
Chapter 12

Query Processing

CMPT-354-98.2 Lecture Notes July 26, 1998

12.1 Query Interpretation

1. Why do we need to optimize?

� A high-level relational query is generally non-procedural in nature.

� It says \what", rather than \how" to �nd it.

� When a query is presented to the system, it is useful to �nd an e�cient method of �nding the answer,

using the existing database structure.

� Usually worthwhile for the system to spend some time on strategy selection.

� Typically can be done using information in main memory, with little or no disk access.

� Execution of the query will require disk accesses.

� Transfer of data from disk is slow, relative to the speed of main memory and the CPU

� It is advantageous to spend a considerable amount of processing to save disk accesses.

2. Do we really optimize?

� Optimizing means �nding the best of all possible methods.

� The term \optimization" is a bit of a misnomer here.

� Usually the system does not calculate the cost of all possible strategies.

� Perhaps \query improvement" is a better term.

3. Two main approaches:

(a) Rewriting the query in a more e�ective manner.

(b) Estimating the cost of various execution strategies for the query.

Usually both strategies are combined.

� The di�erence in execution time between a good strategy and a bad one may be huge.

� Thus this is an important issue in any DB system.

� In network and hierarchical systems, optimization is left for the most part to the application programmer.

� Since the DML language statements are embedded in the host language, it is not easy to transform a

hierarchical or network query to another one, unless one has knowledge about the entire application

program.

1

2 CHAPTER 12. QUERY PROCESSING

� As a relational query can be expressed entirely in a relational query language without the use of a host

language, it is possible to optimize queries automatically.

� SQL is suitable for human use, but internally a query should be represented in a more useful form, like

the relational algebra.

4. So, �rst the system must translate the query into its internal form. Then optimization begins:

� Find an equivalent expression that is more e�cient to execute.

� Select a detailed strategy for processing the query. (Choose speci�c indices to use, and order in which

tuples are to be processed, etc.)

5. Final choice of a strategy is based primarily on the number of disk accesses required.

12.2 Equivalence of Expressions

1. The �rst step in selecting a query-processing strategy is to �nd a relational algebra expression that is equiv-

alent to the given query and is e�cient to execute.

2. We'll use the following relations as examples:

Customer-scheme = (cname, street, ccity)
Deposit-scheme = (bname, account#, name, balance)
Branch-scheme = (bname, assets, bcity)

We will use instances customer, deposit and branch of these schemes.

12.2.1 Selection Operation

1. Consider the query to �nd the assets and branch-names of all banks who have depositors living in Port

Chester. In relational algebra, this is

�bname;assets(�ccity=\Port Chester" (customer 1 deposit 1 branch))

� This expression constructs a huge relation,

customer 1 deposit 1 branch

of which we are only interested in a few tuples.

� We also are only interested in two attributes of this relation.

� We can see that we only want tuples for which ccity = \Port Chester".

� Thus we can rewrite our query as:

�bname;assets((�ccity=\Port Chester"(customer)) 1 deposit 1 branch)

� This should considerably reduce the size of the intermediate relation.

2. Suggested Rule for Optimization:

� Perform select operations as early as possible.

� If our original query was restricted further to customers with a balance over $1000, the selection cannot

be done directly to the customer relation above.

� The new relational algebra query is

�bname;assets (�ccity=\PortChester" ^ balance>1000 (customer 1 deposit 1 branch))

� The selection cannot be applied to customer, as balance is an attribute of deposit.

� We can still rewrite as

�bname;assets ((�ccity=\Port Chester" ^ balance>1000 (customer 1 deposit)) 1 branch)

12.2. EQUIVALENCE OF EXPRESSIONS 3

� If we look further at the subquery (middle two lines above), we can split the selection predicate in two:

�ccity=\Port Chester"(�balance>1000
(customer 1 deposit))

� This rewriting gives us a chance to use our \perform selections early" rule again.

� We can now rewrite our subquery as:

�ccity=\Port Chester"(customer) 1 �balance>1000(deposit)

3. Second Transformational Rule:

� Replace expressions of the form �P1 ^ P2 (e) by �P1(�P2 (e)) where P1 and P2 are predicates and e is a

relational algebra expression.

