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Cursor that gets names of sailors who’ve 
reserved a red boat, in alphabetical order 

Most implementations differ from SQL standard: 
 Can use order by without cursor. 
 Can have many expressions for order criteria. 
  Including input columns or expressions that 

depend on input columns.  

EXEC SQL DECLARE sinfo CURSOR FOR 
 SELECT  S.sname 
 FROM  Sailors S, Boats B, Reserves R 
 WHERE  S.sid=R.sid AND R.bid=B.bid AND B.color=‘red’ 
 ORDER BY  S.sname 
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Internet Applications 

Chapter 7 
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Lecture Overview 

  Internet Concepts: Data Flow from Client to 
DBMS  

  Introduction to three-tier architectures 
 Web data formats 

  HTML, XML, DTDs 
  The presentation layer 

  HTML forms; HTTP Get and POST, URL encoding; 
Javascript; Stylesheets. XSLT 

  The middle tier 
  CGI, application servers, Servlets, JavaServerPages, 

passing arguments, maintaining state (cookies) 
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Components of Data-Intensive 
Systems 
Three separate types of functionality: 
 Data management 
 Application logic 
  Presentation 

  The system architecture determines whether 
these three components reside on a single 
system (“tier) or are distributed across several 
tiers 
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Process/Data Flow in Network 

User/Client Application Database 

Enters request Sends query 

Returns data Returns results 
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Example: Course Enrolment 

User/Client Application Database 

Enters request: add 
course, drop course 

Sends query: Course availability, 
student info,…  

Returns data •  Checks constraints 
•  returns confirmation 
for display 
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Example: Airline Reservation System 

User/Client Application Database 

Enters request: log 
in, show seat map 

Sends query: Airline info, 
available seats, customer info… 

Returns data Returns results: map 
data for display, 
confirmation 
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Example: Book Order System 

User/Client Application Database 

Enters request: 
search for book 

•  Sends query: List books, 
customer info,… 
•  maintains shopping cart 

Returns data Returns results: 
requested data, 
recommendations, 
order information. 
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Client-Server Architectures 

Work division: Thin client 
  Client implements only the 

graphical user interface 
  Server implements business 

logic and data management. 
  Development supported by 

Visual Studio, Sybase 
Powerbuilder. 

  Work division: Thick client 
  Client implements both the 

graphical user interface and the 
business logic 

  Server implements data 
management 
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Discussion Question 

 What are advantages of thin clients? 
 What are disadvantages of thin clients? 

 What are advantages of thick clients? 
 What are disadvantages of thick clients? 
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Client-Server Architectures 

Disadvantages of thick clients 
  No central place to update the business logic 
  Security issues: Server needs to trust clients 

• Access control and authentication needs to be managed at 
the server 

• Clients need to leave server database in consistent state 
• One possibility: Encapsulate all database access into stored 

procedures 

  Does not scale to more than several 100s of clients 
• Large data transfer between server and client 
• More than one server creates a problem: x clients, y 

servers: x*y connections 
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The Three-Tier Architecture 

Database System 

Application Server 

Client Program (Web Browser) Presentation tier 

Middle tier 

Data management 
tier 

C
l
o
u
d 
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Example 1: Airline reservations 

  Build a system for making airline reservations 
 What is done in the different tiers? 
 Database System 

  Airline info, available seats, customer info, etc. 

 Application Server 
  Logic to make reservations, cancel reservations, 

add new airlines, etc. 

 Client Program 
  Log in different users, display forms and human-

readable output 
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Example 2: Course Enrollment 

  Build a system using which students can enroll 
in courses 

 Database System 
  Student info, course info, instructor info, course 

availability, pre-requisites, etc. 
 Application Server 

  Logic to add a course, drop a course, create a new 
course, etc. 

 Client Program 
  Log in different users (students, staff, faculty), 

display forms and human-readable output 
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The Three Layers 

Presentation tier 
  Primary interface to the user 
  Needs to adapt to different display devices (PC, PDA, cell 

phone, voice access?) 

