
Chapter 4

SQL

CMPT-354-98.2 Lecture Notes May 21, 1998

Commercial database systems require more user-friendly query languages. We will look at

� SQL in detail.

� QBE brie
y in the next chapter.

� Quel brie
y in the next chapter.

Although referred to as query languages, they each contain facilities for designing and modifying the database.

1. The relation schemes for the banking example used throughout the new edition of the textbook are:

� Branch-scheme = (bname, bcity, assets)

� Customer-scheme = (cname, street, ccity)

� Depositor-scheme = (cname, account#)

� Account-scheme = (bname, account#, balance)

� Loan-scheme = (bname, loan#, amount)

� Borrower-scheme = (cname, loan#)

4.1 Background

1. SQL has become the standard relational database language. It has several parts:

� Data de�nition language (DDL) - provides commands to

{ De�ne relation schemes.

{ Delete relations.

{ Create indices.

{ Modify schemes.

� Interactive data manipulation language (DML) - a query language based on both relational algebra and
tuple relational calculus, plus commands to insert, delete and modify tuples.

� Embedded data manipulation language - for use within programming languages like C, PL/1, Cobol,
Pascal, etc.

� View De�nition - commands for de�ning views

� Authorization - specifying access rights to relations and views.

1

2 CHAPTER 4. SQL

� Integrity - a limited form of integrity checking.

� Transaction control - specifying beginning and end of transactions.

We will only look at basic DDL, the DML and views. Integrity features will be covered in Chapter 5.

4.2 Basic Structure

1. Basic structure of an SQL expression consists of select, from and where clauses.

� select clause lists attributes to be copied - corresponds to relational algebra project.

� from clause corresponds to Cartesian product - lists relations to be used.

� where clause corresponds to selection predicate in relational algebra.

2. Typical query has the form

select A1; A2; : : : ; An

from r1; r2; : : : ; rm

where P

where each Ai represents an attribute, each ri a relation, and P is a predicate.

3. This is equivalent to the relational algebra expression

�A1;A2;:::;An(�P (r1 � r2 � : : :� rm))

� If the where clause is omitted, the predicate P is true.

� The list of attributes can be replaced with a * to select all.

� SQL forms the Cartesian product of the relations named, performs a selection using the predicate, then
projects the result onto the attributes named.

� The result of an SQL query is a relation.

� SQL may internally convert into more e�cient expressions.

4.2.1 The select Clause

1. An example: Find the names of all branches in the account relation.

select bname

from account

2. distinct vs. all: elimination or not elimination of duplicates.

Find the names of all branches in the account relation.

select distinct bname

from account

By default, duplicates are not removed. We can state it explicitly using all.

select all bname

from account

3. select * means select all the attributes. Arithmetic operations can also be in the selection list.

4.2. BASIC STRUCTURE 3

4.2.2 The where Clause

1. The predicates can be more complicated, and can involve

� Logical connectives and, or and not.

� Arithmetic expressions on constant or tuple values.

� The between operator for ranges of values.

2. Example: Find account number of accounts with balances between $90,000 and $100,000.

select account#

from account

where balance between 90000 and 100000

4.2.3 The from Clause

1. The from class by itself de�nes a Cartesian product of the relations in the clause.

2. SQL does not have a natural join equivalent. However, natural join can be expressed in terms of a Cartesian
product, selection, and projection.

3. For the relational algebra expression

�cname;loan#(borrower 1 loan)

we can write in SQL,

select distinct cname, borrower.loan#

from borrower, loan

where borrower.loan# = loan.loan#

4. More selections with join: \Find the names and loan numbers of all customers who have a loan at the SFU
branch," we can write in SQL,

select distinct cname, borrower.loan#

from borrower, loan

where borrower.loan# = loan.loan#

and bname=\SFU"

4.2.4 The Rename Operation

1. Rename: a mechanism to rename both relations and attributes.

2. as-clause can appear in both the select and from clauses:

old-name as new-name.

3. Example.

select distinct cname, borrower.loan# as loan id

from borrower, loan

where borrower.loan# = loan.loan# and bname= \SFU"

4.2.5 Tuple Variables

1. Tuple variables can be used in SQL, and are de�ned in the from clause:

select distinct cname, T.loan#

from borrower as S, loan as T

where S.loan# = T.loan#

Note: The keyword as is optional here.

