
Assignment 3 CMPT 354 Page 1 of 9

CMPT 354
Assignment 3 Key

Total marks: 60
Due: March 15, 2000 by 20:30

2000-1
Instructor: G. Louie

1. Relational Database Design.

Given the relation schema R = (A, B, C, D, E, F, G, H) and the following set of
functional dependencies:

F = { A → B
ABCD → E
EF → G
EF → H
ACDF → EG }

a) (4 marks) Compute the canonical cover for F. (Note: If this question looks familiar to
you, you may be experiencing a case of déjà vu) Show your steps clearly to get full
marks!

Note that this canonical cover question was used as a step-by-step
example in class, so it is only worth 4 marks! However, it is required to
do the remaining parts of the question. Start w. 4 marks and take away 1
mark for incorrect or missing steps. Use the algorithm outlined on page
209 of the text:

1. Use the union rule to replace EF → G and EF → H with EF → GH.
F = { A → B

ABCD → E
EF → GH
ACDF → EG }

1. B is extraneous in ABCD → E because B ∈ ABCD and
{A → B, ABCD → E, EF → GH, ACDF → EG} logically implies
{A → B, ACD → E, EF → GH, ACDF → EG}.
This is because every FD in the 1st set is found in the 2nd set except
for ACD → E. This FD can be derived using Armstrong’s Axioms from
A → B and ABCD → E via the pseudotransitivity rule (α = A, β = B, γ =
ACD, and δ = E). So remove B from ABCD → E.
F = { A → B

ACD → E

Assignment 3 CMPT 354 Page 2 of 9

EF → GH
ACDF → EG }

2. E is extraneous in ACDF → EG because E ∈ EG and
{A → B, ACD → E, EF → GH, ACDF → G} logically implies
{A → B, ACD → E, EF → GH, ACDF → EG}.
This is true because:
1. A → B given
2. ACD → E given
3. EF → GH given
4. ACDF → EF augment 2 w. F
5. ACDF → E decompose 4
6. ACDF → G given
7. ACDF → EG union 5 & 6
So remove E from ACDF → EG
F = { A → B

ACD → E
EF → GH
ACDF → G }

3. G is extraneous in ACDF → G. Note that ACDF → G is already implied
by ACD → E and EF → GH in F because of the following:
1. ACD → E given
2. EF → GH given
3. ACDF → EF augment 1 w. F
4. ACDF → GH transitivity of 2 & 3
5. ACDF → G decomposition of 4
So we can remove ACDF → G from F since it is derived.

4. None of the remaining FD’s in F have extraneous attributes so the
canonical cover is:
Fc = { A → B

ACD → E
EF → GH }

b) (6 marks) Decompose R into 3rd Normal Form.

Use the algorithm outlined on page 230 of the text:

1. For A → B, R1 = (A, B)
2. For ACD → E, R2 = (A, C, D, E)

Assignment 3 CMPT 354 Page 3 of 9

3. For EF → GH, R3 = (E, F, G, H)
4. However, a candidate key computed for the universal relation R is

ACDF.
1. A → B in Fc (see part a)
2. ACD → BCD augment 1 w. CD
3. ACD → E in Fc

4. ACD → BCDE union of 2 & 3
5. ACDF → ABCDEF augment 4 w. AF
6. ACDF → EF decompose 5
7. EF → GH in Fc

8. ACDF → GH transitivity of 6 & 7
9. ACDF → ABCDEFGH union of 5 & 8

Since none of the decomposed relations contain a candidate key for R,
we have to add an additional R4 = (A, C, D, F). 3 marks

5. We end up with the following decomposition:
R1 = (A, B),
R2 = (A, C, D, E),
R3 = (E, F, G, H)
and R4 = (A, C, D, F)

Note that for efficiency, we can combine R2 and R4 into a single
relation.

3 marks

c) (5 marks) Prove that your decomposition in part b) is a lossless join. Note: No marks
will be given for stating that the algorithm used gives a lossless-join, dependency-
preserving decomposition!

