
Chapter 2

The Entity-Relationship Model

CMPT-354-Han-95.3 Lecture Notes September 20, 1995

The E-R (entity-relationship) data model views the real world as a set of basic objects (entities) and
relationships among these objects.

It is intended primarily for the DB design process by allowing the speci�cation of an enterprise scheme.
This represents the overall logical structure of the DB.

2.1 Entities and Entity Sets

� An entity is an object that exists and is distinguishable from other objects. For instance, John Harris with
S.I.N. 890-12-3456 is an entity, as he can be uniquely identi�ed as one particular person in the universe.

� An entity may be concrete (a person or a book, for example) or abstract (like a holiday or a concept).

� An entity set is a set of entities of the same type (e.g., all persons having an account at a bank).

� Entity sets need not be disjoint. For example, the entity set employee (all employees of a bank) and the
entity set customer (all customers of the bank) may have members in common.

� An entity is represented by a set of attributes.

{ E.g. name, S.I.N., street, city for \customer" entity.

{ The domain of the attribute is the set of permitted values (e.g. the telephone number must be seven
positive integers).

� Formally, an attribute is a function which maps an entity set into a domain.

{ Every entity is described by a set of (attribute, data value) pairs.

{ There is one pair for each attribute of the entity set.

{ E.g. a particular customer entity is described by the set f(name, Harris), (S.I.N., 890-123-456), (street,
North), (city, Georgetown)g.

An analogy can be made with the programming language notion of type de�nition.

� The concept of an entity set corresponds to the programming language type de�nition.

� A variable of a given type has a particular value at a point in time.

� Thus, a programming language variable corresponds to an entity in the E-R model.

11

12 CHAPTER 2. THE ENTITY-RELATIONSHIP MODEL

Figure 2-1 shows two entity sets.

We will be dealing with �ve entity sets in this section:

� branch, the set of all branches of a particular bank. Each branch is described by the attributes branch-name,
branch-city and assets.

� customer, the set of all people having an account at the bank. Attributes are customer-name, S.I.N., street
and customer-city.

� employee, with attributes employee-name and phone-number.

� account, the set of all accounts created and maintained in the bank. Attributes are account-number and
balance.

� transaction, the set of all account transactions executed in the bank. Attributes are transaction-number, date
and amount.

2.2 Relationships & Relationship Sets

A relationship is an association between several entities.

A relationship set is a set of relationships of the same type.

Formally it is a mathematical relation on n � 2 (possibly non-distinct) sets.

If E1; E2; : : : ; En are entity sets, then a relationship set R is a subset of

f(e1; e2; : : : ; en) j e1 2 E1; e2 2 E2; : : : ; en 2 Eng

where (e1; e2; : : : ; en) is a relationship.

For example, consider the two entity sets customer and account. (Fig. 2.1 in the text). We de�ne the relationship
CustAcct to denote the association between customers and their accounts. This is a binary relationship set (see
Figure 2.2 in the text).

Going back to our formal de�nition, the relationship set CustAcct is a subset of all the possible customer and
account pairings.

This is a binary relationship. Occasionally there are relationships involving more than two entity sets.

The role of an entity is the function it plays in a relationship. For example, the relationship works-for could
be ordered pairs of employee entities. The �rst employee takes the role of manager, and the second one will take
the role of worker.

A relationship may also have descriptive attributes. For example, date (last date of account access) could be
an attribute of the CustAcct relationship set.

2.3 Attributes

It is possible to de�ne a set of entities and the relationships among them in a number of di�erent ways. The main
di�erence is in how we deal with attributes.

� Consider the entity set employee with attributes employee-name and phone-number.

� We could argue that the phone be treated as an entity itself, with attributes phone-number and location.

� Then we have two entity sets, and the relationship set EmpPhn de�ning the association between employees
and their phones.

� This new de�nition allows employees to have several (or zero) phones.

� New de�nition may more accurately re
ect the real world.

2.4. MAPPING CONSTRAINTS 13

� We cannot extend this argument easily to making employee-name an entity.

