Integrity Constraints – Practice Questions Solution

1. Consider the schema:

employee(employee-name, street, city)
works(employee-name, company-name, salary)
company(company-name, city)
manages(employee-name, manager-name)

Give an SQL DDL definition for the tables of this database. Identify referentialintegrity constraints that should hold and include them in the DDL definition.

create table employee (person-name char(20) not null, street char(30), city char(30), primary key(person-name))

create table works (person-name char(20) not null, company-name char(15) not null, salary integer, foreign key (person-name) references employee, foreign key (company-name) references company)

create table company (company-name char(15) not null, city char(30))

create table manages (person-name char(20) not null, manager-name char(20) not null, foreign key (person-name) references employee, foreign key (manager-name) references employee)

Note that your domain selections can be different, as long as they are compatible where one column is a foreign key of another.

2. Given the following *relation*, list all of the nontrivial functional dependencies satisfied in it:

А	В	С
a ₁	b1	c ₁
a ₁	b1	c_2
a_2	b1	c ₁
a_2	b1	c ₃

The nontrivial functional dependencies are:

 $\begin{array}{ccc} A & \rightarrow & B \\ C & \rightarrow & B \\ AC & \rightarrow & B \end{array}$

Note that the last functional dependency is actually logically implied by the first two (which axiom(s)?). There are also 19 trivial functional dependencies of the form $\alpha \rightarrow \beta$, where $\beta \subseteq \alpha$.

- 3. Given the relation schema R = (A, B, C, D, E) and the set of functional dependencies:
 - $F = \{ E \rightarrow AB \\ BC \rightarrow D \\ D \rightarrow E \\ AB \rightarrow BC \\ BC \rightarrow E \}$

Compute the canonical cover F_c . Show your steps clearly!

Using the algorithm for computing a canonical cover in text 6.5.4:

1. Use the union rule to replace

 $BC \rightarrow D$ $BC \rightarrow E$ With $BC \rightarrow DE$

The left side of each functional dependency in F is now unique, so there are no more functional dependencies to replace using the union rule.

- 2. The attribute B in BC of AB \rightarrow BC is extraneous because from the algorithm from page 209 of the text, AB \rightarrow C logically implies AB \rightarrow BC, so replace AB \rightarrow BC with AB \rightarrow C.
- 3. The attribute E in BC \rightarrow DE is extraneous because E \in DE and (F {BC \rightarrow DE}) U {BC \rightarrow (DE E)} logically implies F.

This is true because $BC \rightarrow D$ is one of the given functional dependencies, so replace $BC \rightarrow DE$ with $BC \rightarrow D$.

4. There are no more extraneous attributes, since none of the attributes on the left side or right side of any remaining functional dependency is extraneous. Therefore, the canonical cover is:

}

$$\begin{array}{ll} \mathsf{F}_{\mathsf{c}} = & \{ & \mathsf{E} \to \mathsf{A}\mathsf{B} \\ & \mathsf{B}\mathsf{C} \to \mathsf{D} \\ & \mathsf{D} \to \mathsf{E} \\ & \mathsf{A}\mathsf{B} \to \mathsf{C} \end{array}$$