Use the definition from page 222 of the text:

A decomposition is a lossless join if, for all relations r on schema R that
are legal under the given set of functional dependency constraints,

r = Π R1 (r) ⋈ Π R2 (r) ⋈ Π R3 (r) ⋈ Π R4 (r)

Note that the universal relation r is first decomposed into two smaller
relations rA and rB. If the relation rA is then further decomposed to rC

Assignment 3 CMPT 354 Page 4 of 9

and rD and we can show that rC and rD is a lossless-join, we can recover
the relation rA and show that it is a lossless join. Then if we can show
that rB and rA also form a lossless-join, then we can recover the universal
relation r and the entire decomposition is a lossless join. Additional
decompositions are shown to be lossless joins in the same manner.

To show that two relations rA and rB form a lossless join, we must show
one of the following:

rA ∩ rB → rA

rA ∩ rB → rB

We first decompose the universal relation R into rA = (EFGH) and rB =
(ABCDEF). rA ∩ rB is then EF. Since EF → GH is given, augmenting each
side with EF gives EF → EFGH and therefore this decomposition is
lossless.

Next we decompose ABCDEF into rC = (ACDF) and rD = (ABCDE). rC ∩ rD

is then ACD. Since ACD → E, A → B is given, we can show ACD → ABCDE
and therefore this decomposition is lossless.

Then we decompose ABCDE into rE = (AB) and rF = (ACDE). rE ∩ rF is A.
Since A → B is given, we can show A → AB and therefore this
decomposition is also lossless.

By showing that each individual decomposition is lossless, we show that
the entire decomposition is lossless.

d) (5 marks) Show that your decomposition in part b) is dependency preserving. Note
that you are not asked to formally prove why, just to show that it is so.

Based on page 223 of the text, one can indicate that all FD’s in Fc can be
tested in at least one relation in the decomposition (2 marks). So,
A → B can be tested in R4,
ACD → E can be tested in R2,
EF → GH can be tested in R3. 1 mark each

Thus, the decomposition is dependency preserving.

Assignment 3 CMPT 354 Page 5 of 9

2. (10 marks) Give a lossless join decomposition into Fourth Normal Form for the
relation S = (F, G, H, I, J) if the following set of multivalued dependencies hold:

F ↠ GH
G ↠ HI
J ↠ FI

Note the only superkey for S is (FGHIJ) because there are no FD’s given,
so the decomposition must contain only trivial multivalued dependencies
(i.e. a multivalued dependency α ↠ β is trivial if β ⊆ α or α ∪ β = R).

The definition of 4NF states that a relational schema R is in 4NF with
respect to a set D of functional and multivalued dependencies if for all
dependencies in D+ of the form α ↠ β, where α ⊆ R and β ⊆ R, at least
one of the following holds:

• α ↠ β is trivial (i.e. β ⊆ α or α ∪ β = R)
• α is a superkey for R (2 marks for definition)

Following the algorithm in Figure 7.12 of the text,

1. R is not in 4NF because neither of the two conditions are true.
2. F ↠ GH: F → FGHIJ is not in D+ and F ∩ GH = ∅, so decompose R

 (1 mark)
3. R1 = (F, G, H) (1 mark)

R2 = (F, I, J) (1 mark)
4. R1 is in 4NF because F ↠ GH is a trivial MVD, (1 mark)

R2 is in 4NF because F ↠ IJ is a trivial MVD, so the decomposition
ends. (2 marks)

5. We get S = {(F, G, H), (F, I, J)} (2 marks)

Assignment 3 CMPT 354 Page 6 of 9

3. (15 marks) Given the relation schema R = (A, B, C, D, E) and the canonical cover of
its set of functional dependencies:

Fc = { A → BC
CD → E
B → D
E → A }

Compute a lossless join decomposition in Boyce-Codd Normal Form for R. Show
your steps clearly to get full marks!