The question of what constitutes an entity and what constitutes an attribute depends mainly on the structure
of the real world situation being modeled, and the semantics associated with the attribute in question.

2.4 Mapping Constraints

An E-R scheme may de�ne certain constraints to which the contents of a database must conform.

� Mapping Cardinalities: express the number of entities to which another entity can be associated via a
relationship. For binary relationship sets between entity sets A and B, the mapping cardinality must be one
of:

1. One-to-one: An entity in A is associated with at most one entity in B, and an entity in B is associated
with at most one entity in A. (Figure 2.3)

2. One-to-many: An entity in A is associated with any number in B. An entity in B is associated with
at most one entity in A. (Figure 2.4)

3. Many-to-one: An entity in A is associated with at most one entity in B. An entity in B is associated
with any number in A. (Figure 2.5)

4. Many-to-many: Entities in A and B are associated with any number from each other. (Figure 2.6)

The appropriate mapping cardinality for a particular relationship set depends on the real world being modeled.
(Think about the CustAcct relationship...)

� Existence Dependencies: if the existence of entity X depends on the existence of entity Y, then X is said
to be existence dependent on Y. (Or we say that Y is the dominant entity and X is the subordinate
entity.)

For example,

{ Consider account and transaction entity sets, and a relationship log between them.

{ This is one-to-many from account to transaction.

{ If an account entity is deleted, its associated transaction entities must also be deleted.

{ Thus account is dominant and transaction is subordinate.

2.5 Keys

Di�erences between entities must be expressed in terms of attributes.

� A superkey is a set of one or more attributes which, taken collectively, allow us to identify uniquely an
entity in the entity set.

� For example, in the entity set customer, customer-name and S.I.N. is a superkey.

� Note that customer-name alone is not, as two customers could have the same name.

� A superkey may contain extraneous attributes, and we are often interested in the smallest superkey. A
superkey for which no subset is a superkey is called a candidate key.

� In the example above, S.I.N. is a candidate key, as it is minimal, and uniquely identi�es a customer entity.

� A primary key is a candidate key (there may be more than one) chosen by the DB designer to identify
entities in an entity set.

14 CHAPTER 2. THE ENTITY-RELATIONSHIP MODEL

An entity set that does not possess su�cient attributes to form a primary key is called a weak entity set.

One that does have a primary key is called a strong entity set.

For example,

� The entity set transaction has attributes transaction-number, date and amount.

� Di�erent transactions on di�erent accounts could share the same number.

� These are not su�cient to form a primary key (uniquely identify a transaction).

� Thus transaction is a weak entity set.

For a weak entity set to be meaningful, it must be part of a one-to-many relationship set. This relationship set
should have no descriptive attributes. (Why?)

The idea of strong and weak entity sets is related to the existence dependencies seen earlier.

� Member of a strong entity set is a dominant entity.

� Member of a weak entity set is a subordinate entity.

A weak entity set does not have a primary key, but we need a means of distinguishing among the entities.

The discriminator of a weak entity set is a set of attributes that allows this distinction to be made.

The primary key of a weak entity set is formed by taking the primary key of the strong entity set on which
its existence depends (see Mapping Constraints) plus its discriminator.

To illustrate:

� transaction is a weak entity. It is existence-dependent on account.

� The primary key of account is account-number.

� transaction-number distinguishes transaction entities within the same account (and is thus the discriminator).

� So the primary key for transaction would be (account-number, transaction-number).

Just Remember: The primary key of a weak entity is found by taking the primary key of the strong entity
on which it is existence-dependent, plus the discriminator of the weak entity set.

2.6 Primary Keys for Relationship Sets

The attributes of a relationship set are the attributes that comprise the primary keys of the entity sets involved in
the relationship set.

For example:

� S.I.N. is the primary key of customer, and

� account-number is the primary key of account.

� The attributes of the relationship set custacct are then (account-number, S.I.N.).

This is enough information to enable us to relate an account to a person.

