
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Cursor that gets names of sailors who’ve
reserved a red boat, in alphabetical order

Most implementations differ from SQL standard:
 Can use order by without cursor.
 Can have many expressions for order criteria.
  Including input columns or expressions that

depend on input columns.

EXEC SQL DECLARE sinfo CURSOR FOR
 SELECT S.sname
 FROM Sailors S, Boats B, Reserves R
 WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’
 ORDER BY S.sname

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Internet Applications

Chapter 7

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Lecture Overview

  Internet Concepts: Data Flow from Client to
DBMS

  Introduction to three-tier architectures
 Web data formats

  HTML, XML, DTDs
  The presentation layer

  HTML forms; HTTP Get and POST, URL encoding;
Javascript; Stylesheets. XSLT

  The middle tier
  CGI, application servers, Servlets, JavaServerPages,

passing arguments, maintaining state (cookies)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Lecture Overview

  Internet Concepts
 Web data formats

  HTML, XML, DTDs
  Introduction to three-tier architectures
  The presentation layer

  HTML forms; HTTP Get and POST, URL encoding;
Javascript; Stylesheets. XSLT

  The middle tier
  CGI, application servers, Servlets, JavaServerPages,

passing arguments, maintaining state (cookies)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Components of Data-Intensive
Systems
Three separate types of functionality:
 Data management
 Application logic
  Presentation

  The system architecture determines whether
these three components reside on a single
system (“tier) or are distributed across several
tiers

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Process/Data Flow in Network

User/Client Application Database

Enters request Sends query

Returns data Returns results

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Example: Course Enrolment

User/Client Application Database

Enters request: add
course, drop course

Sends query: Course availability,
student info,…

Returns data •  Checks constraints
•  returns confirmation
for display

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Example: Airline Reservation System

User/Client Application Database

Enters request: log
in, show seat map

Sends query: Airline info,
available seats, customer info…

Returns data Returns results: map
data for display,
confirmation

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Example: Book Order System

User/Client Application Database

Enters request:
search for book

•  Sends query: List books,
customer info,…
•  maintains shopping cart

Returns data Returns results:
requested data,
recommendations,
order information.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Client-Server Architectures

Work division: Thin client
  Client implements only the

graphical user interface
  Server implements business

logic and data management.
  Development supported by

Visual Studio, Sybase
Powerbuilder.

  Work division: Thick client
  Client implements both the

graphical user interface and the
business logic

  Server implements data
management

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Discussion Question

 What are advantages of thin clients?
 What are disadvantages of thin clients?

 What are advantages of thick clients?
 What are disadvantages of thick clients?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Client-Server Architectures

Disadvantages of thick clients
  No central place to update the business logic
  Security issues: Server needs to trust clients

• Access control and authentication needs to be managed at
the server

• Clients need to leave server database in consistent state
• One possibility: Encapsulate all database access into stored

procedures

  Does not scale to more than several 100s of clients
• Large data transfer between server and client
• More than one server creates a problem: x clients, y

servers: x*y connections

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

The Three-Tier Architecture

Database System

Application Server

Client Program (Web Browser) Presentation tier

Middle tier

Data management
tier

C
l
o
u
d

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Example 1: Airline reservations

  Build a system for making airline reservations
 What is done in the different tiers?
 Database System

  Airline info, available seats, customer info, etc.

 Application Server
  Logic to make reservations, cancel reservations,

add new airlines, etc.

 Client Program
  Log in different users, display forms and human-

readable output

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Example 2: Course Enrollment

  Build a system using which students can enroll
in courses

 Database System
  Student info, course info, instructor info, course

availability, pre-requisites, etc.
 Application Server

  Logic to add a course, drop a course, create a new
course, etc.

 Client Program
  Log in different users (students, staff, faculty),

display forms and human-readable output

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

The Three Layers

Presentation tier
  Primary interface to the user
  Needs to adapt to different display devices (PC, PDA, cell

phone, voice access?)