Middle tier 
  Implements business logic (implements complex actions, 

maintains state between different steps of a workflow) 
  Accesses different data management systems 

Data management tier 
  One or more standard database management systems 
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Advantages of the Three-Tier 
Architecture 
  Heterogeneous systems  

  Tiers can be independently maintained, modified, and replaced 
  Thin clients 

  Only presentation layer at clients (web browsers) 
  Integrated data access 

  Several database systems can be handled transparently at the middle 
tier 

  Central management of connections 
  Scalability 

  Replication at middle tier permits scalability of business logic 
  Software development 

  Code for business logic is centralized 
  Interaction between tiers through well-defined APIs: Can reuse 

standard components at each tier 
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Technologies 

Database System 
(DB2) 

Application Server 
(Tomcat, Apache) 

Client Program 
(Web Browser) 

HTML 
Javascript 

JSP 
Servlets 
Cookies 
CGI 

XML 
Stored Procedures 
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Overview of the Presentation Tier 

  Functionality of the presentation tier 
  Primary interface to the user 
  Needs to adapt to different display devices (PC, 

PDA, cell phone, voice access?) 
  Simple functionality, such as field validity checking 

 We will cover: 
  Http protocol. 
  XML, HTML Forms: How to pass data to the middle 

tier 
  JavaScript: Simple functionality at the presentation 

tier. 
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Uniform Resource Identifiers 

  Uniform naming schema to identify resources on the 
Internet 

  A resource can be anything: 
  Index.html 
  mysong.mp3 
  picture.jpg 

  Example URIs: 
 http://www.cs.wisc.edu/~dbbook/index.html 
mailto:webmaster@bookstore.com  
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Structure of URIs 

http://www.cs.wisc.edu/~dbbook/index.html 

 URI has three parts: 
  Naming schema (http) 
  Name of the host computer (www.cs.wisc.edu) 
  Name of the resource (~dbbook/index.html) 

 URLs are a subset of URIs 
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Hypertext Transfer Protocol 

  What is a communication protocol?  
  Set of standards that defines the structure of messages 
  Examples: TCP, IP, HTTP 

  What happens if you click on 
www.cs.wisc.edu/~dbbook/index.html? 

1.  Client (web browser) sends HTTP request to server 
2.  Server receives request and replies 
3.  Client receives reply; makes new requests 
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HTTP (Contd.) 
Client to Server: 

GET ~/index.html HTTP/1.1  
User-agent: Mozilla/4.0  
Accept: text/html, image/gif, image/

jpeg  

Server replies: 

HTTP/1.1 200 OK  
Date: Mon, 04 Mar 2002 12:00:00 GMT  
Server: Apache/1.3.0 (Linux)  
Last-Modified: Mon, 01 Mar 2002 

09:23:24 GMT  
Content-Length: 1024 
Content-Type: text/html  
<HTML> <HEAD></HEAD> 
<BODY> 
<h1>Barns and Nobble Internet 

Bookstore</h1> 
Our inventory: 
<h3>Science</h3> 
<b>The Character of Physical Law</b> 
... 
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HTTP Protocol Structure 

HTTP Requests 
  Request line:  GET ~/index.html HTTP/1.1  

  GET: Http method field (possible values are GET and POST, 
more later) 

  ~/index.html: URI field 
  HTTP/1.1: HTTP version field 

  Type of client:  User-agent: Mozilla/4.0  
  What types of files will the client accept: 

 Accept: text/html, image/gif, image/jpeg  
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HTTP Protocol Structure (Contd.) 

HTTP Responses 

  Status line: HTTP/1.1 200 OK  
  HTTP version: HTTP/1.1 
  Status code: 200 
  Server message: OK 
  Common status code/server message combinations: 

•  200 OK: Request succeeded 
•  400 Bad Request: Request could not be fulfilled by the server 
•  404 Not Found: Requested object does not exist on the server 
•  505 HTTP Version not Supported 

  Date when the object was created: 
 Last-Modified: Mon, 01 Mar 2002 09:23:24 GMT  

  Number of bytes being sent: Content-Length: 1024 
  What type is the object being sent: Content-Type: text/html  
  Other information such as the server type, server time, etc. 
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Some Remarks About HTTP 

  HTTP is stateless 
  No “sessions” 
  Every message is completely self-contained 
  No previous interaction is “remembered” by the protocol 
  Tradeoff between ease of implementation and ease of 

application development: Other functionality has to be built 
on top 

  Implications for applications: 
  Any state information (shopping carts, user login-information) 

need to be encoded in every HTTP request and response! 
  Popular methods on how to maintain state: 

