
Lindros

Fleury Sundin

Bure Federov Fleury Lindros Sundin

SundinFleuryBure

Indexing and Hashing – Practice Questions Solution

1. B+-trees are often used as index structures for database files because they maintain
their efficiency despite repeated insertion and deletion of data.

a) Show the structure of a B+-tree for a file containing records with the following search
key values, assuming that the tree is initially empty, that three pointers fit in one
node, and that records are added in the order given:

Sundin, Fleury, Bure, Lindros, Federov

Add Sundin:

Add Fleury, Bure:

Add Lindros:

The final structure is shown below.

SundinFleury

Sundin

Bure

Sundin

Sundin

Lindros

Lindros

Lindros

Fleury Sundin

Bure Federov Fleury Lindros Sundin Yashin

Lindros Sundin

Bure Federov Lindros Sundin Yashin

b) Now show the structure of the B+-tree from part a) after the insertion of a record with
the search key value 'Yashin'.

c) Now show the structure of the B+-tree from part b) after the deletion of the record
with the search key value 'Fleury'.

Reference: pages 350-351 of text.
• delete 'Fleury' from the leaf node. Now the leaf node is empty and

should be eliminated. Point the previous leaf node to the next one.
(i.e. Bure/Federov now points to Lindros).

• delete pointer to the now non-existent leaf from its parent. Note
that the parent node now becomes too small (i.e. 0 entries).

• examine the parent's sibling (i.e. Sundin). It has only one entry, so
examine its parent (i.e. Lindros, the root node). It too has one entry,
these two can be coalesced and the depth of the tree decreases by
one.

2. Suppose that extendable hashing is being used on a database file that contains records
with the following search key values:

2, 3, 5, 7, 11, 17, 19, 23, 29, 31

a) Construct the extendable hash structure for this file if the hash function is h(x) = x
mod 7 and each bucket can hold three records.

0
000

1
0
1

Decimal Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110

Use the extendable hashing algorithm described in the text. The key is
to realize that the hash key uses three bits and that the bits start from
the left side.

The initial hash structure looks like this:

When the record 2 is added, the hash s
this:

Note that 2 mod 7 = 2 = 010 – the first
pointed to by the 0 slot of the bucket a
following records can be added to the h

Add 3 → 3 mod 7 = 3 = 011, goes to b
Add 5 → 5 mod 7 = 5 = 101, goes to b
Add 7 → 7 mod 7 = 0 = 000, goes to
Add 11 → 11 mod 7 = 4 = 100, goes to
Add 17 → 17 mod 7 = 3 = 011, goes to
0

1

1

2

tructure is extended to look like

 bit is 0, so it goes in the bucket
ddress table. Likewise, the
ash structure as it stands:

ucket 0
ucket 1
bucket 0
 bucket 1
 bucket 0

0
1

1

1

1

5
11

2 17
3
7

00
01
10
11

2

2

2

7

1

5
11
19

2 23
3
17

At this point, bucket 0 has overflowed, so we must split the bucket and
rehash its contents using 2 bits. After doing that, we add the following
records:

Add 19 → 19 mod 7 = 5 = 101, goes to bucket 10
Add 23 → 23 mod 7 = 2 = 010, goes to bucket 01

At this point, bucket 01 has overflowed, so we must split the bucket and
rehash its contents using 3 bits. This allows us to add the remaining
records, giving us the following hash structure:

Add 29 → 29 mod 7 = 1 = 001, goes to bucket 001
Add 31 → 31 mod 7 = 3 = 011, goes to bucket 011

000
001
010
011
100
101
110
111

3

2

3

7
29

3

3
17
31

2
23

1

5
11
19

b) Show how the structure from part a) changes after inserting a record with the search
key value of 16 and then deleting the record with the search key value of 11.

In both the addition and the deletion, we do not have to split or coalesce
any buckets, so the hash structure appears as follows:

000
001
010
011
100
101
110
111

3

2

3

7
29

3

3
17
31

2
23
16

1

5
19

c) Why is a hash structure not the best choice for a search key on which range queries
(i.e. select * from relation where key > a and key <=b) are likely?

A range query cannot be answered efficiently using a hash index, as all
the hash buckets would have to be read because key values in the range
do not occupy consecutive locations in the buckets. Remember that keys
should be distributed uniformly and randomly throughout all the buckets.

	Indexing and Hashing – Practice Questions Solution

