
Chapter 1

Introduction

CMPT-354-Han-95.3 Lecture Notes September 10, 1995

1.0 Database Management Systems

1. A database management system (DBMS), or simply a database system (DBS), consists of

� A collection of interrelated and persistent data (usually referred to as the database (DB)).

� A set of application programs used to access, update and manage that data (which form the data
management system (MS)).

2. The goal of a DBMS is to provide an environment that is both convenient and e�cient to use in

� Retrieving information from the database.

� Storing information into the database.

3. Databases are usually designed to manage large bodies of information. This involves

� De�nition of structures for information storage (data modeling).

� Provision of mechanisms for the manipulation of information (�le and systems structure, query process-
ing).

� Providing for the safety of information in the database (crash recovery and security).

� Concurrency control if the system is shared by users.

1.1 Purpose of Database Systems

1. To see why database management systems are necessary, let's look at a typical \�le-processing system"
supported by a conventional operating system.

The application is a savings bank:

� Savings account and customer records are kept in permanent system �les.

� Application programs are written to manipulate �les to perform the following tasks:

{ Debit or credit an account.

{ Add a new account.

{ Find an account balance.

{ Generate monthly statements.

2. Development of the system proceeds as follows:

� New application programs must be written as the need arises.

� New permanent �les are created as required.

1

2 CHAPTER 1. INTRODUCTION

� but over a long period of time �les may be in di�erent formats, and

� Application programs may be in di�erent languages.

3. So we can see there are problems with the straight �le-processing approach:

� Data redundancy and inconsistency

{ Same information may be duplicated in several places.

{ All copies may not be updated properly.

� Di�culty in accessing data

{ May have to write a new application program to satisfy an unusual request.

{ E.g. �nd all customers with the same postal code.

{ Could generate this data manually, but a long job...

� Data isolation

{ Data in di�erent �les.

{ Data in di�erent formats.

{ Di�cult to write new application programs.

� Multiple users

{ Want concurrency for faster response time.

{ Need protection for concurrent updates.

{ E.g. two customers withdrawing funds from the same account at the same time | account has $500
in it, and they withdraw $100 and $50. The result could be $350, $400 or $450 if no protection.

� Security problems

{ Every user of the system should be able to access only the data they are permitted to see.

{ E.g. payroll people only handle employee records, and cannot see customer accounts; tellers only
access account data and cannot see payroll data.

{ Di�cult to enforce this with application programs.

� Integrity problems

{ Data may be required to satisfy constraints.

{ E.g. no account balance below $25.00.

{ Again, di�cult to enforce or to change constraints with the �le-processing approach.

These problems and others led to the development of database management systems.

1.2 Data Abstraction

1. The major purpose of a database system is to provide users with an abstract view of the system.

The system hides certain details of how data is stored and maintained

Complexity should be hidden from database users.

2. There are several levels of abstraction:

(a) Physical Level:

� How the data are stored.

� E.g. index, B-tree, hashing.

� Lowest level of abstraction.

� Complex low-level structures described in detail.

(b) Conceptual Level:

� Next highest level of abstraction.

1.3. DATA MODELS 3

view 1 view 2 view n

conceptual
level

physical

level

. . .

Figure 1.1: The three levels of data abstraction

� Describes what data are stored.

� Describes the relationships among data.

� Database administrator level.

(c) View Level:

� Highest level.

� Describes part of the database for a particular group of users.

� Can be many di�erent views of a database.

� E.g. tellers in a bank get a view of customer accounts, but not of payroll data.

Fig. ?? (�gure 1.1 in the text) illustrates the three levels.

1.3 Data Models

1. Data models are a collection of conceptual tools for describing data, data relationships, data semantics and
data constraints. There are three di�erent groups:

(a) Object-based Logical Models.

(b) Record-based Logical Models.

(c) Physical Data Models.

We'll look at them in more detail now.

1.3.1 Object-based Logical Models

1. Object-based logical models:

� Describe data at the conceptual and view levels.

� Provide fairly
exible structuring capabilities.

� Allow one to specify data constraints explicitly.

� Over 30 such models, including

{ Entity-relationship model.

4 CHAPTER 1. INTRODUCTION

customer CustAcct account

name

street

city
number balance

Figure 1.2: A sample E-R diagram.

{ Object-oriented model.

{ Binary model.

{ Semantic data model.

{ Infological model.

{ Functional data model.

2. At this point, we'll take a closer look at the entity-relationship (E-R) and object-oriented models.

The E-R Model

1. The entity-relationship model is based on a perception of the world as consisting of a collection of basic
objects (entities) and relationships among these objects.

� An entity is a distinguishable object that exists.

� Each entity has associated with it a set of attributes describing it.

� E.g. number and balance for an account entity.

� A relationship is an association among several entities.

� e.g. A cust acct relationship associates a customer with each account he or she has.

� The set of all entities or relationships of the same type is called the entity set or relationship set.

� Another essential element of the E-R diagram is themapping cardinalities, which express the number
of entities to which another entity can be associated via a relationship set.

We'll see later how well this model works to describe real world situations.