Middle tier
  Implements business logic (implements complex actions,

maintains state between different steps of a workflow)
  Accesses different data management systems

Data management tier
  One or more standard database management systems

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Advantages of the Three-Tier
Architecture
  Heterogeneous systems

  Tiers can be independently maintained, modified, and replaced
  Thin clients

  Only presentation layer at clients (web browsers)
  Integrated data access

  Several database systems can be handled transparently at the middle
tier

  Central management of connections
  Scalability

  Replication at middle tier permits scalability of business logic
  Software development

  Code for business logic is centralized
  Interaction between tiers through well-defined APIs: Can reuse

standard components at each tier

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Technologies

Database System
(DB2)

Application Server
(Tomcat, Apache)

Client Program
(Web Browser)

HTML
Javascript

JSP
Servlets
Cookies
CGI

XML
Stored Procedures

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Overview of the Presentation Tier

  Functionality of the presentation tier
  Primary interface to the user
  Needs to adapt to different display devices (PC,

PDA, cell phone, voice access?)
  Simple functionality, such as field validity checking

 We will cover:
  Http protocol.
  XML, HTML Forms: How to pass data to the middle

tier
  JavaScript: Simple functionality at the presentation

tier.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Uniform Resource Identifiers

  Uniform naming schema to identify resources on the
Internet

  A resource can be anything:
  Index.html
  mysong.mp3
  picture.jpg

  Example URIs:
 http://www.cs.wisc.edu/~dbbook/index.html
mailto:webmaster@bookstore.com

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Structure of URIs

http://www.cs.wisc.edu/~dbbook/index.html

 URI has three parts:
  Naming schema (http)
  Name of the host computer (www.cs.wisc.edu)
  Name of the resource (~dbbook/index.html)

 URLs are a subset of URIs

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Hypertext Transfer Protocol

  What is a communication protocol?
  Set of standards that defines the structure of messages
  Examples: TCP, IP, HTTP

  What happens if you click on
www.cs.wisc.edu/~dbbook/index.html?

1.  Client (web browser) sends HTTP request to server
2.  Server receives request and replies
3.  Client receives reply; makes new requests

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

HTTP (Contd.)
Client to Server:

GET ~/index.html HTTP/1.1
User-agent: Mozilla/4.0
Accept: text/html, image/gif, image/

jpeg

Server replies:

HTTP/1.1 200 OK
Date: Mon, 04 Mar 2002 12:00:00 GMT
Server: Apache/1.3.0 (Linux)
Last-Modified: Mon, 01 Mar 2002

09:23:24 GMT
Content-Length: 1024
Content-Type: text/html
<HTML> <HEAD></HEAD>
<BODY>
<h1>Barns and Nobble Internet

Bookstore</h1>
Our inventory:
<h3>Science</h3>
The Character of Physical Law
...

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

HTTP Protocol Structure

HTTP Requests
  Request line: GET ~/index.html HTTP/1.1

  GET: Http method field (possible values are GET and POST,
more later)

  ~/index.html: URI field
  HTTP/1.1: HTTP version field

  Type of client: User-agent: Mozilla/4.0
  What types of files will the client accept:

 Accept: text/html, image/gif, image/jpeg

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

HTTP Protocol Structure (Contd.)

HTTP Responses

  Status line: HTTP/1.1 200 OK
  HTTP version: HTTP/1.1
  Status code: 200
  Server message: OK
  Common status code/server message combinations:

•  200 OK: Request succeeded
•  400 Bad Request: Request could not be fulfilled by the server
•  404 Not Found: Requested object does not exist on the server
•  505 HTTP Version not Supported

  Date when the object was created:
 Last-Modified: Mon, 01 Mar 2002 09:23:24 GMT

  Number of bytes being sent: Content-Length: 1024
  What type is the object being sent: Content-Type: text/html
  Other information such as the server type, server time, etc.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