•  Cookies (later this lecture) 
•  Dynamically generate unique URL’s at the server level (later this 

lecture) 
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Web Data Formats 

 HTML 
  The presentation language for the Internet 

 XML 
  A self-describing, hierarchical data model. 
  XML Examples and Exercises 

 And others, e.g. SGML, not covered. 
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HTML: An Example 

<HTML> 
    <HEAD></HEAD> 
    <BODY> 
    <h1>Barns and Nobble Internet 

Bookstore</h1> 
    Our inventory: 

    <h3>Science</h3> 
    <b>The Character of Physical Law</

b> 
    <UL> 
        <LI>Author: Richard Feynman</

LI> 
 <LI>Published 1980</LI> 
 <LI>Hardcover</LI> 
    </UL> 

    <h3>Fiction</h3> 
    <b>Waiting for the Mahatma</b> 
    <UL> 
 <LI>Author: R.K. Narayan</LI> 
 <LI>Published 1981</LI> 
    </UL> 
    <b>The English Teacher</b> 
    <UL> 
 <LI>Author:  R.K. Narayan</LI> 
 <LI>Published 1980</LI> 
 <LI>Paperback</LI> 
    </UL> 

    </BODY> 
</HTML> 
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HTML: A Short Introduction 

 HTML is a markup language: for presentation. 
 Commands are tags: 

  Start tag and end tag 
  Examples: 

• <HTML> … </HTML> 
• <UL> … </UL> 

 Many editors automatically generate HTML 
directly from your document (e.g., Microsoft 
Word has an “Save as html” facility) 
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HTML: Sample Commands 

  <HTML>:  
  <UL>: unordered list 
  <LI>: list entry 
  <h1>: largest heading 
  <h2>: second-level heading, <h3>, <h4> 

analogous 
  <B>Title</B>: Bold  
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XML – The Extensible Markup Language 

   Language 
  A way of communicating information 
  Part of the Semantic Web. 

   Markup 
  Notes or meta-data that describe your data or 

language 
   Extensible 
  Limitless ability to define new languages or data sets.  
  Sophisticated query languages for XML are available: 

  Xquery 
  XPath 
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XML: An Example 
<?XML version="1.0" encoding="UTF-8" standalone="yes"?> 
<BOOKLIST> 
    <BOOK genre="Science" format="Hardcover"> 
        <AUTHOR> 
            <FIRSTNAME>Richard</FIRSTNAME><LASTNAME>Feynman</LASTNAME> 
        </AUTHOR> 
        <TITLE>The Character of Physical Law</TITLE> 
        <PUBLISHED>1980</PUBLISHED> 
    </BOOK> 
    <BOOK genre="Fiction"> 
        <AUTHOR> 
            <FIRSTNAME>R.K.</FIRSTNAME><LASTNAME>Narayan</LASTNAME> 
        </AUTHOR> 
        <TITLE>Waiting for the Mahatma</TITLE> 
        <PUBLISHED>1981</PUBLISHED> 
    </BOOK> 
    <BOOK genre="Fiction"> 
        <AUTHOR> 
            <FIRSTNAME>R.K.</FIRSTNAME><LASTNAME>Narayan</LASTNAME> 
        </AUTHOR> 
        <TITLE>The English Teacher</TITLE> 
        <PUBLISHED>1980</PUBLISHED> 
    </BOOK> 
</BOOKLIST> 
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XML – What’s The Point? 

  You can include your data and a description of what 
the data represents 
  This is useful for defining your own language or protocol 

   Example: Chemical Markup Language 
 <molecule> 
   <weight>234.5</weight> 
   <Spectra>…</Spectra> 
   <Figures>…</Figures> 
 </molecule> 

  XML design goals: 
  XML should be compatible with SGML 
  It should be easy to write XML processors 
  The design should be formal and precise 
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XML – Structure 

 XML looks like HTML 
 XML is a hierarchy of user-defined tags called 

elements with attributes and data 
 Data is described by elements, elements are 

described by attributes 
 <BOOK genre="Science" format="Hardcover">…</BOOK> 

closing tag 

attribute 

attribute value 
data 

open tag 
element name 
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XML – Elements 

