
Chapter 10

Storage and File Structure

CMPT-354-98.2 Lecture Notes July 7, 1998

1. We have been looking mostly at the higher-level models of a database. At the conceptual or logical level
the database was viewed as

� A collection of tables (relational model).

� A collection of classes of objects (object-oriented model).

2. The logical model is the correct level for database users to focus on. However, performance depends on the
e�ciency of the data structures used to represent data in the database, and on the e�ciency of operations
on these data structures.

10.1 Overview of Physical Storage Media

1. Several types of data storage exist in most computer systems. They vary in speed of access, cost per unit of
data, and reliability.

� Cache: most costly and fastest form of storage. Usually very small, and managed by the operating
system.

� Main Memory (MM): the storage area for data available to be operated on.

{ General-purpose machine instructions operate on main memory.

{ Contents of main memory are usually lost in a power failure or \crash".

{ Usually too small (even with megabytes) and too expensive to store the entire database.

� Flash memory: EEPROM (electrically erasable programmable read-only memory).

{ Data in 
ash memory survive from power failure.

{ Reading data from 
ash memory takes about 10 nano-secs (roughly as fast as from main memory),
and writing data into 
ash memory is more complicated: write-once takes about 4-10 microsecs.

{ To overwrite what has been written, one has to �rst erase the entire bank of the memory. It may
support only a limited number of erase cycles (104 to 106).

{ It has found its popularity as a replacement for disks for storing small volumes of data (5-10
megabytes).

� Magnetic-disk storage: primary medium for long-term storage.

{ Typically the entire database is stored on disk.

{ Data must be moved from disk to main memory in order for the data to be operated on.

{ After operations are performed, data must be copied back to disk if any changes were made.

1



2 CHAPTER 10. STORAGE AND FILE STRUCTURE

cache

flash memory

magenetic disk

optical disk

magenetic tape

main memory

Figure 10.1: Storage-device hierarchy

{ Disk storage is called direct access storage as it is possible to read data on the disk in any order
(unlike sequential access).

{ Disk storage usually survives power failures and system crashes.

� Optical storage: CD-ROM (compact-disk read-only memory), WORM (write-once read-many) disk
(for archival storage of data), and Juke box (containing a few drives and numerous disks loaded on
demand).

� Tape Storage: used primarily for backup and archival data.

{ Cheaper, but much slower access, since tape must be read sequentially from the beginning.

{ Used as protection from disk failures!

2. The storage device hierarchy is presented in Figure 10.1, where the higher levels are expensive (cost per bit),
fast (access time), but the capacity is smaller.

3. Another classi�cation: Primary, secondary, and tertiary storage.

(a) Primary storage: the fastest storage media, such as cash and main memory.

(b) Secondary (or on-line) storage: the next level of the hierarchy, e.g., magnetic disks.

(c) Tertiary (or o�-line) storage: magnetic tapes and optical disk juke boxes.

4. Volatility of storage. Volatile storage loses its contents when the power is removed. Without power backup,
data in the volatile storage (the part of the hierarchy from main memory up) must be written to nonvolatile
storage for safekeeping.

10.2 Magnetic Disks

10.2.1 Physical Characteristics of Disks

1. The storage capacity of a single disk ranges from 10MB to 10GB. A typical commercial database may require
hundreds of disks.

2. Figure 10.2 shows a moving-head disk mechanism.

� Each disk platter has a 
at circular shape. Its two surfaces are covered with a magnetic material and
information is recorded on the surfaces. The platter of hard disks are made from rigid metal or glass,
while 
oppy disks are made from 
exible material.



10.2. MAGNETIC DISKS 3

� The disk surface is logically divided into tracks, which are subdivided into sectors. A sector (varying
from 32 bytes to 4096 bytes, usually 512 bytes) is the smallest unit of information that can be read from
or written to disk. There are 4-32 sectors per track and 20-1500 tracks per disk surface.

� The arm can be positioned over any one of the tracks.

� The platter is spun at high speed.

� To read information, the arm is positioned over the correct track.

� When the data to be accessed passes under the head, the read or write operation is performed.

3. A disk typically contains multiple platters (see Figure 10.2). The read-write heads of all the tracks are
mounted on a single assembly called a disk arm, and move together.

� Multiple disk arms are moved as a unit by the actuator.

� Each arm has two heads, to read disks above and below it.

� The set of tracks over which the heads are located forms a cylinder.

� This cylinder holds that data that is accessible within the disk latency time.

� It is clearly sensible to store related data in the same or adjacent cylinders.

4. Disk platters range from 1.8" to 14" in diameter, and 5"1/4 and 3"1/2 disks dominate due to the lower cost
and faster seek time than do larger disks, yet they provide high storage capacity.