Some Remarks About HTTP

  HTTP is stateless
  No “sessions”
  Every message is completely self-contained
  No previous interaction is “remembered” by the protocol
  Tradeoff between ease of implementation and ease of

application development: Other functionality has to be built
on top

  Implications for applications:
  Any state information (shopping carts, user login-information)

need to be encoded in every HTTP request and response!
  Popular methods on how to maintain state:

•  Cookies (later this lecture)
•  Dynamically generate unique URL’s at the server level (later this

lecture)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 27

Web Data Formats

 HTML
  The presentation language for the Internet

 XML
  A self-describing, hierarchical data model.
  XML Examples and Exercises

 And others, e.g. SGML, not covered.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 28

HTML: An Example

<HTML>
 <HEAD></HEAD>
 <BODY>
 <h1>Barns and Nobble Internet

Bookstore</h1>
 Our inventory:

 <h3>Science</h3>
 The Character of Physical Law</

b>

 Author: Richard Feynman</

LI>
 Published 1980
 Hardcover

 <h3>Fiction</h3>
 Waiting for the Mahatma

 Author: R.K. Narayan
 Published 1981

 The English Teacher

 Author: R.K. Narayan
 Published 1980
 Paperback

 </BODY>
</HTML>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 29

HTML: A Short Introduction

 HTML is a markup language: for presentation.
 Commands are tags:

  Start tag and end tag
  Examples:

• <HTML> … </HTML>
•  …

 Many editors automatically generate HTML
directly from your document (e.g., Microsoft
Word has an “Save as html” facility)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 30

HTML: Sample Commands

  <HTML>:
  : unordered list
  : list entry
  <h1>: largest heading
  <h2>: second-level heading, <h3>, <h4>

analogous
  Title: Bold

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 31

XML – The Extensible Markup Language

  Language
  A way of communicating information
  Part of the Semantic Web.

  Markup
  Notes or meta-data that describe your data or

language
  Extensible
  Limitless ability to define new languages or data sets.
  Sophisticated query languages for XML are available:

  Xquery
  XPath

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 32

XML: An Example
<?XML version="1.0" encoding="UTF-8" standalone="yes"?>
<BOOKLIST>
 <BOOK genre="Science" format="Hardcover">
 <AUTHOR>
 <FIRSTNAME>Richard</FIRSTNAME><LASTNAME>Feynman</LASTNAME>
 </AUTHOR>
 <TITLE>The Character of Physical Law</TITLE>
 <PUBLISHED>1980</PUBLISHED>
 </BOOK>
 <BOOK genre="Fiction">
 <AUTHOR>
 <FIRSTNAME>R.K.</FIRSTNAME><LASTNAME>Narayan</LASTNAME>
 </AUTHOR>
 <TITLE>Waiting for the Mahatma</TITLE>
 <PUBLISHED>1981</PUBLISHED>
 </BOOK>
 <BOOK genre="Fiction">
 <AUTHOR>
 <FIRSTNAME>R.K.</FIRSTNAME><LASTNAME>Narayan</LASTNAME>
 </AUTHOR>
 <TITLE>The English Teacher</TITLE>
 <PUBLISHED>1980</PUBLISHED>
 </BOOK>
</BOOKLIST>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 33

XML – What’s The Point?

  You can include your data and a description of what
the data represents
  This is useful for defining your own language or protocol

  Example: Chemical Markup Language
 <molecule>
 <weight>234.5</weight>
 <Spectra>…</Spectra>
 <Figures>…</Figures>
 </molecule>

  XML design goals:
  XML should be compatible with SGML
  It should be easy to write XML processors
  The design should be formal and precise