� Generally,

�P1(�P2 (e)) = �P2(�P1(e)) = �P1 ^ P2 (e)

12.2.2 Projection Operation

1. Like selection, projection reduces the size of relations.

It is advantageous to apply projections early. Consider this form of our example query:

�bname;assets (((�ccity=\Port Chester"(customer)) 1 deposit) 1 branch)

2. When we compute the subexpression

((�ccity=\Port Chester"(customer)) 1 deposit)

we obtain a relation whose scheme is

(cname, ccity, bname, account#, balance)

3. We can eliminate several attributes from this scheme. The only ones we need to retain are those that

� appear in the result of the query or

� are needed to process subsequent operations.

4. By eliminating unneeded attributes, we reduce the number of columns of the intermediate result, and thus

its size.

5. In our example, the only attribute we need is bname (to join with branch). So we can rewrite our expression

as:

�bname;assets ((�bname((�ccity=\Port Chester"(customer)) 1 deposit)) 1 branch)

6. Note that there is no advantage in doing an early project on a relation before it is needed for some other

operation:

� We would access every block for the relation to remove attributes.

� Then we access every block of the reduced-size relation when it is actually needed.

� We do more work in total, rather than less!

12.2.3 Natural Join Operation

1. Another way to reduce the size of temporary results is to choose an optimal ordering of the join operations.

2. Natural join is associative:

(r1 1 r2) 1 r3 = r1 1 (r2 1 r3)

3. Although these expressions are equivalent, the costs of computing them may di�er.

4 CHAPTER 12. QUERY PROCESSING

� Look again at our expression

�bname;assets ((�ccity=\Port Chester"(customer)) 1 deposit 1 branch)

� we see that we can compute deposit 1 branch �rst and then join with the �rst part.

� However, deposit 1 branch is likely to be a large relation as it contains one tuple for every account.

� The other part,

�ccity=\Port Chester"(customer)

is probably a small relation (comparatively).

� So, if we compute

�ccity=\Port Chester"(customer) 1 deposit

�rst, we get a reasonably small relation.

� It has one tuple for each account held by a resident of Port Chester.

� This temporary relation is much smaller than deposit 1 branch.

4. Natural join is commutative:

r1 1 r2 = r2 1 r1

� Thus we could rewrite our relational algebra expression as:

�bname;assets (((�ccity=\Port Chester"(customer)) 1 branch) 1 deposit)

� But there are no common attributes between customer and branch, so this is a Cartesian product.

� Lots of tuples!

� If a user entered this expression, we would want to use the associativity and commutativity of natural

join to transform this into the more e�cient expression we have derived earlier (join with deposit �rst,
then with branch).

12.2.4 Other Operations

1. Some other equivalences for union and set di�erence:

�P (r1 [r2) = �P (r1) [�P (r2)

�P (r1 � r2) = �P (r1) � r2 = �P (r1)� �P (r2)

(r1 [r2) [r3 = r1 [(r2 [r3)

r1 [r2 = r2 [r1

2. Further Optimization

Our text covers only some of the possible operations. (For a more complete list, see Elmasri & Navathe, page

518.)

Also, it makes sense to combine the implementation of various sets of operations in order to reduce the size

of intermediate relations:

� Combine projects and selects with a Cartesian product or natural join.

� The idea is to do the selection and/or projection while computing the join.

� This saves computing a large intermediate relation that is going to be subsequently reduced by the select

or project anyway.

12.3. ESTIMATION OF QUERY-PROCESSING COST 5

12.3 Estimation of Query-Processing Cost

1. To choose a strategy based on reliable information, the database system may store statistics for each relation

r:

� nr - the number of tuples in r.

� sr - the size in bytes of a tuple of r (for �xed-length records).

� V (A; r) - the number of distinct values that appear in relation r for attribute A.

2. The �rst two quantities allow us to estimate accurately the size of a Cartesian product.

� The Cartesian product r � s contains nrns tuples.

� Each tuple of r � s occupies sr + ss bytes.

� The third statistic is used to estimate how many tuples satisfy a selection predicate of the form

<attribute-name> = <value>

� We need to know how often each value appears in a column.

� If we assume each value appears with equal probability, then

�A=a(r)

is estimated to have
nr

V (A; r)

tuples.

� This may not be the case, but it is a good approximation of reality in many relations.

� We assume such a uniform distribution for the rest of this chapter.

