Introduction to SQL

CMPT 354
Jian Pei

jpei@cs.sfu.ca



Outline

* Overview of the SQL Query Language
* SQL Data Definition

* Basic Query Structure of SQL Queries
* Additional Basic Operations

* Set Operations

* Null Values

* Aggregate Functions

* Nested Subqueries

* Modification of the Database



Where Did SQL Come From?

* IBM Sequel language developed as part of the System R project at the IBM San
Jose Research Laboratory (70s)

e Renamed Structured Query Language (SQL) (1981)

 ANSI and ISO standard SQL
* SQL-86 — ANSI standard
* SQL-89 — added integrity constraints

* SQL-92 — major revision, adding new data types, character sets, scalar/set operations,
conditional expressions, ...

 SQL:1999 (language name became Y2K compliant!) — added regular expression
matching, recursive queries (e.g. transitive closure), triggers, ...

* SQL:2003 — introduced XML related features, window function, ...

¢ Commercial systems offer most, if not all, SQL-92 features, plus varying feature
sets from later standards and special proprietary features

* Not all examples here may work on your particular system



SQLite

* We use SQLite in this course <https://www.sqglite.org/index.htm|>

* a C-language library that implements a small, fast, self-contained, high-reliability, full-
featured, SQL database engine

* the most used database engine in the world
 Download it and install it in your computer in this week, please

 Alternatively, use the online SQL interpreter based on SQLite/sql.js
<https://www.db-book.com/db7/university-lab-dir/sqljs.htmI>

* The database used in the textbook is available at <https://www.db-
book.com/db7/university-lab-dir/univdb-sqlite.db>

* Many useful documents/tutorials online

* |f you have any questions about setting up or using SQLite in your
computer, please come to our office hours



SQL Parts

« DML - provide the ability to query information from a database and to
insert tuples into, delete tuples from, and modify tuples in the database

* Integrity — the DDL includes commands for specifying integrity constraints
* View definition —the DDL includes commands for defining views

* Transaction control —commands for specifying the beginning and ending of
transactions

 Embedded SQL and dynamic SQL — define how SQL statements can be
embedded within general-purpose programming languages

* Authorization — commands for specifying access rights to relations and
views



Data Definition Language (DDL)

* The SQL data-definition language (DDL) allows the specification of
information about relations, including
* The schema for each relation
* The type of values associated with each attribute
* The Integrity constraints
* The set of indices to be maintained for each relation
» Security and authorization information for each relation
* The physical storage structure of each relation on disk



Domain Types in SQL

char(n) — fixed length character string, with user-specified length n

Yarchﬁr(n) — variable length character strings, with user-specified maximum
ength n

int — integer (a finite subset of the integers that is machine-dependent)

smal)lint —small integer (a machine-dependent subset of the integer domain
type
numeric(p,d) — fixed point number, with user-specified precision of p digits, with

d digits to the ri%ht of decimal point. (ex., numeric(3,1), allows 44.5 to be stored
exactly, but not 444.5 or 0.32)

real, double precision — floating point and double-precision floating point
numbers, with machine-dependent precision

float(n) — floating point number, with user-specified precision of at least n digits
More to come later



Create Table Construct

* An SQL relation is defined using the create table command
create table r

(A, D, A, D,, .., A D,
(integrity-constraint,),

ceey

(integrity-constraint,))
* ris the name of the relation
* each A, is an attribute name in the schema of relation r
* D, is the data type of values in the domain of attribute A;

* Example:
create table instructor (
ID char(5),
name varchar(20),

dept_name varchar(20),
salary numeric(8,2));



Integrity Constraints in Create Table

* Types of integrity constraints
e primary key (A,, ..., A,)
* foreign key (A, ..., A, ) references r
* not null

* SQL prevents any update to the database that violates an integrity constraint
* Example

create table instructor (
ID char(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2),
primary key (/D),
foreign key (dept_name) references department);



More Relation Definitions

create table student (
ID varchar(5£
name varchar(20) not null,
dept _name varchar(ZO
tot _cred numeric(3,
primary key (ID),
foreign key (dept name) references department);

create table takes (

varchar(5)
course_id  varcha r(83
sec_id varchar(8)
semester  varchar(6),
year numeric(4,0),
grade varchar(2)

rimary key (ID, course_id, sec_id, semester, year) ,
oreign key (/D) references student,
foreign key (course id, sec_id, semester, year) references section);



More Relation Definitions

create table course (
course_id varchar(8),

title varchar(50),
dept_ name  varchar(20),
credits numeric(2,0),

primary key (course _id),
foreign key (dept_name) references department);



To-Do List

* Suppose we want to create two tables
student (stud-id, name, address, supervisor-id);
supervisor(supervisor-id, name, address, student-id);

* Foreign key constraints

* Attribute supervisor-id in table student is the foreign key referencing table
supervisor

* Attribute student-id in table supervisor is the foreign key referencing table
student

* How to create those two tables?
* What difficulties may those two tables lead to?
* s this a good design? If yes, why? If not, how to improve it?