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 34

XML – Structure

 XML looks like HTML
 XML is a hierarchy of user-defined tags called

elements with attributes and data
 Data is described by elements, elements are

described by attributes
 <BOOK genre="Science" format="Hardcover">…</BOOK>

closing tag

attribute

attribute value
data

open tag
element name

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 35

XML – Elements

<BOOK genre="Science" format="Hardcover">…</BOOK>

  XML is case and space sensitive
  Element opening and closing tag names must be identical
  Opening tags: “<” + element name + “>”
  Closing tags: “</” + element name + “>”

closing tag
attribute

attribute value data open tag
element name

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 36

XML – Attributes

<BOOK genre="Science" format="Hardcover">…</BOOK>

  Attributes provide additional information for element tags.
  There can be zero or more attributes in every element; each one

has the the form:
attribute_name=‘attribute_value’
-  There is no space between the name and the “=‘”
-  Attribute values must be surrounded by “ or ‘ characters

  Multiple attributes are separated by white space (one or more
spaces or tabs).

closing tag
attribute

attribute value data
open tag

element name

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 37

XML – Data and Comments

<BOOK genre="Science" format="Hardcover">…</BOOK>

  XML data is any information between an opening and closing tag
  XML data must not contain the ‘<‘ or ‘>’ characters

  Comments:
<!- comment ->

closing tag
attribute

attribute value
data

open tag
element name

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 38

XML – Nesting & Hierarchy

  XML tags can be nested in a tree hierarchy
  XML documents can have only one root tag
  Between an opening and closing tag you can insert:

 1. Data
 2. More Elements
 3. A combination of data and elements
<root>
 <tag1>
 Some Text
 <tag2>More</tag2>
 </tag1>
</root>
XML Examples and Exercises

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 39

XML – Storage

  Storage is done just like an n-ary tree (DOM)

<root>

 <tag1>

 Some Text

 <tag2>More</tag2>

 </tag1>

</root>

Node
Type: Element_Node
Name: Element
Value: Root

Node
Type: Element_Node
Name: Element
Value: tag1

Node
Type: Text_Node
Name: Text
Value: More

Node
Type: Element_Node
Name: Element
Value: tag2

Node
Type: Text_Node
Name: Text
Value: Some Text

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 40

DTD – Document Type Definition

 A DTD is a schema for XML data
 XML protocols and languages can be

standardized with DTD files
 A DTD says what elements and attributes are

required or optional
  Defines the formal structure of the language

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 41

DTD – An Example

<?XML version='1.0'?>
<!ELEMENT Basket (Cherry+, (Apple | Orange)*) >
 <!ELEMENT Cherry EMPTY>
 <!ATTLIST Cherry flavor CDATA #REQUIRED>
 <!ELEMENT Apple EMPTY>
 <!ATTLIST Apple color CDATA #REQUIRED>
 <!ELEMENT Orange EMPTY>
 <!ATTLIST Orange location ‘Florida’>
--

<Basket>
 <Apple/>
 <Cherry flavor=‘good’/>
 <Orange/>
</Basket>

<Basket>
 <Cherry flavor=‘good’/>
 <Apple color=‘red’/>
 <Apple color=‘green’/>
</Basket>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 42

DTD - !ELEMENT

<!ELEMENT Basket (Cherry+, (Apple | Orange)*) >

  !ELEMENT declares an element name, and
what children elements it should have

 Content types:
  Other elements
  #PCDATA (parsed character data)
  EMPTY (no content)
  ANY (no checking inside this structure)
  A regular expression

Name Children

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 43

DTD - !ELEMENT (Contd.)

 A regular expression has the following
structure:
  exp1, exp2, exp3, …, expk: A list of regular

expressions
  exp*: An optional expression with zero or more

occurrences
  exp+: An optional expression with one or more

occurrences
  exp1 | exp2 | … | expk: A disjunction of expressions

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 44

DTD - !ATTLIST

 <!ATTLIST Cherry flavor CDATA #REQUIRED>

<!ATTLIST Orange location CDATA #REQUIRED
 color ‘orange’>
  !ATTLIST defines a list of attributes for an

element
 Attributes can be of different types, can be

required or not required, and they can have
default values.