� Estimation of the size of a natural join is more di�cult.

� Let r1(R1) and r2(R2) be relations on schemes R1 and R2.

� If R1 \ R2 = ; (no common attributes), then r1 1 r2 is the same as r1 � r2 and we can estimate the

size of this accurately.

� If R1 \R2 is a key for R1, then we know that a tuple of r2 will join with exactly one tuple of r1.

� Thus the number of tuples in r1 1 r2 will be no greater than nr2 .

� If R1 \R2 is not a key for R1 or R2, things are more di�cult.

� We use the third statistic and the assumption of uniform distribution.

� Assume R1 \R2 = fAg.

� We assume there are
nr2

V (A; r2)

tuples in r2 with an A value of t[A] for tuple t in r1.

� So tuple t of r1 produces
nr2

V (A; r2)

tuples in r1 1 r2

3. Considering all the tuples in r1, we estimate that there are

nr1nr2
V (A; r2)

tuples in total in r1 1 r2

6 CHAPTER 12. QUERY PROCESSING

4. If we reverse the roles of r1 and r2 in this equation, we get a di�erent estimate

nr1nr2
V (A; r1)

if V (A; r1) 6= V (A; r2).

� If this occurs, there are likely to be some dangling tuples that do not participate in the join.

� Thus the lower estimate is probably the better one.

� This estimate may still be high if the V (A; r1) values in r1 have few values in common with the V (A; r2)

values in r2.

� However, it is unlikely that the estimate is far o�, as dangling tuples are likely to be a small fraction of

the tuples in a real world relation.

5. To maintain accurate statistics, it is necessary to update the statistics whenever a relation is modi�ed.

This can be substantial, so most systems do this updating during periods of light load on the system.

12.4 Estimation of Access Costs Using Indices

1. So far, we haven't considered the e�ects of indices and hash functions on the cost of evaluating an expression.

� Indices and hash functions allow fast access to records containing a speci�c value on the index key.

� Indices (but not most hash functions) also allow the records of a �le to be read in sorted order.

� It is e�cient to read records of a �le in an order corresponding closely to physical order.

� If an index allows this, we call the index a clustering index.

� Such indices allow us to take advantage of the physical clustering of records into blocks.

� Text doesn't distinguish clearly between a clustering index and a primary index. [ELNA89] de�ne

a primary index as one on the primary key where the �le is sorted on that key, and a clustering index

as one on non-primary key attribute(s) that the �le is sorted on.

� With this de�nition, for a primary index, there is only one tuple per search key value, while for a

clustering index there may be many tuples.

� In both cases, only one pointer is needed per search key value. (Why?)

2. Detailed strategy for processing a query is called the access plan. This includes not only the relational

operations to be performed, but also the indices to be used and the order in which tuples are to be accessed

and the order in which operations are to be performed.

3. The use of indices imposes some overhead (access to blocks containing the index.) We also must take this

into account in computing cost of a strategy.

4. We'll look at the query

select account#
from deposit
where bname = \Perryridge"

and cname = \Williams"

and balance > 1000

5. We assume the following statistical information is kept about the deposit relation:

� 20 tuples of deposit �t in one block.

� V(bname, deposit) = 50.

� V(cname, deposit) = 200.

12.4. ESTIMATION OF ACCESS COSTS USING INDICES 7

� V(balance, deposit) = 5000.

� ndeposit = 10; 000 (number of tuples).

6. We also assume the following indices exist on deposit:

� A clustering B+-tree index for bname.

� A nonclustering B+-tree index for cname.

7. We also still assume values are distributed uniformly.

� As V(bname, deposit) = 50, we expect 10,000/50 = 200 tuples of the deposit relation apply to Perryridge
branch.

� If we use the index on bname, we will need to read these 200 tuples and check each one for satisfaction

of the rest of the where clause.

� Since the index is a clustering index,

200/20 = 10 block reads are required.

� Also several index blocks must be read.

� Assume the B+-tree stores 20 pointers per node.

� Then the B+-tree must have between 3 and 5 leaf nodes (to store the 50 di�erent values of bname).

� So the entire tree has a depth of 2, and at most 2 index blocks must be read.

So the above strategy requires 12 block reads.