4 CHAPTER 4. SQL

2. These variables can then be used throughout the expression. Think of it as being something like the rename
operator.

Finds the names of all branches that have assets greater than at least one branch located in Burnaby.

select distinct T.bname

from branch S, branch T

where S.bcity=\Burnaby" and T.assets > S.assets

4.2.6 String Operations

1. The most commonly used operation on strings is pattern matching using the operator like.

2. String matching operators % (any substring) and (underscore, matching any character).

E.g., \ %" matches any string with at least 3 characters.

3. Patterns are case sensitive, e.g., \Jim" does not match \jim".

4. Use the keyword escape to de�ne the escape character.

E.g., like \ab%telyn%nn" escape \n" matches all the strings beginning with \ab" followed by a sequence of
characters and then \tely" and then \%n".

Backslash overrides the special meaning of these symbols.

5. We can use not like for string mismatching.

6. Example. Find all customers whose street includes the substring \Main".

select cname

from customer

where street like \%Main%"

7. SQL also permits a variety of functions on character strings, such as concatenating (using \k"), extracting
substrings, �nding the length of strings, converting between upper case and lower case, and so on.

4.2.7 Ordering the Display of Tuples

1. SQL allows the user to control the order in which tuples are displayed.

� order by makes tuples appear in sorted order (ascending order by default).

� desc speci�es descending order.

� asc speci�es ascending order.

select *
from loan

order by amount desc, loan# asc

Sorting can be costly, and should only be done when needed.

4.2.8 Duplicate Tuples

� Formal query languages are based on mathematical relations. Thus no duplicates appear in relations.

� As duplicate removal is expensive, SQL allows duplicates.

� To remove duplicates, we use the distinct keyword.

� To ensure that duplicates are not removed, we use the all keyword.

� Multiset (bag) versions of relational algebra operators.

4.3. SET OPERATIONS 5

{ if there are c1 copies of tuples t1 in r1, and t1 satis�es selection ��, then there are c1 copies of t1 in
��(r1).

{ for each copy of tuple t1 in r1, there is a copy of tuple �A(t1) in �A(r1).

{ if there are c1 copies of tuple t1 in r1, and c2 copies of tuple t2 in r2, there is c1� c2 copies of tuple t1:t2
in r1 � r2.

� An SQL query of the form

select A1; A2; : : : ; An

from r1; r2; : : : ; rm

where P

is equivalent to the algebra expression

�A1;A2;:::;An(�P (r1 � r2 � : : :� rm))

using the multiset versions of the relational operators �;�, and �.

4.3 Set Operations

1. SQL has the set operations union, intersect and except.

2. Find all customers having an account.

select distinct cname

from depositor

3. union: Find all customers having a loan, an account, or both. branch.

(select cname

from depositor)
union

(select cname

from borrower)

4. intersect: Find customers having a loan and an account.

(select distinct cname

from depositor)
intersect

(select distinct cname

from borrower)

5. except: Find customers having an account, but not a loan.

(select distinct cname

from depositor)
except

(select cname

from borrower)

6. Some additional details:

� union eliminates duplicates, being a set operation. If we want to retain duplicates, we may use union
all, similarly for intersect and except.

� Not all implementations of SQL have these set operations.

� except in SQL-92 is called minus in SQL-86.

� It is possible to express these queries using other operations.

6 CHAPTER 4. SQL

4.4 Aggregate Functions

1. In SQL we can compute functions on groups of tuples using the group by clause. Attributes given are used
to form groups with the same values. SQL can then compute

� average value | avg

� minimum value | min

� maximum value | max

� total sum of values | sum

� number in group | count

These are called aggregate functions. They return a single value.

2. Some examples:

(a) Find the average account balance at each branch.

select bname, avg (balance)
from account

group by bname

(b) Find the number of depositors at each branch.

select bname, count (distinct cname)
from account, depositor

where account.account# = depositor.account#

group by bname

We use distinct so that a person having more than one account will not be counted more than once.