If the relationship has descriptive attributes, those are also included in its attribute set. For example, we might
add the attribute date to the above relationship set, signifying the date of last access to an account by a particular
customer.

Note that this attribute cannot instead be placed in either entity set as it relates to both a customer and an
account, and the relationship is many-to-many.

The primary key of a relationship set R depends on the mapping cardinality and the presence of descriptive
attributes.

With no descriptive attributes:

2.7. THE ENTITY RELATIONSHIP DIAGRAM 15

accountCustAcctcustomer

balance
number

account-

street

date

customer-
name

social-
security customer-

city

Figure 2.7: An E-R diagram

accountCustAcctcustomer

balance
number

account-

street

date

customer-
name

social-
security customer-

city

Figure 2.8: One-to-many from customer to account

� many-to-many: all attributes in R.

� one-to-many: primary key for the \many" entity.

Descriptive attributes may be added, depending on the mapping cardinality and the semantics involved (see
text).

2.7 The Entity Relationship Diagram

We can express the overall logical structure of a database graphically with an E-R diagram.

Its components are:

� rectangles representing entity sets.

� ellipses representing attributes.

� diamonds representing relationship sets.

� lines linking attributes to entity sets and entity sets to relationship sets.

In the text, lines may be directed (have an arrow on the end) to signify mapping cardinalities for relationship
sets. Figures ?? to ?? show some examples.

Go back and review mapping cardinalities. They express the number of entities to which an entity can be
associated via a relationship.

The arrow positioning is simple once you get it straight in your mind, so do some examples. Think of the arrow
head as pointing to the entity that \one" refers to.

16 CHAPTER 2. THE ENTITY-RELATIONSHIP MODEL

accountCustAcctcustomer

balance
number

account-

street

date

customer-
name

social-
security customer-

city

Figure 2.9: Many-to-one from customer to account

accountCustAcctcustomer

balance
number

account-

street

date

customer-
name

social-
security customer-

city

Figure 2.10: One-to-one from customer to account

2.8 Other Styles of E-R Diagram

The text uses one particular style of diagram. Many variations exist.

Some of the variations you will see are:

� Diamonds being omitted { a link between entities indicates a relationship.

{ Less symbols, clearer picture.

{ What happens with descriptive attributes?

{ In this case, we have to create an intersection entity to possess the attributes.

� Numbers instead of arrowheads indicating cardinality.

{ Symbols, 1, n and m used.

{ E.g. 1 to 1, 1 to n, n to m.

{ Easier to understand than arrowheads.

� A range of numbers indicating optionality of relationship. (See Elmasri & Navathe, p 58.)

{ E.g (0,1) indicates minimum zero (optional), maximum 1.

{ Can also use (0,n), (1,1) or (1,n).

{ Typically used on near end of link { confusing at �rst, but gives more information.

{ E.g. entity 1 (0,1) || (1,n) entity 2 indicates that entity 1 is related to between 0 and 1 occurrences
of entity 2 (optional).

{ Entity 2 is related to at least 1 and possibly many occurrences of entity 1 (mandatory).

2.8. OTHER STYLES OF E-R DIAGRAM 17

employee
works-

for

manager

worker

phone-numberemployee-
name

Figure 2.11: E-R diagram with role indicators

account

balance
number

account-
date

transaction-
number

transactionlog

amount

Figure 2.12: E-R diagram with a weak entity set

� Multivalued attributes may be indicated in some manner.

{ Means attribute can have more than one value.

{ E.g. hobbies.

{ Has to be normalized later on.

� Extended E-R diagrams allowing more details/constraints in the real world to be recorded. (See Elmasri
& Navathe, chapter 21.)

{ Composite attributes.

{ Derived attributes.

{ Subclasses and superclasses.

{ Generalization and specialization.

Roles in E-R Diagrams

The function that an entity plays in a relationship is called its role. Roles are normally explicit and not
speci�ed.

They are useful when the meaning of a relationship set needs clari�cation.

For example, the entity sets of a relationship may not be distinct. The relationship works-for might be ordered
pairs of employees (�rst is manager, second is worker).