Element Attribute Type Flag

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 45

DTD – Well-Formed and Valid

<?XML version='1.0'?>
<!ELEMENT Basket (Cherry+)>
 <!ELEMENT Cherry EMPTY>
 <!ATTLIST Cherry flavor CDATA #REQUIRED>
--

Well-Formed and Valid
<Basket>
 <Cherry flavor=‘good’/>
</Basket>

Not Well-Formed
<basket>
 <Cherry flavor=good>
</Basket>

Well-Formed but Invalid
<Job>
 <Location>Home</Location>
</Job>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 46

XML and DTDs

  More and more standardized DTDs will be developed
  MathML
  Chemical Markup Language

  Allows light-weight exchange of data with the same
semantics

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 47

HTML Forms

  Common way to communicate data from client to
middle tier

  General format of a form:
  <FORM ACTION=“page.jsp” METHOD=“GET”

 NAME=“LoginForm”>
…
</FORM>

  Components of an HTML FORM tag:
  ACTION: Specifies URI that handles the content
  METHOD: Specifies HTTP GET or POST method
  NAME: Name of the form; can be used in client-side scripts to

refer to the form

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 48

Inside HTML Forms

  INPUT tag
  Attributes:

•  TYPE: text (text input field), password (text input field where
input is, reset (resets all input fields)

•  NAME: symbolic name, used to identify field value at the middle
tier

•  VALUE: default value
  Example: <INPUT TYPE=“text” Name=“title”>

  Example form:
<form method="POST" action="TableOfContents.jsp">
 <input type="text" name="userid">
 <input type="password" name="password">
 <input type="submit" value="Login“ name="submit">
 <input type=“reset” value=“Clear”>
</form>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 49

Passing Arguments

Two methods: GET and POST
  GET

  Form contents go into the submitted URI
  Structure:

action?name1=value1&name2=value2&name3=value3
•  Action: name of the URI specified in the form
•  (name,value)-pairs come from INPUT fields in the form; empty

fields have empty values (“name=“)
  Example from previous password form:

TableOfContents.jsp?userid=john&password=johnpw
  Note that the page named action needs to be a program, script,

or page that will process the user input

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 50

HTTP GET: Encoding Form Fields

  Form fields can contain general ASCII
characters that cannot appear in an URI

  A special encoding convention converts such
field values into “URI-compatible” characters:
1.  Convert all “special” characters to %xyz, were xyz

is the ASCII code of the character. Special
characters include &, =, +, %, etc.

2.  Convert all spaces to the “+” character
3.  Glue (name,value)-pairs from the form INPUT tags

together with “&” to form the URI

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 51

HTML Forms: A Complete Example

<form method="POST" action="TableOfContents.jsp">
 <table align = "center" border="0" width="300">
 <tr>
 <td>Userid</td>
 <td><input type="text" name="userid" size="20"></td>
 </tr>
 <tr>
 <td>Password</td>
 <td><input type="password" name="password" size="20"></td>
 </tr>
 <tr>
 <td align = "center"><input type="submit" value="Login“
 name="submit"></td>
 </tr>
 </table>
</form>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 52

JavaScript
  Goal: Add functionality to the presentation tier.
  Sample applications:

  Detect browser type and load browser-specific page
  Form validation: Validate form input fields
  Browser control: Open new windows, close existing windows

(example: pop-up ads)
  Usually embedded directly inside the HTML with the

<SCRIPT> … </SCRIPT> tag.
  <SCRIPT> tag has several attributes:

  LANGUAGE: specifies language of the script (such as
javascript)

  SRC: external file with script code
  Example:

<SCRIPT LANGUAGE=“JavaScript” SRC=“validate.js>
</SCRIPT>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 53

JavaScript (Contd.)

  If <SCRIPT> tag does not have a SRC attribute, then
the JavaScript is directly in the HTML file.

  Example:
<SCRIPT LANGUAGE=“JavaScript”>
<!-- alert(“Welcome to our bookstore”)
//-->
</SCRIPT>

  Two different commenting styles
  <!-- comment for HTML, since the following JavaScript code

should be ignored by the HTML processor
  // comment for JavaScript in order to end the HTML

comment

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 54

JavaScript (Contd.)