(c) Find branches and their average balances where the average balance is more than $1200.

select bname, avg (balance)
from account

group by bname

having avg (balance) > 1200

Predicates in the having clause are applied after the formation of groups.

(d) Find the average balance of each customer who lives in Vancouver and has at least three accounts:

select depositor.cname, avg (balance)
from depositor, account, customer

where depositor.cname = customer.cname and account.account# = depositor.account#

and ccity=\Vancouver"

group by depositor.cname

having count (distinct account#) � 3

3. If a where clause and a having clause appear in the same query, the where clause predicate is applied �rst.

� Tuples satisfying where clause are placed into groups by the group by clause.

� The having clause is applied to each group.

� Groups satisfying the having clause are used by the select clause to generate the result tuples.

� If no having clause is present, the tuples satisfying the where clause are treated as a single group.

4.5 Null Values

1. With insertions, we saw how null values might be needed if values were unknown. Queries involving nulls
pose problems.

2. If a value is not known, it cannot be compared or be used as part of an aggregate function.

4.6. NESTED SUBQUERIES 7

3. All comparisons involving null are false by de�nition. However, we can use the keyword null to test for null
values:

select distinct loan#

from loan

where amount is null

4. All aggregate functions except count ignore tuples with null values on the argument attributes.

4.6 Nested Subqueries

4.6.1 Set Membership

1. We use the in and not in operations for set membership.

select distinct cname

from borrower

where cname in

(select cname from account where bname=\SFU")

2. Note that we can write the same query several ways in SQL.

3. We can also test for more than one attribute:

select distinct cname

from borrower, loan

where borrower.loan# = loan.loan# and bname=\SFU"

and (bname, cname) in
(select bname, cname from account, depositor where depositor.account# = account.account#)

This �nds all customers who have a loan and an account at the SFU branch in yet another way.

4. Finding all customers who have a loan but not an account, we can use the not in operation.

4.6.2 Set Comparison

1. To compare set elements in terms of inequalities, we can write

select distinct T.bname

from branch T,branch S

where T.assets > S.assets and S.bcity=\Burnaby"

or we can write

select bname

from branch

where assets > some

(select assets from branch where bcity=\Burnaby")

to �nd branches whose assets are greater than some branch in Burnaby.

2. We can use any of the equality or inequality operators with some. If we change > some to > all, we �nd
branches whose assets are greater than all branches in Burnaby.

3. Example. Find branches with the highest average balance. We cannot compose aggregate functions in SQL,
e.g. we cannot do max (avg : : :)). Instead, we �nd the branches for which average balance is greater than

8 CHAPTER 4. SQL

or equal to all average balances:

select bname

from account

group by bname

having avg (balance) � all

(select avg (balance)
from account

group by bname)

4.6.3 Test for Empty Relations

1. The exists construct returns true if the argument subquery is nonempty.

2. Find all customers who have a loan and an account at the bank.

select cname

from borrower

where exists (select *
from depositor

where depositor.cname = borrower.cname)

4.6.4 Test for the Absence of Duplicate Tuples

1. The unique construct returns true if the argument subquery contains no duplicate tuples.

2. Find all customers who have only one account at the SFU branch.

select T.cname

from depositor as T

where unique (select R.cname

from account, depositor as R

where T.cname = R.cname and

R.account# = account.account# and account.bname = \SFU")

4.7 Derived Relations

1. SQL-92 allows a subquery expression to be used in the from clause.

2. If such an expression is used, the result relation must be given a name, and the attributes can be renamed.

3. Find the average account balance of those branches where the average account balance is greater than $1,000.

select bname, avg-balance

from (select bname, avg(balance)
from account

group by bname)
as result(bname, avg-balance)

where avg-balance > 1000

4.7.1 Views

1. A view in SQL is de�ned using the create view command:

create view v as hquery expressioni

where hquery expressioni is any legal query expression. The view created is given the name v.

4.8. MODIFICATION OF THE DATABASE 9

2. To create a view all-customer of all branches and their customers:

create view all-customer as

(select bname, cname

from depositor, account

where depositor.account# = account.account#)
union

(select bname, cname

from borrower, loan

where borrower.loan# = loan.loan#)

3. Having de�ned a view, we can now use it to refer to the virtual relation it creates. View names can appear
anywhere a relation name can.