2. The overall logical structure of a database can be expressed graphically by an E-R diagram:

� rectangles: represent entity sets.

� ellipses: represent attributes.

� diamonds: represent relationships among entity sets.

� lines: link attributes to entity sets and entity sets to relationships.

See �gure ?? for an example.

The Object-Oriented Model

1. The object-oriented model is based on a collection of objects, like the E-R model.

� An object contains values stored in instance variables within the object.

� Unlike the record-oriented models, these values are themselves objects.

1.3. DATA MODELS 5

� Thus objects contain objects to an arbitrarily deep level of nesting.

� An object also contains bodies of code that operate on the the object.

� These bodies of code are called methods.

� Objects that contain the same types of values and the same methods are grouped into classes.

� A class may be viewed as a type de�nition for objects.

� Analogy: the programming language concept of an abstract data type.

� The only way in which one object can access the data of another object is by invoking the method of
that other object.

� This is called sending a message to the object.

� Internal parts of the object, the instance variables and method code, are not visible externally.

� Result is two levels of data abstraction.

For example, consider an object representing a bank account.

� The object contains instance variables number and balance.

� The object contains a method pay-interest which adds interest to the balance.

� Under most data models, changing the interest rate entails changing code in application programs.

� In the object-oriented model, this only entails a change within the pay-interest method.

2. Unlike entities in the E-R model, each object has its own unique identity, independent of the values it
contains:

� Two objects containing the same values are distinct.

� Distinction is maintained in physical level by assigning distinct object identi�ers.

1.3.2 Record-based Logical Models

1. Record-based logical models:

� Also describe data at the conceptual and view levels.

� Unlike object-oriented models, are used to

{ Specify overall logical structure of the database, and

{ Provide a higher-level description of the implementation.

� Named so because the database is structured in �xed-format records of several types.

� Each record type de�nes a �xed number of �elds, or attributes.

� Each �eld is usually of a �xed length (this simpli�es the implementation).

� Record-based models do not include a mechanism for direct representation of code in the database.

� Separate languages associated with the model are used to express database queries and updates.

� The three most widely-accepted models are the relational, network, and hierarchical.

� This course will concentrate on the relational model.

� The network and hierarchical models are covered in appendices in the text.

The Relational Model

� Data and relationships are represented by a collection of tables.

� Each table has a number of columns with unique names, e.g. customer, account.

� Figure ?? shows a sample relational database.

6 CHAPTER 1. INTRODUCTION

name street city number

Lowery Maple Queens 900
Shiver North Bronx 556
Shiver North Bronx 647
Hodges Sidehill Brooklyn 801
Hodges Sidehill Brooklyn 647

name balance

900 55
556 100000
647 105366
801 10533

Figure 1.3: A sample relational database.

Lowery Maple Queens 900 55

Shiver North Bronx

Hodges Sidehill Brooklyn

100000

105366647

801 10533

556

Figure 1.4: A sample network database

The Network Model

� Data are represented by collections of records.

� Relationships among data are represented by links.

� Organization is that of an arbitrary graph.

� Figure ?? shows a sample network database that is the equivalent of the relational database of Figure ??.

The Hierarchical Model

� Similar to the network model.

� Organization of the records is as a collection of trees, rather than arbitrary graphs.

� Figure ?? shows a sample hierarchical database that is the equivalent of the relational database of Figure
??.

Lowery QueensMaple Hodges Sidehill Brooklyn

Shiver North Bronx

900 55

556 100000 647 105366

801 10533647 105366

Figure 1.5: A sample hierarchical database

1.4. INSTANCES AND SCHEMES 7

The relational model does not use pointers or links, but relates records by the values they contain. This allows
a formal mathematical foundation to be de�ned.

1.3.3 Physical Data Models

1. Are used to describe data at the lowest level.

2. Very few models, e.g.

� Unifying model.

� Frame memory.

3. We will not cover physical models.

1.4 Instances and Schemes

1. Databases change over time.

2. The information in a database at a particular point in time is called an instance of the database.

3. The overall design of the database is called the database scheme.

4. Analogy with programming languages:

� Data type de�nition { scheme

� Value of a variable { instance

5. There are several schemes, corresponding to levels of abstraction:

� Physical scheme

� Conceptual scheme

� Subscheme (can be many)

1.5 Data Independence

1. The ability to modify a scheme de�nition in one level without a�ecting a scheme de�nition in a higher level
is called data independence.

2. There are two kinds:

� Physical data independence

{ The ability to modify the physical scheme without causing application programs to be rewritten

{ Modi�cations at this level are usually to improve performance

� Logical data independence

{ The ability to modify the conceptual scheme without causing application programs to be rewritten

{ Usually done when logical structure of database is altered

3. Logical data independence is harder to achieve as the application programs are usually heavily dependent on
the logical structure of the data. An analogy is made to abstract data types in programming languages.

1.6 Data De�nition Language (DDL)

1. Used to specify a database scheme as a set of de�nitions expressed in a DDL

2. DDL statements are compiled, resulting in a set of tables stored in a special �le called a data dictionary
or data directory.

