
1

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 1

Clipping

Cohen-Sutherland line clipping algorithm
Cyrus-Beck parametric line clipping algorithm
Sutherland-Hodgman polygon clipping

algorithm

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 2

Overview of Graphics Pipeline

3D scene database

traverse geometric
model transform to

world space transform to
eye space

clipping

transform to 2D
screen space rasterize

2D image
(frame-buffer values)

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 3

Clipping

Avoid drawing parts of primitives outside window

window defines parts of the scene to be viewed
must draw geometric primitives only inside window
(points, lines, polygons, …)

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 4

Clipping – How to?

“Oh, lovely – just hundredth time you’ve managed to
cut everyone’s head off”

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 5

Point Clipping

Is point (x,y) inside the clip window?

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 6

Line Segment Clipping

Find the part of a line inside the clip window

2

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 7

Endpoints:

if both endpoints are within the clipping rectangle, the line
is completely inside (trivially accepted)

if one end point is inside and the other is outside then we
must compute the point of intersection

if both endpoints are outside, then the line may or may not
be inside

Line Segment Clipping (2)

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 8

Line Segment Clipping (3)

Good approach will find eliminate trivial acceptances
or rejections quickly and devote time to those lines
which actually intersect the clipping rectangle.

Consider the following methods:
Analytical: solve simultaneous equations
Cohen-Sutherland: Region out codes
Cyrus-beck (Liang-Barsky): parametric line equation

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 9

Simultaneous Equations

Brute force:
Intersect the line with each of the 4 clip edges
(xmin, xmax, ymix, ymax)
test these intersection points to see if they occur on
the edges of the clipping rectangle

not on rectangle no intersection

on rectangle on rectangle

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 10

Cohen-Sutherland

we can divide space into 9 regions

4-bit outcode determined by comparisons

0000 00100001

0100 01100101

1000 10101001

xmin xmax

ymin

ymax

B1

top

B2

bottom

B3

right

B4

left

B1: y > ymax

B2: y < ymin

B3: x > xmax

B4: x < xmin

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 11

Cohen-Sutherland (2)

algorithm:

compute outcode for endpoints

O1 = O2 = 0000: accept
O1 & O2 ≠ 0: reject

pick one of endpoints that is not inside (O ≠ 0000)
if (O & top) then clip with top edge

if (O & bottom) then clip with bottom edge

if (O & right) then clip with right edge
if (O & left) then clip with left edge

repeat

0000 00100001

0100 01100101

1000 10101001

top= 1000
bottom= 0100
right = 0010
left= 0001

p1

p2

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 12

Cohen-Sutherland in 3D

Use 6 bits for outcodes:
B5: z > zmax (front)
B6: z < zmin (back)

Other calculations as before

3

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 13

Cyrus-Beck Algorithm

We wish to optimize line/line intersection

Start with parametric equation of line:
P(t) = P0 + (P1 - P0) t

And a point and normal for each edge
PL, NL

Dot product: v1.v2 = |v1|.|v2|.cosα
α < 90: v1.v2 > 0
α = 90: v1.v2 = 0
α > 90: v1.v2 < 0 v1

v2

α

NL = (-1, 0)

NL = (0, -1)

NL = (1, 0)

NL = (0, 1)

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 14

Cyrus-Beck Algorithm (2)

Find t such that
NL . [P(t) - PL] = 0

Substitute line equation for P(t)
Solve for t

PL

NL

P(t)

Inside

P0

P1

P(t)-PL

DN

PPN
t

i

Li

.

).(0

−
−=

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 15

Cyrus-Beck Algorithm (3)

Compute t for line intersection with all four edges
Discard all (t < 0) and (t > 1)
Classify remaining intersections as

Potentially Entering (PE): NL . [P1 - P0] < 0

Potentially Leaving (PL): NL . [P1 - P0] > 0

PE

PL P1

PL

PE

P0

NL = (-1, 0)

NL = (0, -1)

NL = (1, 0)

NL = (0, 1)

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 16

Cyrus-Beck Algorithm (4)

Compute PE with largest t (maxPE)
Compute PL with smallest t (minPL)

if (maxPE < min PL) Clip to these two points
else reject the line

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 17

Cyrus-Beck Algorithm (5)

Because of horizontal and vertical clip lines:
Many computations reduce

Normals: (-1, 0), (1, 0), (0, -1), (0, 1)

Picking constant points on edges (PL)
solution for t:

tleft = -(x0 - xmin) / (x1 - x0)
tright = (x0 - xmax) / -(x1 - x0)
tbottom = -(y0 - ymin) / (y1 - y0)
ttop = (y0 - ymax) / -(y1 - y0)

DN

PPN
t

i

Li

.

).(0

−
−=

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 18

Comparison

Cohen-Sutherland
Repeated clipping is expensive

Best used when trivial acceptance and rejection is possible for most
lines

Cyrus-Beck
Computation of t-intersections is cheap

Computation of (x,y) clip points is only done once
Algorithm doesn’t consider trivial accepts/rejects

Best when many lines must be clipped

Liang-Barsky: Optimized Cyrus-Beck

Nicholl et al.: Fastest, but doesn’t do 3D

4

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 19

Polygon Clipping

Find the part of a polygon inside the clip window

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 20

Polygon Clipping (2)

Polygon Clipping Polygon Clipping is complex
even when the polygon is convex

Polygon Clipping is nasty
when the polygons are concave

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 21

Sutherland-Hodgman

Clip the polygon to each window boundary (edge) one at a time

After doing all edges, the polygon(s) is fully clipped

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 22

Sutherland-Hodgman (2)

Input/output for algorithm:
Input: list of polygon vertices in order

Output: list of clipped polygon vertices consisting of old
vertices (maybe) and new vertices (maybe)

Basic routine:
Go around polygon one vertex at a time

Do inside test for each point in sequence,
Insert new points when cross window boundary,

Remove points outside window boundary

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 23

Sutherland-Hodgman (3)

A polygon edge from previous point (s) to current point (p) takes
one of the four case:
(boundary can be a line or a plane)

inside outside

s

p

p output

inside outside

s

p

no output

inside outside

s
p

i output

inside outside

sp

i output
p output

i

i

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 24

Sutherland-Hodgman (4)

Four cases:
s inside plane and p inside plane

Add p to output
Note: s has already been added

s inside plane and p outside plane
Find intersection point i
Add i to output

s outside plane and p outside plane
Add nothing

s outside plane and p inside plane
Find intersection point i
Add i to output, followed by p

5

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 25

3D Clipping: Point-to-Plane test

A very general test to determine if a point p is “inside” a plane P,
defined by point q and normal n:

(p - q) • n < 0: p inside P
(p - q) • n = 0: p on P
(p - q) • n > 0: p outside P

Remember:
p • n = (pxnx+pyny+pznz) = |p| |n| cos (θ)
θ = angle between p and n

P

n
p

q

P

n
p

q

P

n
p

q

Oct 6-8, 2003 CMPT-361 : Hamid Younesy 26

3D Clipping: Line-Plane Intersections

Edge intersects plane P where E(t) is on P
q is a point on P
n is normal to P

(L(t) - q) • n = 0

t = [(q - L0) • n] / [(L1 - L0) • n]

The intersection point i = L(t) for this value of t