4. We can now �nd all customers of the SFU branch by writing

select cname

from all-customer

where bname=\SFU"

4.8 Modi�cation of the Database

Up until now, we have looked at extracting information from the database.

4.8.1 Deletion

1. Deletion is expressed in much the same way as a query. Instead of displaying, the selected tuples are
removed from the database. We can only delete whole tuples.

2. A deletion in SQL is of the form

delete from r

where P

Tuples in r for which P is true are deleted. If the where clause is omitted, all tuples are deleted.

3. The request delete from loan deletes all tuples from the relation loan.

4. Some more examples:

(a) Delete all of Smith's account records.

delete from depositor

where cname=\Smith"

(b) Delete all loans with loan numbers between 1300 and 1500.

delete from loan

where loan# between 1300 and 1500

(c) Delete all accounts at branches located in Surrey.

delete from account

where bname in

(select bname

from branch

where bcity=\Surrey")

5. We may only delete tuples from one relation at a time, but we may reference any number of relations in a
select-from-where clause embedded in the where clause of a delete.

10 CHAPTER 4. SQL

6. However, if the delete request contains an embedded select that references the relation from which tuples are
to be deleted, ambiguities may result.

For example, to delete the records of all accounts with balances below the average, we might write

delete from account

where balance < (select avg(balance) from account)

You can see that as we delete tuples from account, the average balance changes!

Solution: The delete statement �rst test each tuple in the relation account to check whether the account
has a balance less than the average of the bank. Then all tuples that fail the test are deleted. Perform
all the tests (and mark the tuples to be deleted) before any deletion then delete them en masse after the
evaluations!

4.8.2 Insertion

1. To insert data into a relation, we either specify a tuple, or write a query whose result is the set of tuples to
be inserted. Attribute values for inserted tuples must be members of the attribute's domain.

2. Some examples:

(a) To insert a tuple for Smith who has $1200 in account A-9372 at the SFU branch.

insert into account

values (\SFU", \A-9372", 1200)

(b) To provide each loan that the customer has in the SFU branch with a $200 savings account.

insert into account

select bname, loan#, 200

from loan

where bname=\SFU"

Here, we use a select to specify a set of tuples.

It is important that we evaluate the select statement fully before carrying out any insertion. If some
insertions were carried out even as the select statement were being evaluated, the insertion

insert into account

select *
from account

might insert an in�nite number of tuples. Evaluating the select statement completely before performing
insertions avoids such problems.

(c) It is possible for inserted tuples to be given values on only some attributes of the schema. The remaining
attributes are assigned a null value denoted by null.

We can prohibit the insertion of null values using the SQL DDL.

4.8.3 Updates

1. Updating allows us to change some values in a tuple without necessarily changing all.

2. Some examples:

(a) To increase all balances by 5 percent.

update account

set balance=balance * 1.05

This statement is applied to every tuple in account.

4.9. JOINED RELATIONS 11

(b) To make two di�erent rates of interest payment, depending on balance amount:

update account

set balance=balance * 1.06
where balance > 10,000

update account

set balance=balance * 1.05
where balance � 10,000

Note: in this example the order of the two operations is important. (Why?)

3. In general, where clause of update statement may contain any construct legal in a where clause of a select
statement (including nesting).

4. A nested select within an update may reference the relation that is being updated. As before, all tuples in the
relation are �rst tested to see whether they should be updated, and the updates are carried out afterwards.

For example, to pay 5% interest on account whose balance is greater than average, we have

update account

set balance=balance * 1.05
where balance > select avg (balance) from account

4.8.4 Update of a view

1. The view update anomaly previously mentioned in Chapter 3 exists also in SQL.

2. An example will illustrate: consider a clerk who needs to see all information in the loan relation except
amount.

Let the view branch-loan be given to the clerk:

create view branch-loan as

select bname, loan#

from loan

Since SQL allows a view name to appear anywhere a relation name may appear, the clerk can write:

insert into branch-loan

values (\SFU", \L-307")

This insertion is represented by an insertion into the actual relation loan, from which the view is constructed.
However, we have no value for amount.