  JavaScript is a complete scripting language
  Variables
  Assignments (=, +=, …)
  Comparison operators (<,>,…), boolean operators

(&&, ||, !)
  Statements

•  if (condition) {statements;} else {statements;}
•  for loops, do-while loops, and while-loops

  Functions with return values
• Create functions using the function keyword
•  f(arg1, …, argk) {statements;}

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 55

JavaScript: A Complete Example

HTML Form:

<form method="POST“
 action="TableOfContents.jsp">
 <input type="text"

name="userid">
 <input type="password"

name="password">
 <input type="submit"

value="Login“
name="submit">

 <input type=“reset”
value=“Clear”>

</form>

Associated JavaScript:

<script language="javascript">
function testLoginEmpty()
{
 loginForm = document.LoginForm
 if ((loginForm.userid.value == "") ||
 (loginForm.password.value == ""))
 {
 alert('Please enter values for userid and

password.');
 return false;
 }
 else return true;
}
</script>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 56

Lecture Overview

  Internet Concepts
 Web data formats

  HTML, XML, DTDs
  Introduction to three-tier architectures
  The presentation layer

  HTML forms; HTTP Get and POST, URL encoding;
Javascript; Stylesheets. XSLT

  The middle tier
  CGI, application servers, Servlets, JavaServerPages,

passing arguments, maintaining state (cookies)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 57

Overview of the Middle Tier

  Functionality of the middle tier
  Encodes business logic
  Connects to database system(s)
  Accepts form input from the presentation tier
  Generates output for the presentation tier

  We will cover
  CGI: Protocol for passing arguments to programs running at

the middle tier
  Application servers: Runtime environment at the middle tier
  Maintaining state: How to maintain state at the middle tier.

Main focus: Cookies.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 58

W3Schools vs. W3Fools

 W3Schools is actually not related to W3C.
 Mondial data in SQL vs. XML.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 59

CGI: Common Gateway Interface

  Transmits arguments from HTML forms to application
programs running at the middle tier

  Details of the actual CGI protocol unimportant 
libraries implement high-level interfaces

  Example: Implementing a wiki.
  The user agent requests the name of an entry.
  The server retrieves the source of that entry's page.
  Transforms it into HTML
  Sends the result.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 60

CGI: Example

  HTML form:
<form action=“findbooks.cgi” method=POST>
Type an author name:
<input type=“text” name=“authorName”>
<input type=“submit” value=“Send it”>
<input type=“reset” value=“Clear form”>
</form>

  Perl code:
use CGI;
$dataIn=new CGI;
$dataIn->header();
$authorName=$dataIn->param(‘authorName’);
print(“<HTML><TITLE>Argument passing test</TITLE>”);
print(“The author name is “ + $authorName);
print(“</HTML>”);
exit;

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 61

CGI Disadvantages

  Disadvantages:
  Each CGI script invocation leads to a new process.
  No resource sharing between application programs

(e.g., database connections)
  Remedy: Application servers share treads in

process.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 62

Application Servers

  Idea: Avoid the overhead of CGI
  Main pool of threads inside processes.
  Requests are assigned to threads (cheap) rather than

separate processes.
  Manage connections
  Enable access to heterogeneous data sources
  Other functionality such as APIs for session

management.
  Servlets handle client requests using Java.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 63

Application Server: Process Structure

Process Structure

Web Browser Web Server

Application Server

C++ Application

JavaBeans

DBMS 1

DBMS 2

Pool of Servlets

HTTP

JDBC

ODBC

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 64

Maintaining State

HTTP is stateless.
 Advantages

  Easy to use: don’t need memory management.
  Great for static-information applications (“fire and

forget”)
  Requires no extra memory space

 Disadvantages
  No record of previous requests means

• No shopping baskets
• No user logins
• No custom or dynamic content
• Security is more difficult to implement