8 CHAPTER 1. INTRODUCTION

3. The data directory contains metadata (data about data)

4. The storage structure and access methods used by the database system are speci�ed by a set of de�nitions
in a special type of DDL called a data storage and de�nition language

5. basic idea: hide implementation details of the database schemes from the users

1.7 Data Manipulation Language (DML)

1. Data Manipulation is:

� retrieval of information from the database

� insertion of new information into the database

� deletion of information in the database

� modi�cation of information in the database

2. A DML is a language which enables users to access and manipulate data.

The goal is to provide e�cient human interaction with the system.

3. There are two types of DML:

� procedural: the user speci�es what data is needed and how to get it

� nonprocedural: the user only speci�es what data is needed

{ Easier for user

{ May not generate code as e�cient as that produced by procedural languages

4. A query language is a portion of a DML involving information retrieval only. The terms DML and query
language are often used synonymously.

1.8 Database Manager

1. The database manager is a program module which provides the interface between the low-level data
stored in the database and the application programs and queries submitted to the system.

2. Databases typically require lots of storage space (gigabytes). This must be stored on disks. Data is moved
between disk and main memory (MM) as needed.

3. The goal of the database system is to simplify and facilitate access to data. Performance is important.
Views provide simpli�cation.

4. So the database manager module is responsible for

� Interaction with the �le manager: Storing raw data on disk using the �le system usually provided by
a conventional operating system. The database manager must translate DML statements into low-level
�le system commands (for storing, retrieving and updating data in the database).

� Integrity enforcement: Checking that updates in the database do not violate consistency constraints
(e.g. no bank account balance below $25)

� Security enforcement: Ensuring that users only have access to information they are permitted to see

� Backup and recovery: Detecting failures due to power failure, disk crash, software errors, etc., and
restoring the database to its state before the failure

� Concurrency control: Preserving data consistency when there are concurrent users.

5. Some small database systems may miss some of these features, resulting in simpler database managers. (For
example, no concurrency is required on a PC running MS-DOS.) These features are necessary on larger
systems.

1.9. DATABASE ADMINISTRATOR 9

1.9 Database Administrator

1. The database administrator is a person having central control over data and programs accessing that
data. Duties of the database administrator include:

� Scheme de�nition: the creation of the original database scheme. This involves writing a set of
de�nitions in a DDL (data storage and de�nition language), compiled by the DDL compiler into a set
of tables stored in the data dictionary.

� Storage structure and access method de�nition: writing a set of de�nitions translated by the
data storage and de�nition language compiler

� Scheme and physical organization modi�cation: writing a set of de�nitions used by the DDL
compiler to generate modi�cations to appropriate internal system tables (e.g. data dictionary). This is
done rarely, but sometimes the database scheme or physical organization must be modi�ed.

� Granting of authorization for data access: granting di�erent types of authorization for data access
to various users

� Integrity constraint speci�cation: generating integrity constraints. These are consulted by the
database manager module whenever updates occur.

1.10 Database Users

1. The database users fall into several categories:

� Application programmers are computer professionals interacting with the system through DML calls
embedded in a program written in a host language (e.g. C, PL/1, Pascal).

{ These programs are called application programs.

{ The DML precompiler converts DML calls (prefaced by a special character like $, #, etc.) to
normal procedure calls in a host language.

{ The host language compiler then generates the object code.

{ Some special types of programming languages combine Pascal-like control structures with control
structures for the manipulation of a database.

{ These are sometimes called fourth-generation languages.

{ They often include features to help generate forms and display data.

� Sophisticated users interact with the system without writing programs.

{ They form requests by writing queries in a database query language.

{ These are submitted to a query processor that breaks a DML statement down into instructions
for the database manager module.

� Specialized users are sophisticated users writing special database application programs. These may
be CADD systems, knowledge-based and expert systems, complex data systems (audio/video), etc.

� Naive users are unsophisticated users who interact with the system by using permanent application
programs (e.g. automated teller machine).

1.11 Overall System Structure

1. Database systems are partitioned into modules for di�erent functions. Some functions (e.g. �le systems)
may be provided by the operating system.

2. Components include:

� File manager manages allocation of disk space and data structures used to represent information on
disk.

10 CHAPTER 1. INTRODUCTION

application

 interfaces

application

program
query

database
scheme

DDL

compiler

query

processor

DML

precompiler

application

program

object code

database

manager

file

manager

data files

data

dictionary
disk storage

programmers

application naive

users

sophisticated

users

database

administrator

Figure 1.6: Database system structure.

� Database manager: The interface between low-level data and application programs and queries.

� Query processor translates statements in a query language into low-level instructions the database
manager understands. (May also attempt to �nd an equivalent but more e�cient form.)

� DML precompiler converts DML statements embedded in an application program to normal procedure
calls in a host language. The precompiler interacts with the query processor.

� DDL compiler converts DDL statements to a set of tables containing metadata stored in a data
dictionary.

In addition, several data structures are required for physical system implementation:

� Data �les: store the database itself.

� Data dictionary: stores information about the structure of the database. It is used heavily. Great
emphasis should be placed on developing a good design and e�cient implementation of the dictionary.

� Indices: provide fast access to data items holding particular values.

3. Figure ?? shows these components.