5. A disk controller interfaces between the computer system and the actual hardware of the disk drive. It
accepts commands to r/w a sector, and initiate actions. Disk controllers also attach checksums to each sector
to check read error.

6. Remapping of bad sectors: If a controller detects that a sector is damaged when the disk is initially formatted,
or when an attempt is made to write the sector, it can logically map the sector to a di�erent physical location.

7. SCSI (Small Computer System Interconnect) is commonly used to connect disks to PCs and workstations.
Mainframe and server systems usually have a faster and more expensive bus to connect to the disks.

8. Head crash: why cause the entire disk failing (?).

9. A �xed dead disk has a separate head for each track | very many heads, very expensive. Multiple disk arms:
allow more than one track to be accessed at a time. Both were used in high performance mainframe systems
but are relatively rare today.

10.2.2 Performance Measures of Disks

The main measures of the qualities of a disk are capacity, access time, data transfer rate, and reliability,

1. access time: the time from when a read or write request is issued to when data transfer begins. To access
data on a given sector of a disk, the arm �rst must move so that it is positioned over the correct track, and
then must wait for the sector to appear under it as the disk rotates. The time for repositioning the arm is
called seek time, and it increases with the distance the arm must move. Typical seek time range from 2 to
30 milliseconds.

Average seek time is the average of the seek time, measured over a sequence of (uniformly distributed) random
requests, and it is about one third of the worst-case seek time.

Once the seek has occurred, the time spent waiting for the sector to be accesses to appear under the head is
called rotational latency time. Average rotational latency time is about half of the time for a full rotation
of the disk. (Typical rotational speeds of disks ranges from 60 to 120 rotations per second).

The access time is then the sum of the seek time and the latency and ranges from 10 to 40 milli-sec.

2. data transfer rate, the rate at which data can be retrieved from or stored to the disk. Current disk systems
support transfer rate from 1 to 5 megabytes per second.

3. reliability, measured by the mean time to failure. The typical mean time to failure of disks today ranges from
30,000 to 800,000 hours (about 3.4 to 91 years).



4 CHAPTER 10. STORAGE AND FILE STRUCTURE

10.2.3 Optimization of Disk-Block Access

1. Data is transferred between disk and main memory in units called blocks.

2. A block is a contiguous sequence of bytes from a single track of one platter.

3. Block sizes range from 512 bytes to several thousand.

4. The lower levels of �le system manager covert block addresses into the hardware-level cylinder, surface, and
sector number.

5. Access to data on disk is several orders of magnitude slower than is access to data in main memory. Opti-
mization techniques besides bu�ering of blocks in main memory.

� Scheduling: If several blocks from a cylinder need to be transferred, we may save time by requesting
them in the order in which they pass under the heads. A commonly used disk-arm scheduling algorithm
is the elevator algorithm.

� File organization. Organize blocks on disk in a way that corresponds closely to the manner that we
expect data to be accessed. For example, store related information on the same track, or physically close
tracks, or adjacent cylinders in order to minimize seek time. IBM mainframe OS's provide programmers
�ne control on placement of �les but increase programmer's burden.

UNIX or PC OSs hide disk organizations fromusers. Over time, a sequential �le may become fragmented.
To reduce fragmentation, the system can make a back-up copy of the data on disk and restore the entire
disk. The restore operation writes back the blocks of each �le continuously (or nearly so). Some systems,
such as MS-DOS, have utilities that scan the disk and then move blocks to decrease the fragmentation.

� Nonvolatile write bu�ers. Use nonvolatile RAM (such as battery-back-up RAM) to speed up disk
writes drastically (�rst write to nonvolatile RAM bu�er and inform OS that writes completed).

� Log disk. Another approach to reducing write latency is to use a log disk, a disk devoted to writing
a sequential log. All access to the log disk is sequential, essentially eliminating seek time, and several
consecutive blocks can be written at once, making writes to log disk several times faster than random
writes.

10.3 RAID: Redundant Arrays of Inexpensive Disks (Not covered)

10.4 Tertiary Storage

10.4.1 Optical Disks

1. CD-ROM has become a popular medium for distributing software, multimedia data, and other electronic
published information.

2. Capacity of CD-ROM: � 500 MB. Disks are cheap to mass produce and also drives.

3. CD-ROM: much longer seek time (250m-sec), lower rotation speed (400 rpm), leading to high latency and
lower data-transfer rate (about 150 KB/sec). Drives spins at 8=12� audio CD spin speed (standard) is
available.

4. Recently, a new optical format, digit video disk (DVD) has become standard. These disks hold between 4.7
and 17 GB data.