8. Note: another way of calculating the number of levels in a B+-tree is to remember that the height is no

greater than

1 + blogdn=2e(K=2)c

where there are K search key values in the relation, and n is the number of pointers in a node.

9. You can use the change of base formula to calculate this value using a log function of base x with your

calculator:

logbK =
logxK

logx b

10. If we use the index for cname, we estimate the number of block accesses as follows:

� Since V(cname, deposit)=200, we expect that 10,000/200 = 50 tuples pertain to Williams.

� However, as the index on cname is nonclustering, we can expect that 50 block reads will be required,

plus some for the index (as before).

� Assume that 20 pointers �t into one node of a B+-tree index.

� As there are 200 customer names, the tree has between 11 and 20 leaf nodes.

� So the index has a depth of 2 (says the text), and 2 block accesses are required to read the index blocks.

(Actually, depth could be 3 | can you see how?)

� This strategy requires a total of 52 block accesses.

� So we conclude that it is better to use the index on bname.

11. If both indices were non-clustering, which one would we choose?

� We only expect 50 tuples for cname = \Williams", versus 200 tuples with bname =\Perryridge".

� So without clustering, we would choose the cname index as it would require reading and inspecting

fewer tuples.

12. Another interesting method is to look at pointers �rst:

8 CHAPTER 12. QUERY PROCESSING

� Use the index for cname to retrieve pointers to records with cname = \Williams", rather than the

records themselves.

� Let P1 denote this set of pointers.

� Similarly, use the index on bname to obtain P2, the set of pointers to records with bname = \Perryridge".

� Then P1 \ P2 is the set of pointers to records with bname = \Perryridge" and cname = \Williams".

� Only these records need to be retrieved and tested to see if balance > 1000.

� Cost is 4 blocks for both indices to be read, plus blocks for records whose pointers are in P1 \ P2.

� This last quantity can be estimated from our statistics.

� As V(bname, deposit) = 50 and V(cname, deposit) = 200, we can expect one tuple in 50 * 200, or 1 in

10,000 to have both values we are looking for.

� This means that P1 \ P2 is estimated to have only one pointer.

� So we only need to read 1 block, and total cost is 5 block reads.

13. We didn't use the balance attribute as a starting point because there is no index for balance and also the

predicate involves a \greater than" comparison (> 1000).

14. Generally, equality predicates are more selective than \greater than" predicates, as they return fewer tuples.

15. Estimation of access cost using indices allows us to estimate the complete cost, in terms of block accesses,

of a plan. It is often worthwhile for a large number of strategies to be evaluated down to the access plan

level before a choice is made.

12.5 Join Strategies

1. We've seen how to estimate the size of a join. Now we look at estimating the cost of processing a join.

2. Several factors in
uence the selection of an optimal strategy:

� Physical order of tuples in a relation.

� Presence of indices and type of index (clustering or not).

� Cost of computing a temporary index for the sole purpose of processing one query.

3. We'll look at computing the expression deposit 1 customer assuming no indices exist. We also let

ndeposit = 10; 000 (number of deposit tuples)
ncustomer = 200 (number of customer tuples)

12.5.1 Simple Iteration

1. If we don't create an index, we must examine every pair of tuples t1 in deposit and t2 in customer. This

means examining 10,000 * 200 = 2,000,000 pairs!

2. If we execute this query cleverly, we can cut down the number of block accesses. We use the followingmethod:

for each tuple d 2 deposit do
begin

for each tuple c 2 customer do
begin

examine pair (d; c) to see if a

tuple should be added to the result

end

end

3. � We read each tuple of deposit once.

12.5. JOIN STRATEGIES 9

� This could require 10,000 block accesses.

� The total number of block access, if the tuples are not stored together physically, would be 10,000 +

10,000 * 200 = 2,010,000.

� If we put customer in the outer loop, we get 2,000,200 accesses.

� If the tuples of deposit are stored together physically, fewer accesses are required (at 20 per block,

10,000/20 = 500 block accesses).

� We read each tuple of customer once for each tuple of deposit.

� This suggests we read each tuple of customer 10,000 times, giving as many as 2,000,000 accesses to read

customer tuples!

� This would give a total of 2,000,500 accesses.

� We can reduce accesses signi�cantly if we store customer tuples together physically.

� At 20 tuples per block, only 10 accesses are required to read the entire relation (as opposed to 200).