Using the algorithm to decompose a relation to BCNF from figure 7.6 in
text:

1. result = {(A, B, C, D, E)}; done = false; (1 mark)

2. Note that we are given the canonical cover Fc in the question. This
means that we can avoid computing the closure of F and just use Fc

and Armstrong's axioms to determine if a given functional dependency
is in F+.

3. (A, B, C, D, E) is not in BCNF (1 mark) because B → D is not a trivial
dependency and it is not a superkey for (A, B, C, D, E) (1 mark):

A → BC given
A → B, A → C decomposition
B → D, so A → D given, transitive
A → CD union
CD → E, so A → E transitive
A → ABCDE union of above steps
E → A, so E → ABCDE given, transitive
CD → E, so CD → ABCDE transitive
B → D, so BC → CD augmentation
BC → ABCDE transitive

Since BC is a candidate key, B cannot be a superkey. As soon as we
find one functional dependency that does not meet the criteria for
BCNF, the schema is not in BCNF. (3 marks for explanation and
application of rules)

Assignment 3 CMPT 354 Page 7 of 9

4. B → D holds on (A, B, C, D, E), (1 mark)
B → ABCDE is not in F+ (i.e. can't be computed using Armstrong's
Axioms from the canonical cover Fc) (1 mark) and
B ∩ D = empty set, so: (1 mark)

result = {(A, B, C, D, E) – (A, B, C, D, E)} ∪ {(A, B, C, D, E) – D} ∪ (B, D)
result = {empty set} ∪ (A, B, C, E) ∪ (B, D)
result = {(A, B, C, E), (B, D)} (2 marks)

5. We determine that (B, D) is in BCNF because the nontrivial functional
dependency B → D is given, so B is a superkey for schema (B, D). (2
marks)

6. We determine that (A, B, C, E) is in BCNF because for the nontrivial
functional dependencies given, A → BC and E → A, both A and E are
superkeys for the schema (A, B, C, E), since A → ABCDE and E →
ABCDE from step 3. (2 marks).

4. (15 marks) Use the axioms for functional and multivalued dependencies to show the
soundness of the difference rule.

If α ↠ β holds and α ↠ γ holds, then α ↠ β - γ holds and α ↠ γ - β holds.

1. α ↠ β given
2. α ↠ R – β - α complementation rule
3. α ↠ R – β augment with (α – β)*
4. α ↠ γ given
5. α ↠ (R – β)γ multivalued union rule
6. α ↠ R – (β – γ) set theory
7. α ↠ β – γ complement

Assignment 3 CMPT 354 Page 8 of 9

8. α ↠ γ given
9. α ↠ R – γ - α complementation rule
10. α ↠ R – γ augment with (γ – β)
11. α ↠ β given
12. α ↠ (R – γ)β multivalued union rule
13. α ↠ R – (γ – β) set theory
14. α ↠ γ – β complementation rule

Students should have both parts of the proof. If only one side is
correctly given and the other is left out, subtract 5 marks. Subtract 1
mark for each step along the way that is incorrect i.e. if proof is only
correct up to step 3, then 4 marks are subtracted (7-3).

* Many students may find step 3 of this answer difficult to follow. The
best way to envision the result is with a Venn diagram:

R is the set of all attributes
α is a subset of R
β is a subset of R

1. To augment in set theory means to add the members to the set if they
are not members of the set. Nothing happens if they are already
members. α looks like this:

R

α β

α

Assignment 3 CMPT 354 Page 9 of 9

2. α - β looks like so (the filled in part):

3. Thus, augmenting α with α - β just ends up with α.

4. The second part of this is to augment (R - β - α) with (α - β). This
basically adds the blue part from step 2 back to the original Venn
diagram. If (R - β - α) were shaded on the Venn diagram, everything
inside R and outside of (α - β) would be filled in. Thus, augmenting that
picture with (α - β) from step 2 gives the resulting diagram:

5. Looking at the Venn diagram from 4, it appears that augmenting (R - β -
α) with (α - β) just gives us (R - β). Combining both sides of the
multivalued dependency, we get α ↠ (R - β).

α β

R

α β