5. WORM (write-once, read many) disks are popular for archival storage of data since they have a high capacity
(about 500 MB), longer life time than HD, and can be removed from drive | good for audit trail (hard to
tamper).



10.5. STORAGE ACCESS 5

10.4.2 Magnetic Tapes

1. Long history, slow, and limited to sequential access, and thus are used for backup, storage for infrequent
access, and o�-line medium for system transfer.

2. Moving to the correct spot may take minutes, but once positioned, tape drives can write data at density and
speed approaching to those of disk drives.

3. 8mm tape drive has the highest density, and we store 5 GB data on a 350-foot tape.

4. Popularly used for storage of large volumes of data, such as video, image, or remote sensing data.

10.5 Storage Access

1. Each �le is partitioned into �xed-length storage units, called blocks, which are the units of both storage
allocation and data transfer.

2. It is desirable to keep as many blocks as possible in main memory. Usually, we cannot keep all blocks in
main memory, so we need to manage the allocation of available main memory space.

3. We need to use disk storage for the database, and to transfer blocks of data between main memory and disk.
We also want to minimize the number of such transfers, as they are time-consuming.

4. The bu�er is the part of main memory available for storage of copies of disk blocks.

10.5.1 Bu�er manager

1. The subsystem responsible for the allocation of bu�er space is called the bu�er manager.

� The bu�er manager handles all requests for blocks of the database.

� If the block is already in main memory, the address in main memory is given to the requester.

� If not, the bu�er manager must read the block in from disk (possibly displacing some other block if the
bu�er is full) and then pass the address in main memory to the requester.

2. The bu�er manager must use some sophisticated techniques in order to provide good service:

� Replacement Strategy | When there is no room left in the bu�er, some block must be removed to
make way for the new one. Typical operating system memory management schemes use a \least recently

used" (LRU) method. (Simply remove the block least recently referenced.) This can be improved upon
for database applications.

� Pinned Blocks { For the database to be able to recover from crashes, we need to restrict times when
a block maybe written back to disk. A block not allowed to be written is said to be pinned. Many
operating systems do not provide support for pinned blocks, and such a feature is essential if a database
is to be \crash resistant".

� Forced Output of Blocks { Sometimes it is necessary to write a block back to disk even though its
bu�er space is not needed, (called the forced output of a block.) This is due to the fact that main
memory contents (and thus the bu�er) are lost in a crash, while disk data usually survives.

10.5.2 Bu�er replacement policies

1. Replacement Strategy: Goal is minimization of accesses to disk. Generally it is hard to predict which
blocks will be referenced. So operating systems use the history of past references as a guide to prediction.

� General Assumption: Blocks referenced recently are likely to be used again.

� Therefore, if we need space, throw out the least recently referenced block (LRU replacement scheme).



6 CHAPTER 10. STORAGE AND FILE STRUCTURE

2. LRU is acceptable in operating systems, however, a database system is able to predict future references
more accurately.

3. Consider processing of the relational algebra expression

borrow 1 customer

4. Further, assume the strategy to process this request is given by the following pseudo-code:

for each tuple b of borrower do
for each tuple c of customer do

if b[cname] = c[cname]
then begin

let x be a tuple de�ned as follows:
x[cname]:= b[cname]
x[loan#]:= b[loan#]
x[street]:= c[street]
x[city]:= c[city]
include tuple x as part of result of borrow 1 customer

end

end

end

5. Assume that the two relations in this example are stored in di�erent �les.

� Once a tuple of borrower has been processed, it is not needed again. Therefore, once processing of an
entire block of tuples is �nished, that block is not needed in main memory, even though it has been used
very recently.

� Bu�er manager should free the space occupied by a borrow block as soon as it is processed. This strategy
is called toss-immediate.

� Consider blocks containing customer tuples.

� Every block of customer tuples must be examined once for every tuple of the borrow relation. When
processing of a customer block is completed, it will not be used again until all other customer blocks
have been processed. This means the most recently used (MRU) block will be the last block to be
re-referenced, and the least recently used will be referenced next.

� This is the opposite of LRU assumptions. So for inner block, use MRU strategy | if a customer block
must be removed from the bu�er, choose MRU block.

� For MRU strategy, the system must pin the customer block currently being processed until the last
tuple has been processed. Then it is unpinned, becoming the most recently used block.

6. The bu�er manager may also use statistical information regarding the probability that a request will reference
a particular relation.

� The data dictionary is the most frequently-used part of the database. It should, therefore, not be
removed from main memory unless necessary.

� File indices are also frequently used, and should generally be in main memory.

� No single strategy is known that handles all possible scenarios well.