� Then we only need 10 * 10,000 = 100,000 block accesses for customer.

� This gives a total of 100,500.

4. Text says further savings are possible if we use customer in the outer loop.

� Now we reference each tuple of deposit once for each tuple of customer.

� If deposit tuples are stored together physically, then since 20 tuples �t on one block, ndeposit=20 = 500

accesses are needed to read the entire relation.

� Since customer has 200 tuples, we read the deposit relation 200 times.

� Earlier printings of the text say at most 200 * 500 = 10,000 block accesses to deposit are required.

� WRONG! 200 * 500 is 100,000.

� Total cost is then 100,000 for inner loop plus 10 accesses to read the customer relation once for a total

of 100,010.

� Compared to previous estimate of 100,500, the savings are small (490).

5. Note that we are considering worst-case number of block reads, where every time a block is

needed it is not in the bu�er.

Good bu�er management can reduce this considerably.

12.5.2 Block-Oriented Iteration

1. If we process tuples on a per-block basis we can save many accesses.

The idea is that, if both relations have tuples stored together physically, we can examine all the tuple pairs

for a block of each relation at one time. We still need to read all the tuples of one relation for a block of the

other relation.

The block method algorithm is:

for each block Bd of deposit do
begin

for each block Bc of customer do
begin

for each tuple d in Bd do

begin

for each tuple c in Bc do

begin

test pair (d; c) to see if a tuple

should be added to the result

end

end

end

end

10 CHAPTER 12. QUERY PROCESSING

� Instead of reading the entire customer relation for each tuple of deposit, we read the entire customer
relation once for each block of deposit.

� Since there are 500 blocks of deposit tuples and 10 blocks of customer tuples, reading customer once for
each block of deposit requires 10 * 500 = 5000 accesses to customer blocks.

� Total cost is then 5000 + 500 (for accesses to deposit blocks) = 5500.

� This is obviously a signi�cant improvement over the non-block method, which required roughly 100,000

or 2,000,000 accesses.

� Choice of customer for the inner loop is arbitrary, but does provide a potential advantage.

� Being the smaller relation, it may be possible to keep it all in main memory.

� If this was the case, we would only require 500 blocks to read deposit plus 10 blocks to read customer
into main memory, for a total of 510 block accesses.

12.5.3 Merge-Join

1. Suppose neither relation �ts in main memory, and both are stored in sorted order on the join attributes.

(E.g. both deposit and customer sorted by cname.)

2. We can then perform a merge-join, computed like this:

� Associate one pointer with each relation.

� Initially these pointers point to the �rst record in each relation.

� As algorithm proceeds, pointers move through the relation.

� A group of tuples in one relation with the same value on the join attributes is read.

� Then the corresponding tuples (if any) of the other relation are read.

� Since the relations are in sorted order, tuples with same value on the join attributes are in consecutive

order. This allows us to read each tuple only once.

3. In the case where tuples of the relations are stored together physically in their sorted order, this algorithm

allows us to compute the join by reading each block exactly once.

4. � For deposit 1 customer, this is a total of 510 block accesses.

� This is as good as the block-oriented method with the inner loop relation �tting into main memory.

� The disadvantage is that both relations must be sorted physically.

� It may be worthwhile to do this sort to allow a merge-join.

12.5.4 Use of an Index

1. Frequently the join attributes form a search key for an index on one of the relations being joined.

� In such cases we can consider a join strategy that makes use of such an index.

� Our �rst join algorithm is more e�cient if an index exists on customer (inner loop relation) for cname.

� Then for a tuple d in deposit, we no longer have to read the entire customer relation.

� Instead, we use the index to �nd tuples in customer with the same value on cname as tuple d of deposit.

� We saw that without an index, we could take as many as 2,010,000 block accesses.

� Using the index, and making no assumptions about physical storage, the join can be performed more

e�ciently.

� We still need 10,000 accesses to read deposit (outer loop relation).

� However, for each tuple of deposit, we only need an index lookup on the customer relation.

12.5. JOIN STRATEGIES 11

� As ncustomers = 200 and we assumed that 20 pointers �t in one block, this lookup requires at most 2

index block accesses (depth of B+-tree) plus block access for the customer tuple itself.