This insertion results in (\SFU", \L-307", null) being inserted into the loan relation.

As we saw, when a view is de�ned in terms of several relations, serious problems can result. As a result,
many SQL-based systems impose the constraint that a modi�cation is permitted through a view only if the
view in question is de�ned in terms of one relation in the database.

4.9 Joined Relations

4.9.1 Examples

1. Two given relations: loan and borrower.

2. inner join:

loan inner join borrower on loan.loan# = borrower.loan#

Notice that the loan# will appear twice in the inner joined relation.

12 CHAPTER 4. SQL

bname loan# amount

Downtown L-170 3000
Redwood L-230 4000
Perryridge L-260 1700

cname loan#

Jones L-170
Smith L-230
Hayes L-155

Figure 4.1: The loan and borrower relations.

bname loan# amount cname loan#

Downtown L-170 3000 Jones L-170
Redwood L-230 4000 Smith L-230

Figure 4.2: Result of loan inner join borrower.

3. left outer join:

loan left outer join borrower on loan.loan# = borrower.loan#

4. natural inner join:

loan natural inner join borrower

4.9.2 Join types and conditions

1. Each variant of the join operations in SQL-92 consists of a join type and a join condition.

2. Join types: inner join, left outer join, right outer join, full outer join.

The keyword inner and outer are optional since the rest of the join type enables us to deduce whether the
join is an inner join or an outer join.

SQL-92 also provides two other join types:

(a) cross join: an inner join without a join condition.

(b) union join: a full outer join on the \false" condition, i.e., where the inner join is empty.

3. Join conditions: natural, on predicate, using (A1; A2; : : : ; An).

The use of join condition is mandatory for outer joins, but is optional for inner joins (if it is omitted, a
Cartesian product results).

4. Ex. A natural full outer join:

loan natural full outer join borrower

using (loan#)

bname loan# amount cname loan#

Downtown L-170 3000 Jones L-170
Redwood L-230 4000 Smith L-230
Perryridge L-260 1700 null null

Figure 4.3: Result of loan left outer join borrower.

4.10. DATA-DEFINITION LANGUAGE 13

bname loan# amount cname

Downtown L-170 3000 Jones
Redwood L-230 4000 Smith

Figure 4.4: Result of loan natural inner join borrower.

bname loan# amount cname

Downtown L-170 3000 Jones
Redwood L-230 4000 Smith
Perryridge L-260 1700 null

null L-155 null Hayes

Figure 4.5: Result of loan natural full outer join borrower using (loan#).

5. Ex. Find all customers who have either an account or a loan (but not both) at the bank.

select cname

from (natural full outer join borrower)
where account# is null or loan# is null

4.10 Data-De�nition Language

The SQL DDL (Data De�nition Language) allows speci�cation of not only a set of relations, but also the following
information for each relation:

� The schema for each relation.

� The domain of values associated with each attribute.

� Integrity constraints.

� The set of indices for each relation.

� Security and authorization information.

� Physical storage structure on disk.

4.10.1 Domain Types in SQL

1. The SQL-92 standard supports a variety of built-in domain types:

� char(n) (or character(n)): �xed-length character string, with user-speci�ed length.

� varchar(n) (or character varying): variable-length character string, with user-speci�ed maximum
length.

� int or integer: an integer (length is machine-dependent).

� smallint: a small integer (length is machine-dependent).

� numeric(p, d): a �xed-point number with user-speci�ed precision, consists of p digits (plus a sign) and
d of p digits are to the right of the decimal point. E.g., numeric(3, 1) allows 44.5 to be stored exactly
but not 444.5.

� real or double precision:
oating-point or double-precision
oating-point numbers, with machine-
dependent precision.

14 CHAPTER 4. SQL

�
oat(n):
oating-point, with user-speci�ed precision of at least n digits.

� date: a calendar date, containing four digit year, month, and day of the month.

� time: the time of the day in hours, minutes, and seconds.

2. SQL-92 allows arithmetic and comparison operations on various numeric domains, including, interval and
cast (type coercion) such as transforming between smallint and int. It considers strings with di�erent length
are compatible types as well.