� Many database systems use LRU, despite of its faults.

� Concurrency and recovery may need other bu�er management strategies, such as delayed bu�er-out or
forced output.



10.6. FILE ORGANIZATION 7

10.6 File Organization

1. A �le is organized logically as a sequence of records.

2. Records are mapped onto disk blocks.

3. Files are provided as a basic construct in operating systems, so we assume the existence of an underlying �le
system.

4. Blocks are of a �xed size determined by the operating system.

5. Record sizes vary.

6. In relational database, tuples of distinct relations may be of di�erent sizes.

7. One approach to mapping database to �les is to store records of one length in a given �le.

8. An alternative is to structure �les to accommodate variable-length records. (Fixed-length is easier to imple-
ment.)

10.6.1 Fixed-Length Records

1. Consider a �le of deposit records of the form:

type deposit = record

bname : char(22);
account# : char(10);
balance : real;

end

� If we assume that each character occupies one byte, an integer occupies 4 bytes, and a real 8 bytes, our
deposit record is 40 bytes long.

� The simplest approach is to use the �rst 40 bytes for the �rst record, the next 40 bytes for the second,
and so on.

� However, there are two problems with this approach.

� It is di�cult to delete a record from this structure.

� Space occupied must somehow be deleted, or we need to mark deleted records so that they can be
ignored.

� Unless block size is a multiple of 40, some records will cross block boundaries.

� It would then require two block accesses to read or write such a record.

2. When a record is deleted, we could move all successive records up one (Figure 10.7), which may require
moving a lot of records.

� We could instead move the last record into the \hole" created by the deleted record (Figure 10.8).

� This changes the order the records are in.

� It turns out to be undesirable to move records to occupy freed space, as moving requires block accesses.

� Also, insertions tend to be more frequent than deletions.

� It is acceptable to leave the space open and wait for a subsequent insertion.

� This leads to a need for additional structure in our �le design.

3. So one solution is:

� At the beginning of a �le, allocate some bytes as a �le header.

� This header for now need only be used to store the address of the �rst record whose contents are deleted.



8 CHAPTER 10. STORAGE AND FILE STRUCTURE

� This �rst record can then store the address of the second available record, and so on (Figure 10.9).

� To insert a new record, we use the record pointed to by the header, and change the header pointer to
the next available record.

� If no deleted records exist we add our new record to the end of the �le.

4. Note: Use of pointers requires careful programming. If a record pointed to is moved or deleted, and that
pointer is not corrected, the pointer becomes a dangling pointer. Records pointed to are called pinned.

5. Fixed-length �le insertions and deletions are relatively simple because \one size �ts all". For variable length,
this is not the case.

10.6.2 Variable-Length Records

1. Variable-length records arise in a database in several ways:

� Storage of multiple items in a �le.

� Record types allowing variable �eld size

� Record types allowing repeating �elds

2. We'll look at several techniques, using one example with a variable-length record:

type account-list = record

bname : char(22);
account-info : array[1::1] of

record;
account#: char(10);
balance: real;

end

end

Account-information is an array with an arbitrary number of elements.

Byte string representation

1. Attach a special end-of-record symbol (?) to the end of each record. Each record is stored as a string of
successive bytes (See Figure 10.10).

Byte string representation has several disadvantages:

� It is not easy to re-use space left by a deleted record

� In general, there is no space for records to grow longer. (Must move to expand, and record may be
pinned.)

So this method is not usually used.

2. An interesting structure: Slot page structure.

There is a header at the beginning of each block, containing:

� # of record entires in the header

� the end of free space in the block

� an array whose entries contain the location and size of each record.

3. The slot page structure requires that there be no pointers that point directly to records. Instead, pointers
must point to the entry in the header that contains the actual location of the record. This level of indirection
allows records to be moved to prevent fragmentation of space inside a block, while supporting indirect pointers
to the record.



10.7. ORGANIZATION OF RECORDS IN FILES 9

Fixed-length representation

1. Uses one or more �xed-length records to represent one variable-length record.

2. Two techniques:

� Reserved space - uses �xed-length records large enough to accommodate the largest variable-length
record. (Unused space �lled with end-of-record symbol.)

� Pointers - represent by a list of �xed-length records, chained together.

3. The reserved space method requires the selection of some maximum record length. (Figure 10.12)

If most records are of near-maximum length this method is useful. Otherwise, space is wasted.

4. Then the pointer method may be used (Figure 10.13). Its disadvantage is that space is wasted in successive
records in a chain as non-repeating �elds are still present.

5. To overcome this last disadvantage we can split records into two blocks (See Figure 10.14)

� Anchor block - contains �rst records of a chain

� Over
ow block - contains records other than �rst in the chain.