In the E-R diagram, this can be shown by labelling the lines connecting entities (rectangles) to relationships
(diamonds). (See �gure ??).

Weak Entity Sets in E-R Diagrams

A weak entity set is indicated by a doubly-outlined box. For example, the previously-mentioned weak entity
set transaction is dependent on the strong entity set account via the relationship set log.

Figure ??) shows this example.

Nonbinary Relationships

Non-binary relationships can easily be represented. Figure ??) shows an example.

18 CHAPTER 2. THE ENTITY-RELATIONSHIP MODEL

accountcustomer

balance
number

account-

street

customer-
name

social-
security customer-

city

CAB

branch

branch-
name

branch-
city

assets

Figure 2.13: E-R diagram with a ternary relationship

accountCustAcctcustomer

balance
number

account-

street

customer-
name

social-
security customer-

city

date

transaction-
number

transactionlog

date

amount

Figure 2.14: E-R diagram with strong and weak entity sets

This E-R diagram says that a customer may have several accounts, each located in a speci�c bank branch, and
that an account may belong to several di�erent customers.

2.9 Reducing E-R Diagrams to Tables

A database conforming to an E-R diagram can be represented by a collection of tables. We'll use the E-R diagram
of Figure ??) as our example.

For each entity set and relationship set, there is a unique table which is assigned the name of the corresponding
set. Each table has a number of columns with unique names. (E.g. Figs. 2.14 - 2.18 in the text).

2.9.1 Representation of Strong Entity Sets

We use a table with one column for each attribute of the set. Each row in the table corresponds to one entity of
the entity set. For the entity set account, see the table of �gure 2.14.

We can add, delete and modify rows (to re
ect changes in the real world).

2.10. GENERALIZATION 19

A row of a table will consist of an n-tuple where n is the number of attributes.

Actually, the table contains a subset of the set of all possible rows. We refer to the set of all possible rows as
the cartesian product of the sets of all attribute values.

We may denote this as
D1 �D2 or �2

i=1
Di

for the account table, where D1 and D2 denote the set of all account numbers and all account balances, respectively.

In general, for a table of n columns, we may denote the cartesian product of D1; D2; : : : ; Dn by

�n

i=1
Di

2.9.2 Representation of Weak Entity Sets

For a weak entity set, we add columns to the table corresponding to the primary key of the strong entity set on
which the weak set is dependent.

For example, the weak entity set transaction has three attributes: transaction-number, date and amount. The
primary key of account (on which transaction depends) is account-number. This gives us the table of �gure 2.16.

2.9.3 Representation of Relationship Sets

Let R be a relationship set involving entity sets E1; E2; : : : ; Em.

The table corresponding to the relationship set R has the following attributes:

m[

i=1

primary-key(Ei)

If the relationship has k descriptive attributes, we add them too:

m[

i=1

primary-key(Ei)
[
fa1; a2; : : : ; akg

An example:

� The relationship set CustAcct involves the entity sets customer and account.

� Their respective primary keys are S.I.N. and account-number.

� CustAcct also has a descriptive attribute, date.

� This gives us the table of �gure 2.17.

Non-binary Relationship Sets

The ternary relationship of Figure ?? gives us the table of �gure 2.18. As required, we take the primary keys
of each entity set. There are no descriptive attributes in this example.

Linking a Weak to a Strong Entity

These relationship sets are many-to-one, and have no descriptive attributes. The primary key of the weak entity
set is the primary key of the strong entity set it is existence-dependent on, plus its discriminator.

The table for the relationship set would have the same attributes, and is thus redundant.

2.10 Generalization

Consider extending the entity set account by classifying accounts as being either savings-account or chequing-

account.

20 CHAPTER 2. THE ENTITY-RELATIONSHIP MODEL

account

account-
number balance

ISA

saving-account checking-account

interest-
rate

overdraft-
amount

Figure 2.19: Generalization

Each of these is described by the attributes of account plus additional attributes. (savings has interest-rate and
chequing has overdraft-amount.)