<BOOK genre="Science" format="Hardcover">…</BOOK> 

  XML is case and space sensitive 
  Element opening and closing tag names must be identical 
  Opening tags: “<” + element name + “>” 
  Closing tags: “</” + element name + “>” 

closing tag 
attribute 

attribute value data open tag 
element name 



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 36 

XML – Attributes 

<BOOK genre="Science" format="Hardcover">…</BOOK> 

  Attributes provide additional information for element tags. 
  There can be zero or more attributes in every element; each one 

has the the form: 
attribute_name=‘attribute_value’ 
-  There is no space between the name and the “=‘” 
-  Attribute values must be surrounded by “ or ‘ characters 

  Multiple attributes are separated by white space (one or more 
spaces or tabs). 

closing tag 
attribute 

attribute value data 
open tag 

element name 
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XML – Data and Comments 

<BOOK genre="Science" format="Hardcover">…</BOOK> 

  XML data is any information between an opening and closing tag 
  XML data must not contain the ‘<‘ or ‘>’ characters 

  Comments: 
<!- comment -> 

closing tag 
attribute 

attribute value 
data 

open tag 
element name 
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XML – Nesting & Hierarchy 

  XML tags can be nested in a tree hierarchy 
  XML documents can have only one root tag 
  Between an opening and closing tag you can insert: 

  1. Data 
  2. More Elements 
  3. A combination of data and elements 
<root> 
    <tag1> 
        Some Text 
        <tag2>More</tag2> 
    </tag1> 
</root> 
XML Examples and Exercises 
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XML – Storage 

   Storage is done just like an n-ary tree (DOM) 

<root> 

    <tag1> 

        Some Text 

        <tag2>More</tag2> 

    </tag1> 

</root> 

Node 
Type: Element_Node 
Name: Element 
Value: Root 

Node 
Type: Element_Node 
Name: Element 
Value: tag1 

Node 
Type: Text_Node 
Name: Text 
Value: More 

Node 
Type: Element_Node 
Name: Element 
Value: tag2 

Node 
Type: Text_Node 
Name: Text 
Value: Some Text 
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DTD – Document Type Definition 

 A DTD is a schema for XML data 
 XML protocols and languages can be 

standardized with DTD files 
 A DTD says what elements and attributes are 

required or optional 
  Defines the formal structure of the language 
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DTD – An Example 

<?XML version='1.0'?> 
<!ELEMENT Basket (Cherry+, (Apple | Orange)*) > 
 <!ELEMENT Cherry EMPTY> 
  <!ATTLIST Cherry flavor CDATA #REQUIRED> 
 <!ELEMENT Apple EMPTY> 
  <!ATTLIST Apple color CDATA #REQUIRED> 
 <!ELEMENT Orange EMPTY> 
  <!ATTLIST Orange location ‘Florida’> 
-------------------------------------------------------------------------------- 

<Basket> 
     <Apple/> 
     <Cherry flavor=‘good’/> 
     <Orange/> 
</Basket> 

<Basket> 
     <Cherry flavor=‘good’/> 
     <Apple color=‘red’/> 
     <Apple color=‘green’/> 
</Basket> 
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DTD - !ELEMENT 

<!ELEMENT Basket (Cherry+, (Apple | Orange)*) > 

  !ELEMENT declares an element name, and 
what children elements it should have 

 Content types: 
  Other elements 
  #PCDATA (parsed character data) 
  EMPTY (no content) 
  ANY (no checking inside this structure) 
  A regular expression 

Name Children 
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DTD - !ELEMENT (Contd.) 

 A regular expression has the following 
structure: 
  exp1, exp2, exp3, …, expk: A list of regular 

expressions 
  exp*: An optional expression with zero or more 

occurrences 
  exp+: An optional expression with one or more 

occurrences 
  exp1 | exp2 | … | expk: A disjunction of expressions 
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DTD - !ATTLIST 

  <!ATTLIST   Cherry   flavor   CDATA   #REQUIRED> 

<!ATTLIST Orange  location CDATA #REQUIRED 
    color ‘orange’> 
  !ATTLIST defines a list of attributes for an 

element 
 Attributes can be of different types, can be 

required or not required, and they can have 
default values. 