� This means 3 block accesses instead of 200, for each of the 10,000 deposit tuples.

� This gives 40,000 total, which appears high, but is still better than 2,010,000.

� More e�cient strategies required tuples to be stored physically together.

� If tuples are not stored physically together, this strategy is highly desirable.

� The savings (1,970,000 accesses) is enough to justify creation of the index, even if it is used only once.

12.5.5 Hash Join

1. Sometimes it may be useful to construct a \use once only" hash structure to assist in the computation of a

single join.

� We use a hash function h to hash tuples of both relations on the basis of join attributes.

� The resulting buckets, pointing to tuples in the relations, limit the number of pairs of tuples that must

be compared.

� If d is a tuple in deposit and c is a tuple in customer, then d and c must be compared only if h(d) = h(c).

� The comparison must still be done as it is possible that d and c have di�erent customer names that

hash to the same value.

� As before, we need our hash function to hash randomly and uniformly.

2. We will now estimate the cost of a hash-join.

� Assume that h is a hash function mapping cname values to f0; 1; : : : ;maxg.

� Hc0 ;Hc1; : : : ;Hcmax denote buckets of pointers to customer tuples, each initially empty.

� Hd0 ;Hd1 ; : : : ;Hdmax denote buckets of pointers to deposit tuples, each initially empty.

� The hash-join algorithm is shown in �gure 9.4.

� The �rst two loops assign pointers to the hash buckets, requiring a complete reading of both relations.

� This requires 510 block accesses if we assume that both relations are stored together physically (i.e. not

clustered with other relations).

� As buckets contain only pointers, we assume they �t in main memory, so no disk accesses are required

to read the buckets.

� Final loop of the algorithm iterates over the range of hash function h.

� Assume i is a particular value in the range of h.

� The tuples rd and rc are assembled, from the pointers, where rd is the set of deposit tuples that hash
to bucket i, and rc is the set of customer tuples that hash to bucket i.

� Then rd 1 rc is calculated.

� This join is done using simple iteration, since we expect rd and rc to be small enough to �t in main

memory.

� Since a tuple hashes to exactly one bucket, each tuple is read only once by the �nal outer loop.

� Earlier printings of the text say this requires another 510 block accesses, for a total of 1020. This is

wrong!

� If there are 10,000 deposit tuples and 200 customer tuples, then reading every tuple once could take

10,200 accesses, worst-case.

� Total is then 510 block accesses to create the buckets, plus 10,200 to assemble the buckets' records,

giving 10,710.

� Exercise: calculate the cost by other methods. What have we gained, and at what cost?

12 CHAPTER 12. QUERY PROCESSING

3. If the query optimizer chooses to do a hash-join, the hash function must be chosen so that

� The range is large enough to ensure that buckets have a small number of pointers, so that rd and rc �t

in main memory.

� The range is not so large that many buckets are empty and the algorithm processes many empty buckets.

12.5.6 Three-Way Join

1. We now consider the strategies for computing a 3-way join:

branch 1 deposit 1 customer

2. We'll assume that

� ndeposit = 10; 000

� ncustomer = 200

� nbranch = 50

3. Strategy 1:

� Compute deposit 1 customer using one of the previous methods.

� As cname is a key for customer, the result of this join has at most 10,000 tuples (the number in deposit).

� If we then build an index on branch for bname, we can compute

branch 1 (deposit 1 customer)

by considering each tuple t of

(deposit 1 customer)

and looking up tuples in branch with the same bname value using the index.

� (How many accesses, roughly?)

4. Strategy 2:

� Compute the join without any indices.

� This requires checking 50 * 10,000 * 200 possibilities = 100,000,000.

� Not too good of an idea...

5. Strategy 3:

� Perform the pair of joins at once.

� Construct two indices:

{ One on branch for bname.

{ One on customer for cname.

� Then consider each tuple t in deposit.

� For each t, look up corresponding tuples in customer and in branch with equal values on respective join

attributes.

� Thus we examine each tuple of deposit exactly once.

Using strategy 3 it is often possible to perform a three-way join more e�ciently than by using two two-way

joins.

6. It is hard to calculate exact costs for 3-way joins. Costs depend on how the relations are stored, distribution

of values and presence of indices.