Now all records in a block have the same length, and there is no wasted space.

10.7 Organization of Records in Files

There are several ways of organizing records in �les.

� heap �le organization. Any record can be placed anywhere in the �le where there is space for the record.
There is no ordering of records.

� sequential �le organization. Records are stored in sequential order, based on the value of the search key
of each record.

� hashing �le organization. A hash function is computed on some attribute of each record. The result of
the function speci�es in which block of the �le the record should be placed | to be discussed in chapter 11
since it is closely related to the indexing structure.

� clustering �le organization. Records of several di�erent relations can be stored in the same �le. Related
records of the di�erent relations are stored on the same block so that one I/O operation fetches related
records from all the relations.

10.7.1 Sequential File Organization

1. A sequential �le is designed for e�cient processing of records in sorted order on some search key.

� Records are chained together by pointers to permit fast retrieval in search key order.

� Pointer points to next record in order.

� Records are stored physically in search key order (or as close to this as possible).

� This minimizes number of block accesses.

� Figure 10.15 shows an example, with bname as the search key.

2. It is di�cult to maintain physical sequential order as records are inserted and deleted.

� Deletion can be managed with the pointer chains.

� Insertion poses problems if no space where new record should go.



10 CHAPTER 10. STORAGE AND FILE STRUCTURE

� If space, use it, else put new record in an over
ow block.

� Adjust pointers accordingly.

� Figure 10.16 shows the previous example after an insertion.

� Problem: we now have some records out of physical sequential order.

� If very few records in over
ow blocks, this will work well.

� If order is lost, reorganize the �le.

� Reorganizations are expensive and done when system load is low.

3. If insertions rarely occur, we could keep the �le in physically sorted order and reorganize when insertion
occurs. In this case, the pointer �elds are no longer required.

10.7.2 Clustering File Organization

1. One relation per �le, with �xed-length record, is good for small databases, which also reduces the code size.

2. Many large-scale DB systems do not rely directly on the underlying operating system for �le management.
One large OS �le is allocated to DB system and all relations are stored in one �le.

3. To e�ciently execute queries involving depositor 1 customer, one may store the depositor tuple for each
cname near the customer tuple for the corresponding cname, as shown in Figure 10.19.

4. This structure mixes together tuples from two relations, but allows for e�cient processing of the join.

5. If the customer has many accounts which cannot �t in one block, the remaining records appear on nearby
blocks. This �le structure, called clustering, allows us to read many of the required records using one block
read.

6. Our use of clustering enhances the processing of a particular join but may result in slow processing of other
types of queries, such as selection on customer.

For example, the query

select *
from customer

now requires more block accesses as our customer relation is now interspersed with the deposit relation.

7. Thus it is a trade-o�, depending on the types of query that the database designer believes to be most frequent.
Careful use of clustering may produce signi�cant performance gain.

10.8 Data Dictionary Storage

1. The database also needs to store information about the relations, known as the data dictionary. This
includes:

� Names of relations.

� Names of attributes of relations.

� Domains and lengths of attributes.

� Names and de�nitions of views.

� Integrity constraints (e.g., key constraints).

plus data on the system users:

� Names of authorized users.

� Accounting information about users.



10.9. STORAGE STRUCTURES FOR OBJECT-ORIENTED DATABASES (OMITTED) 11

plus (possibly) statistical and descriptive data:

� Number of tuples in each relation.

� Method of storage used for each relation (e.g., clustered or non-clustered).

2. When we look at indices (Chapter 11), we'll also see a need to store information about each index on each
relation:

� Name of the index.

� Name of the relation being indexed.

� Attributes the index is on.

� Type of index.

3. This information is, in itself, a miniature database. We can use the database to store data about itself,
simplifying the overall structure of the system, and allowing the full power of the database to be used to
permit fast access to system data.

4. The exact choice of how to represent system data using relations must be made by the system designer. One
possible representation follows.

System-catalog-schema = (relation-name, number-attrs)

Attr-schema = (attr-name, rel-name, domain-type, position, length)

User-schema = (user-name, encrypted-password, group)

Index-schema = (index-name, rel-name, index-type, index-attr)

View-schema = (view-name, de�nition)

10.9 Storage Structures for Object-Oriented Databases (Omitted)

Interesting stu�, omitted due to lack of time.

10.9.1 Mapping of Objects to Files

10.9.2 Implementation of Object Identi�ers

10.9.3 Management of Persistent Pointers: Pointer swizzling vs. hardware swizzling

10.9.4 Disk versus Memory Structure of Objects

10.9.5 Large Objects