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 65

Application State

  Server-side state
  Information is stored in a database, or in the

application layer’s local memory

 Client-side state
  Information is stored on the client’s computer in the

form of a cookie

 Hidden state
  Information is hidden within dynamically created

web pages

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 66

Application State

So many kinds of
state…

…how will I choose?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 67

Server-Side State

 Many types of Server side state:
  1. Store information in a database

  Data will be safe in the database
  BUT: requires a database access to query or update

the information

  2. Use application layer’s local memory
  Can map the user’s IP address to some state
  BUT: this information is volatile and takes up lots of

server main memory

 5 million IPs = 20 MB

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 68

Server-Side State

  Should use Server-side state maintenance for
information that needs to persist
  Old customer orders
  “Click trails” of a user’s movement through a site
  Permanent choices a user makes

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 69

Client-side State: Cookies

  Storing text on the client which will be passed
to the application with every HTTP request.
  Can be disabled by the client.
  Are wrongfully perceived as "dangerous", and

therefore will scare away potential site visitors if
asked to enable cookies1

 Are a collection of (Name, Value) pairs.
 Discussion Question: what do you think of

cookies?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 70

Client State: Cookies

  Advantages
  Easy to use in Java Servlets / JSP
  Provide a simple way to keep non-essential data on

the client side even when the browser has closed
  Disadvantages

  Limit of 4 kilobytes of information
  Users can (and often will) disable them

  Should use cookies to store interactive state
  The current user’s login information
  The current shopping basket
  Any non-permanent choices the user has made

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 71

Creating A Cookie

Cookie myCookie =
 new Cookie(“username", “jeffd");

response.addCookie(userCookie);

  You can create a cookie at any time

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 72

Accessing A Cookie
Cookie[] cookies = request.getCookies();
String theUser;
for(int i=0; i<cookies.length; i++) {
 Cookie cookie = cookies[i];
 if(cookie.getName().equals(“username”))

 theUser = cookie.getValue();
}
// at this point theUser == “username”

  Cookies need to be accessed BEFORE you set your response header:
response.setContentType("text/html");
PrintWriter out = response.getWriter();

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 73

Cookie Features

 Cookies can have
  A duration (expire right away or persist even after

the browser has closed)
  Filters for which domains/directory paths the

cookie is sent to.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 74

Hidden State

 Often users will disable cookies
 You can “hide” data in two places:

  Hidden fields within a form
  Using the path information

 Requires no “storage” of information because
the state information is passed inside of each
web page

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 75

Hidden State: Hidden Fields

 Declare hidden fields within a form:
  <input type=‘hidden’ name=‘user’

value=‘username’/>

 Users will not see this information (unless they
view the HTML source)

  If used prolifically, it’s a killer for performance
since EVERY page must be contained within a
form.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 76

Hidden State: Path Information

  Path information is stored in the URL request:
 http://server.com/index.htm?user=jeffd

 Can separate ‘fields’ with an & character:
index.htm?user=jeffd&preference=pepsi

  There are mechanisms to parse this field in
Java. Check out the javax.servlet.http.HttpUtils
parserQueryString() method.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 77

Multiple state methods

  Typically all methods of state maintenance are
used:
  User logs in and this information is stored in a

cookie
  User issues a query which is stored in the path

information
  User places an item in a shopping basket cookie
  User purchases items and credit-card information

is stored/retrieved from a database
  User leaves a click-stream which is kept in a log

on the web server (which can later be analyzed)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 78

Summary
We covered:
  Internet Concepts (URIs, HTTP)
  Web data formats

  HTML, XML, DTDs

  Three-tier architectures
  The presentation layer

  HTML forms; HTTP Get and POST, URL encoding; Javascript.

  The middle tier
  CGI, application servers, Servlets, passing arguments,

maintaining state (cookies).

 Only lecture material will be on exam (not
other material from Ch.7).