Element Attribute Type Flag 
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DTD – Well-Formed and Valid 

<?XML version='1.0'?> 
<!ELEMENT Basket (Cherry+)> 
 <!ELEMENT Cherry EMPTY> 
  <!ATTLIST Cherry flavor CDATA #REQUIRED> 
-------------------------------------------------------------------------------- 

Well-Formed and Valid 
<Basket> 
   <Cherry flavor=‘good’/> 
</Basket> 

Not Well-Formed 
<basket> 
   <Cherry flavor=good> 
</Basket> 

Well-Formed but Invalid 
<Job> 
   <Location>Home</Location> 
</Job> 
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XML and DTDs 

  More and more standardized DTDs will be developed 
  MathML 
  Chemical Markup Language 

  Allows light-weight exchange of data with the same 
semantics 
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HTML Forms 

  Common way to communicate data from client to 
middle tier 

  General format of a form: 
  <FORM ACTION=“page.jsp” METHOD=“GET” 

  NAME=“LoginForm”> 
… 
</FORM> 

  Components of an HTML FORM tag: 
  ACTION: Specifies URI that handles the content 
  METHOD: Specifies HTTP GET or POST method 
  NAME: Name of the form; can be used in client-side scripts to 

refer to the form 
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Inside HTML Forms 

  INPUT tag 
  Attributes: 

•  TYPE: text (text input field), password (text input field where 
input is, reset (resets all input fields) 

•  NAME: symbolic name, used to identify field value at the middle 
tier 

•  VALUE: default value 
  Example: <INPUT TYPE=“text” Name=“title”> 

  Example form: 
<form method="POST" action="TableOfContents.jsp"> 
 <input type="text" name="userid"> 
 <input type="password" name="password"> 
 <input type="submit" value="Login“ name="submit"> 
 <input type=“reset” value=“Clear”> 
</form> 
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Passing Arguments 

Two methods: GET and POST 
  GET 

  Form contents go into the submitted URI 
  Structure: 

action?name1=value1&name2=value2&name3=value3 
•  Action: name of the URI specified in the form 
•  (name,value)-pairs come from INPUT fields in the form; empty 

fields have empty values (“name=“) 
  Example from previous password form: 

TableOfContents.jsp?userid=john&password=johnpw 
  Note that the page named action needs to be a program, script, 

or page that will process the user input 
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HTTP GET: Encoding Form Fields 

  Form fields can contain general ASCII 
characters that cannot appear in an URI 

  A special encoding convention converts such 
field values into “URI-compatible” characters: 
1.  Convert all “special” characters to %xyz, were xyz 

is the ASCII code of the character. Special 
characters include &, =, +, %, etc. 

2.  Convert all spaces to the “+” character 
3.  Glue (name,value)-pairs from the form INPUT tags 

together with “&” to form the URI 
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HTML Forms: A Complete Example 

<form method="POST" action="TableOfContents.jsp"> 
 <table align = "center" border="0" width="300"> 
 <tr> 
   <td>Userid</td> 
  <td><input type="text" name="userid" size="20"></td> 
 </tr> 
 <tr> 
  <td>Password</td> 
  <td><input type="password" name="password" size="20"></td> 
 </tr> 
 <tr> 
  <td align = "center"><input type="submit" value="Login“ 
   name="submit"></td> 
 </tr> 
 </table> 
</form> 
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JavaScript 
  Goal: Add functionality to the presentation tier. 
  Sample applications: 

  Detect browser type and load browser-specific page 
  Form validation: Validate form input fields 
  Browser control: Open new windows, close existing windows 

(example: pop-up ads) 
  Usually embedded directly inside the HTML with the 

<SCRIPT> … </SCRIPT> tag. 
  <SCRIPT> tag has several attributes: 

  LANGUAGE: specifies language of the script (such as 
javascript) 

  SRC: external file with script code 
  Example: 

<SCRIPT LANGUAGE=“JavaScript” SRC=“validate.js> 
</SCRIPT> 
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JavaScript (Contd.) 

  If <SCRIPT> tag does not have a SRC attribute, then 
the JavaScript is directly in the HTML file. 