3. SQL-92 allows create domain statement, e.g.,

create domain person-name char(20)

4.10.2 Schema de�nition in SQL

1. An SQL relation is de�ned by:

create table r (A1; D1; A2; D2; : : : ; An; Dn

hintegrity-constraint1 i,
: : : , hintegrity-constraint1 i)

where r is the relation name, Ai is the name of an attribute, and Di is the domain of that attribute. The
allowed integrity-constraints include

primary key (Aj1; : : : ; Ajm)

and

check(P)

2. Example.

create table branch (
bname char(15) not null
bcity char(30)
assets integer
primary key (bname)
check (assets >= 0))

3. The values of primary key must be not null and unique. SQL-92 consider not null in primary key speci�cation
is redundant but SQL-89 requires to de�ne it explicitly.

4. Check creates type checking functionality which could be quite useful. E.g.,

create table student (
name char(15) not null
student-id char(10) not null
degree-level char(15) not null
check (degree-level in (\Bachelors", \Masters", \Doctorate")))

5. Some checking (such as foreign-key constraints) could be costly, e.g.,

check (bname in (select bname from branch))

6. A newly loaded table is empty. The insert command can be used to load it, or use special bulk loader
untilities.

7. To remove a relation from the database, we can use the drop table command:

drop table r

This is not the same as

delete r

which retains the relation, but deletes all tuples in it.

4.11. EMBEDDED SQL 15

8. The alter table command can be used to add or drop attributes to an existing relation r:

alter table r add A D

where A is the attribute and D is the domain to be added.

alter table r drop A

where A is the attribute to be dropped.

4.11 Embedded SQL

1. SQL provides a powerful declarative query language. However, access to a database from a general-purpose
programming language is required because,

� SQL is not as powerful as a general-purpose programming language. There are queries that cannot be
expressed in SQL, but can be programmed in C, Fortran, Pascal, Cobol, etc.

� Nondeclarative actions | such as printing a report, interacting with a user, or sending the result to a
GUI | cannot be done from within SQL.

2. The SQL standard de�nes embedding of SQL as embedded SQL and the language in which SQL queries are
embedded is referred as host language.

3. The result of the query is made available to the program one tuple (record) at a time.

4. To identify embedded SQL requests to the preprocessor, we use EXEC SQL statement:

EXEC SQL hembedded SQL statement iEND-EXEC

Note: A semi-colon is used instead of END-EXEC when SQL is embedded in C or Pascal.

5. Embedded SQL statements: declare cursor, open, and fetch statements.

EXEC SQL
declare c cursor for

select cname, ccity

from deposit, customer

where deposit.cname = customer.cname and deposit.balance > :amount

END-EXEC

where amount is a host-language variable.

EXEC SQL open c END-EXEC

This statement causes the DB system to execute the query and to save the results within a temporary relation.

A series of fetch statement are executed to make tuples of the results available to the program.

EXEC SQL fetch c into :cn, :cc END-EXEC

The program can then manipulate the variable cn and cc using the features of the host programming language.

A single fetch request returns only one tuple. We need to use a while loop (or equivalent) to process each
tuple of the result until no further tuples (when a variable in the SQLCA is set).

We need to use close statement to tell the DB system to delete the temporary relation that held the result
of the query.

EXEC SQL close c END-EXEC

6. Embedded SQL can execute any valid update, insert, or delete statements.

7. Dynamic SQL component allows programs to construct and submit SQL queries ar run time (see p. 147 of
the textbook for details).

8. SQL-92 also contains a module language, which allows procedures to be de�ned in SQL (see pp. 147-148 of
the textbook for details).

16 CHAPTER 4. SQL

4.12 Other SQL Features

1. 4GL: Most commercial database products include a special language to assist application programmers in
creating templates on the screen for a user interface, and in formatting data for report generating.

No single accepted standard currently exists for 4GL.

2. SQL-92 standard de�ned SQL sessions and SQL environments.

� SQL sessions: client/server abstraction (connect, disconnect, commit, rollback).

� SQL environments: provide user-id and schema for each user.

