): AET

� Active Edge List: Stores data for all polygon edges intersecting
current scan-line

� Always keep AET in order of increasing x
� maintain sorted list as scan line proceeds upwards
� active edges only change when a vertex is passed

� if vertex is an upper vertex then delete 2 edges

� if vertex is a lower vertex then instert 2 edges

� if monotone vertex then replace edge

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 52

Scan-line Algorithm (8): AET

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 53

Scan-line Algorithm (9): AET Example

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 54

Scan-line Algorithm (10): AET Example

Scanning scan-line b:
� Active Edge List contains: – E2 - E0 - E5 - E3
� process E2: invert In/Out flag of Poly 1 (to true)
� Only one polygon is “in” -> must be visible
� Put color/shading attributes for Poly 1 into frame
� buffer until we reach edge E0 (span coherence)
� Invert In/Out for Poly 1
� No visible polygons so:
� Skip to next edge, E5
� Invert In/Out flag of Poly 2 (to true)
� Only one polygon is “in” -> must be visible
� Put color/shading attributes for Poly 2 into frame
� buffer until we reach edge E3
� Invert In/Out of Poly 2
� No more entries in AEL: finished scan-line b, go

to next scan-line (c)

10

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 55

Scan-line Algorithm (11): AET Example

Scanning scan-line c:
� Active Edge List contains:E2,E4,E1,E3
� E2 in Poly 1 -> invert In/Out flag of Poly 1 (to true)
� Only one polygon is “in” -> must be visible
� Put color/shading attributes for Poly 1 into frame buffer until we

reach edge E4
� E4 in Poly 2 -> Invert In/Out for Poly 2
� Now we have two visible polygons so use plane parameters to

determine which polygon is closest to Viewer (in this case P2)
� Put color/shading attributes for Poly 2 into frame buffer until we

reach edge E1
� E1 in Poly 1 so invert In/Out flag of P1
� Now only one polygon is “in” -> must be visible
� Continue scan converting Poly 2 until edge E3
� Invert In/Out of Poly 2
� No polygons visible
� No more entries in AEL: scan line finished

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 56

Scan-line Algorithm (12): Special Cases

� Background color: Pixels without any
polygons need to be set, too

� Initialize the frame buffer before scan
conversion

� Or place a screen-sized rectangle behind

all objects (back clipping plane) �

� Penetrating Polygons
� Either split objects to avoid piercing

� Or calculate a "false edge“ where
visibility may change

� Or find the point of penetration on a
scan-line as the scan-line is processed

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 57

Scan-line Z-Buffer/A-Buffer

� Combines scan-line algorithm with z-buffer/a-buffer
� instead of storing an entire z-buffer what if we store only 1 scan-

line at a time to save memory?
� Resolve visibility using z-buffer algorithm
� How does the algorithm have to change?

Properties:
� less memory so allows implementation for very high screen

resolution
� good use of edge coherence
� flexible for anti-aliasing (a-buffer)
� not as easy as regular z-buffer to add more primitives

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 58

Binary Space Partitioning Trees

� Idea: divide space recursively into half-spaces by
choosing splitting planes

http://www.cs.virginia.edu/~gfx/Courses/2002/Intro.fall.02/

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 59

BSP Trees (2)

Generating the BSP tree:

� select a polygon as the root (any choice works)

� the root polygon partitions the environment into two half-spaces:
� one half-space contains all polygons in front of the root polygon

(relative to its surface normal)
� the other contains all polygons behind the root polygon;
� any polygon lying on both sides of the root polygon's plane is split

by the plan, and its front and back pieces are assigned to the
appropriate half-space

� recursively subdivide the two half-spaces in the same manner

� the algorithm terminates when each node contains only a single
polygon

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 60

BSP Trees (3): Example

11

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 61

BSP Trees (4): Example

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 62

BSP Trees (5): Example

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 63

BSP Tree (6): Rendering

� Start from the root node:
� Recursively render right sub-tree: renders polygons

behind root (cannot obscure the root polygon)
� Render the root polygon

� Recursively render left sub-tree: renders the polygons
in front of the root (can obscure the root polygon)

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 64

BSP Trees (7)

BSPtree makeBSP(L: list of polygons)
{

if L is empty { return the empty tree }
Choose a polygon P from L to serve as root;
Split all polygons in L according to P;
return new TreeNode(P,

makeBSP(polygons on negative side of P),
makeBSP(polygons on positive side of P));

}

showBSP(v: Viewer, T: BSPtree)
{

if T is empty { return }
P = root of T;
if viewer is in front of P {

showBSP(back subtree of T);
draw P;
showBSP(front subtree of T);

} else {
showBSP(front subtree of T);
draw P;
showBSP(back subtree of T);

}
}

Oct 22-29, 2003 CMPT-361 : Hamid Younesy 65

BSP Tree (8): A Nice Demo!

http://symbolcraft.com/graphics/bsp/index.html