  Example: 
<SCRIPT LANGUAGE=“JavaScript”> 
<!-- alert(“Welcome to our bookstore”) 
//--> 
</SCRIPT> 

  Two different commenting styles 
  <!-- comment for HTML, since the following JavaScript code 

should be ignored by the HTML processor 
  // comment for JavaScript in order to end the HTML 

comment 



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 54 

JavaScript (Contd.) 

  JavaScript is a complete scripting language 
  Variables 
  Assignments (=, +=, …) 
  Comparison operators (<,>,…), boolean operators 

(&&, ||, !) 
  Statements 

•  if (condition) {statements;} else {statements;} 
•  for loops, do-while loops, and while-loops 

  Functions with return values 
• Create functions using the function keyword 
•  f(arg1, …, argk) {statements;} 



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 55 

JavaScript: A Complete Example 

HTML Form: 

<form method="POST“ 
   action="TableOfContents.jsp"> 
   <input type="text" 

name="userid"> 
   <input type="password" 

name="password"> 
   <input type="submit" 

value="Login“ 
name="submit"> 

   <input type=“reset” 
value=“Clear”> 

</form> 

Associated JavaScript: 

<script language="javascript"> 
function testLoginEmpty() 
{ 
  loginForm = document.LoginForm 
  if ((loginForm.userid.value == "") || 
     (loginForm.password.value == "")) 
  { 
    alert('Please enter values for userid and 

password.'); 
    return false; 
  } 
  else return true; 
} 
</script> 
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Lecture Overview 

  Internet Concepts 
 Web data formats 

  HTML, XML, DTDs 
  Introduction to three-tier architectures 
  The presentation layer 

  HTML forms; HTTP Get and POST, URL encoding; 
Javascript; Stylesheets. XSLT 

  The middle tier 
  CGI, application servers, Servlets, JavaServerPages, 

passing arguments, maintaining state (cookies) 
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Overview of the Middle Tier 

  Functionality of the middle tier 
  Encodes business logic 
  Connects to database system(s) 
  Accepts form input from the presentation tier 
  Generates output for the presentation tier 

  We will cover 
  CGI: Protocol for passing arguments to programs running at 

the middle tier 
  Application servers: Runtime environment at the middle tier 
  Maintaining state: How to maintain state at the middle tier. 

Main focus: Cookies. 
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W3Schools vs. W3Fools 

 W3Schools is actually not related to W3C.  
 Mondial data in SQL vs. XML. 
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CGI: Common Gateway Interface 

  Transmits arguments from HTML forms to application 
programs running at the middle tier 

  Details of the actual CGI protocol unimportant  
libraries implement high-level interfaces 

  Example: Implementing a wiki.  
  The user agent requests the name of an entry. 
  The server retrieves the source of that entry's page. 
  Transforms it into HTML 
  Sends the result. 
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CGI: Example 

  HTML form: 
<form action=“findbooks.cgi” method=POST> 
Type an author name: 
<input type=“text” name=“authorName”> 
<input type=“submit” value=“Send it”> 
<input type=“reset” value=“Clear form”> 
</form> 

  Perl code: 
use CGI; 
$dataIn=new CGI; 
$dataIn->header(); 
$authorName=$dataIn->param(‘authorName’); 
print(“<HTML><TITLE>Argument passing test</TITLE>”); 
print(“The author name is “ + $authorName); 
print(“</HTML>”); 
exit; 
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CGI Disadvantages 

  Disadvantages: 
  Each CGI script invocation leads to a new process. 
  No resource sharing between application programs 

(e.g., database connections) 
  Remedy: Application servers share treads in 

process. 
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Application Servers 

  Idea: Avoid the overhead of CGI 
  Main pool of threads inside processes. 
  Requests are assigned to threads (cheap) rather than 

separate processes. 
  Manage connections 
  Enable access to heterogeneous data sources 
  Other functionality such as APIs for session 

management. 
  Servlets handle client requests using Java. 
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Application Server: Process Structure 

Process Structure 

Web Browser Web Server 

Application Server 

C++ Application 

JavaBeans 

DBMS 1 

DBMS 2 

Pool of Servlets 

HTTP 

JDBC 

ODBC 
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Maintaining State 

HTTP is stateless. 
 Advantages 

  Easy to use: don’t need memory management. 
  Great for static-information applications (“fire and 

forget”) 
  Requires no extra memory space 

 Disadvantages 
  No record of previous requests means 

• No shopping baskets 
• No user logins 
• No custom or dynamic content 
• Security is more difficult to implement 