We can express the similarities between the entity sets by generalization. This is the process of forming
containment relationships between a higher-level entity set and one or more lower-level entity sets.

In E-R diagrams, generalization is shown by a triangle, as shown in Figure ??.

� Generalization hides di�erences and emphasizes similarities.

� Distinction made through attribute inheritance.

� Attributes of higher-level entity are inherited by lower-level entities.

� Two methods for conversion to a table form:

{ Create a table for the high-level entity, plus tables for the lower-level entities containing also their speci�c
attributes.

{ Create only tables for the lower-level entities.

2.11 Aggregation

The E-R model cannot express relationships among relationships.

When would we need such a thing?

Consider a DB with information about employees who work on a particular project and use a number of
machines doing that work. We get the E-R diagram shown in Figure ??.

Relationship sets work and uses could be combined into a single set. However, they shouldn't be, as this would
obscure the logical structure of this scheme.

The solution is to use aggregation.

� An abstraction through which relationships are treated as higher-level entities.

� For our example, we treat the relationship set work and the entity sets employee and project as a higher-level
entity set called work.

� Figure ?? shows the E-R diagram with aggregation.

2.11. AGGREGATION 21

name id

hours

workemployee project

number

users

machinery

id

Figure 2.20: E-R diagram with redundant relationships

name id

hours

workemployee project

number

users

machinery

id

work

Figure 2.21: E-R diagram with aggregation

22 CHAPTER 2. THE ENTITY-RELATIONSHIP MODEL

accountcustomer

balance
number

account-

street

customer-
name

social-
security customer-

city

branch

branch-
name

branch-
city

assets

CustAcct

CustBrnch

Figure 2.22: Representation of Figure 2.13 using binary relationships

Transforming an E-R diagram with aggregation into tabular form is easy. We create a table for each entity and
relationship set as before.

The table for relationship set uses contains a column for each attribute in the primary key of machinery and
work.

2.12 Design of an E-R Database Scheme

The E-R data model provides a wide range of choice in designing a database scheme to accurately model some
real-world situation.

Some of the decisions to be made are

� Using a ternary relationship versus two binary relationships.

� Whether an entity set or a relationship set best �t a real-world concept.

� Whether to use an attribute or an entity set.

� Use of a strong or weak entity set.

� Appropriateness of generalization.

� Appropriateness of aggregation.

2.12.1 Mapping Cardinalities

The ternary relationship of Figure ?? could be replaced by a pair of binary relationships, as shown in Figure ??.

However, there is a distinction between the two representations:

� In Figure ??, relationship between a customer and account can be made only if there is a corresponding
branch.

� In Figure ??, an account can be related to either a customer or a branch alone.

2.12. DESIGN OF AN E-R DATABASE SCHEME 23

customer

street

customer-
name

social-
security customer-

city

balanceaccount-
number

branch

branch- assets

city
branch-

name

account

Figure 2.23: E-R diagram with account as a relationship set

� The design of �gure ?? is more appropriate, as in the banking world we expect to have an account relate to
both a customer and a branch.

2.12.2 Use of Entity or Relationship Sets

It is not always clear whether an object is best represented by an entity set or a relationship set.

� Both Figure ?? and Figure ?? show account as an entity.

� Figure ?? shows how we might model an account as a relationship between a customer and a branch.

� This new representation cannot model adequately the situation where customers may have joint accounts.
(Why not?)

� If every account is held by only one customer, this method works.

2.12.3 Use of Extended E-R Features

We have seen weak entity sets, generalization and aggregation. Designers must decide when these features are
appropriate.

� Strong entity sets and their dependent weak entity sets may be regarded as a single \object" in the database,
as weak entities are existence-dependent on a strong entity.

� It is possible to treat an aggregated entity set as a single unit without concern for its inner structure details.

� Generalization contributes to modularity by allowing common attributes of similar entity sets to be repre-
sented in one place in an E-R diagram.

Excessive use of the features can introduce unnecessary complexity into the design.