12.6. JOIN STRATEGIES FOR PARALLEL PROCESSORS 13

12.6 Join Strategies for Parallel Processors

1. In many cases, multiple processors may be available for parallel computation of the join.

2. There are many architectures, including database machines.

3. We consider only a simple architecture:

� all processors have access to all disks, and

� all processors share main memory. (Nonshared, i.e., distributed database systems which will be covered

in Chapter 15).

12.6.1 Parallel-Join

1. Parallel-join: split the pairs to be tested over several processors. Each processor computes part of the join,

and then the results are assembled (merged).

2. Ideally, the overall work of computing join is partitioned evenly over all processors. If such a split is achieved

without any overhead, a parallel join using N processors will take 1=N times as long as the same join would

take on a single processor.

3. In practice, the speedup is less dramatic because

(a) Overhead is incurred in partitioning the work among the processors.

(b) Overhead is incurred in collecting the results computed by each processor.

(c) If the split is not even, the �nal result cannot be obtained until the last processor has �nished.

(d) The processors may compete for shared system resources, e.g., for A 1 B (e.g., deposit 1 customer),

if each processor uses its own partition of A, and the main memory cannot hold the entire B, the

processors need to synchronize the access of B so as to reduce the number of times that each block of

B must be read in from disk.

4. A parallel hash algorithm to reduce memory contention.

Choose a hash function whose range is f1; : : : ; Ng which allows us to assign each of the N processors to

exactly one hash bucket. Since the �nal outer for-loop of the hash-join algorithm iterates over buckets, each

processor can process the iteration that corresponds to its assigned bucket. Since no tuple is assigned to more

than one bucket, so there is no contention for B tuples. Since each processor considers one pair of tuples

at a time, the total main memory requirements of the parallel hash join algorithm are su�ciently low that

contention for space in main memory is unlikely.

12.6.2 Pipelined Multiway Join

1. Computing several joins in parallel.

2. Example. r1 1 r2 1 r3 1 r4 can be computed by �rst computing \t1 r1 1 r2" and \t2 r3 1 r4", and

then \t1 1 t2".

3. Moreover, it can be computed in pipelined way: (r1 1 r2) 1 (r3 1 r4). Processor P1 is assigned to process

(r1 1 r2), P2 to (r3 1 r4), and P3 to process the join of the tuples being generated by P1 and P2.

12.6.3 Physical Organization

1. In order to reduce contention for disk access, the database can be partitioned over several disks, allowing

several disk accesses to be serviced in parallel.

2. In order to exploit the potential for parallel disk access, we must choose a good distribution of data among

the disks.

14 CHAPTER 12. QUERY PROCESSING

3. For the parallel 2-way join, it is useful to distribute tuples of individual relations among several disks (disk

stripping). For example, assign tuples to disks based on the hash function value of the hash-join algorithm.

All groups of tuples that share a bucket are assigned to the same disk. Each group is assigned to the same

disk, if possible, or the groups are distributed uniformly among the available disks. This allows the parallel

2-way hash-join to exploit parallel disk access.

4. For the pipeline-join, it is desirable that each relation be kept on one disk and the distinct relations be

assigned to separate disks to the degree possible.

For example, for computing (r1 1 r2) 1 (r3 1 r4), if each relation is on a di�erent disk, contention is

eliminated between processors P1 and P2.

5. The optimal physical organization di�ers for di�erent queries. The DBA must choose a physical organization

that is believed to be good for the expected mix of database queries.

6. The query optimizer must choose from the various parallel and sequential techniques by estimating the cost

of each technique on the given physical organization.

12.7 Structure of the Query Optimizer

1. These are only some of the many query-processing strategies used in database systems.

2. Most systems only implement a few strategies.

3. Some systems make a heuristic guess of a good strategy, in order to minimize the number of strategies to be

considered.

4. Then the optimizer considers every possible strategy, but quits as soon as it determines that the cost is

greater than the best previously considered strategy.

5. To simplify the strategy selection task, a query may be split into several sub-queries.

6. This simpli�es strategy selection and permits recognition of common sub-queries (no need to compute them

twice).

7. Examination of a query for common subqueries and the estimation of the cost of a large number of strategies

impose a substantial overhead on query processing.

8. However, this is usually more than o�set by savings at query execution time.

9. Therefore, most commercial systems include relatively sophisticated optimizers.