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 65 

Application State 

  Server-side state 
  Information is stored in a database, or in the 

application layer’s local memory 

 Client-side state 
  Information is stored on the client’s computer in the 

form of a cookie 

 Hidden state 
  Information is hidden within dynamically created 

web pages 
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Application State 

So many kinds of 
state… 

…how will I choose? 
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Server-Side State 

 Many types of Server side state: 
  1. Store information in a database 

  Data will be safe in the database 
  BUT: requires a database access to query or update 

the information 

  2. Use application layer’s local memory 
  Can map the user’s IP address to some state 
  BUT: this information is volatile and takes up lots of 

server main memory 

   5 million IPs = 20 MB 
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Server-Side State 

  Should use Server-side state maintenance for 
information that needs to persist 
  Old customer orders 
  “Click trails” of a user’s movement through a site 
  Permanent choices a user makes 
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Client-side State: Cookies 

  Storing text on the client which will be passed 
to the application with every HTTP request.  
  Can be disabled by the client.  
  Are wrongfully perceived as "dangerous", and 

therefore will scare away potential site visitors if 
asked to enable cookies1 

 Are a collection of (Name, Value) pairs. 
 Discussion Question: what do you think of 

cookies? 
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Client State: Cookies 

  Advantages 
  Easy to use in Java Servlets / JSP 
  Provide a simple way to keep non-essential data on 

the client side even when the browser has closed 
  Disadvantages 

  Limit of 4 kilobytes of information 
  Users can (and often will) disable them 

  Should use cookies to store interactive state 
  The current user’s login information 
  The current shopping basket 
  Any non-permanent choices the user has made 



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 71 

Creating A Cookie 

Cookie myCookie =  
  new Cookie(“username", “jeffd"); 

response.addCookie(userCookie); 

  You can create a cookie at any time 
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Accessing A Cookie 
Cookie[] cookies = request.getCookies();  
String theUser; 
for(int i=0; i<cookies.length; i++) {  
  Cookie cookie = cookies[i]; 
  if(cookie.getName().equals(“username”)) 

 theUser = cookie.getValue(); 
}  
// at this point theUser == “username” 

  Cookies need to be accessed BEFORE you set your response header: 
response.setContentType("text/html"); 
PrintWriter out = response.getWriter();  
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Cookie Features 

 Cookies can have 
  A duration (expire right away or persist even after 

the browser has closed) 
  Filters for which domains/directory paths the 

cookie is sent to. 
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Hidden State 

 Often users will disable cookies 
 You can “hide” data in two places: 

  Hidden fields within a form 
  Using the path information 

 Requires no “storage” of information because 
the state information is passed inside of each 
web page 
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Hidden State: Hidden Fields 

 Declare hidden fields within a form: 
  <input type=‘hidden’ name=‘user’ 

value=‘username’/> 

 Users will not see this information (unless they 
view the HTML source) 

  If used prolifically, it’s a killer for performance 
since EVERY page must be contained within a 
form. 
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Hidden State: Path Information 

  Path information is stored in the URL request: 
 http://server.com/index.htm?user=jeffd 

 Can separate ‘fields’ with an & character: 
index.htm?user=jeffd&preference=pepsi 

  There are mechanisms to parse this field in 
Java.  Check out the javax.servlet.http.HttpUtils 
parserQueryString() method. 
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Multiple state methods 

  Typically all methods of state maintenance are 
used: 
  User logs in and this information is stored in a 

cookie 
  User issues a query which is stored in the path 

information 
  User places an item in a shopping basket cookie 
  User purchases items and credit-card information 

is stored/retrieved from a database 
  User leaves a click-stream which is kept in a log 

on the web server (which can later be analyzed) 
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Summary 
We covered: 
  Internet Concepts (URIs, HTTP) 
  Web data formats 

  HTML, XML, DTDs 

  Three-tier architectures 
  The presentation layer 

  HTML forms; HTTP Get and POST, URL encoding; Javascript. 

  The middle tier 
  CGI, application servers, Servlets, passing arguments, 

maintaining state (cookies). 

 Only lecture material will be on exam (not 
other material from Ch.7). 