Updates to Tables

* Insert
* insert into instructor values ('10211', 'Smith’, 'Biology', 66000);
* Delete
* Remove all tuples from the student relation
* delete from student

* Drop Table
* drop table r

* Alter
* altertableradd AD
* Ais the name of the attribute to be added to relation r and D is the domain of A
» All exiting tuples in the relation are assigned null as the value for the new attribute
* alter table rdrop A

e Ais the name of an attribute of relation r
* Dropping of attributes not supported by many databases



Basic Query Structure

* A typical SQL query has the form:

select A, A, ..., A
fromr,r,, ..., r,
where P

n

* A;represents an attribute
* R;represents a relation
* Pis a predicate

* The result of an SQL query is a relation



The select Clause

* The select clause lists the attributes desired in the result of a query
* Corresponds to the projection operation of the relational algebra

« Example: find the names of all instructors: |1, .. (instructor)
select name
from instructor
 NOTE: SQL names are case insensitive (i.e., you may use upper- or
lower-case letters)
* E.g., Name = NAME = name
* Some people use upper case wherever we use bold font



The select Clause

* SQL allows duplicates in relations as well as in query results
* Does relational algebra allow duplicates?

* To force the elimination of duplicates, use the keyword distinct after select

* Find the department names of all instructors, and remove duplicates

select distinct dept _name
from instructor

* The keyword all specifies that duplicates should NOT be removed

select all dept_name
from instructor

* Relational algebra: [ 14ept name (instructor)

dept_name

Comp. Sci.
Finance
Music
Physics
History
Physics
Comp. Sci.
History
Finance
Biology
Comp. Sci.
FElec'°Eng.




The select Clause

e An asterisk in the select clause denotes “all attributes”

select *
from instructor

e An attribute can be a literal with no from clause

select '437'
* Results is a table with one column and a single row with value “437”
e Can give the column a name using:
select '437'as FOO

* An attribute can be a literal with from clause

select 'A’
from instructor

* Result is a table with one column and N rows (number of tuples in the instructors
table), each row with value “A”



To-Do List

* What is the output of the following query? Why?
select @’ A, ‘b’ ‘B’

* What is the output of the following query? Why?
select @’ A’ b’ ‘B’
from instructor

* What is the output of the following query? Why?



The select Clause

* The select clause can contain arithmetic expressions involving the
operation, +, —, *, and /, and operating on constants or attributes of
tuples

* Query
select ID, name, salary/12
from instructor

* Result: a relation that is the same as the instructor relation, except
that the value of the attribute salary is divided by 12

* Can rename “salary/12” using the as clause:
select ID, name, salary/12 as monthly salary



The where Clause

The where clause specifies conditions that the result must satisfy
» Corresponds to the selection predicate of the relational algebra

To find all instructors in Comp. Sci. dept: G geps name=‘comp. sci» linstructor)

select name
from instructor

where dept_name = ’Comp. Sci.'

SQL allows the use of the logical connectives and, or, and not

name

Katz
Brandt

ID name dept_name salary
22222 | Einstein Physics 95000
12121 | Wu Finance 90000
32343 | El Said History 60000
45565 | Katz Comp. Sci. | 75000
98345 | Kim Elec. Eng. 80000
76766 | Crick Biology 72000
10101 | Srinivasan | Comp. Sci. | 65000
58583 | Califieri History 62000
83821 | Brandt Comp. Sci. | 92000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
76543 | Singh Finance 80000

The operands of the logical connectives can be expressions involving the comparison operators <, <=, >,

>=, =, and <>

Comparisons can be applied to results of arithmetic expressions

To find all instructors in Comp. Sci. dept with salary > 70000: O 4oyt name=“ohysics " salary > 70000 (inStructor)

select name
from instructor

where dept_name = '‘Comp. Sci.' and salary > 70000

J. Pei: CMPT 354 -- Introduction to SQL

20




The from Clause

* The from clause lists the relations involved in the query
* Corresponds to the Cartesian product operation of the relational algebra
* Find the Cartesian product instructor X teaches
select *
from instructor, teaches

* Generate every possible instructor-teaches pair, with all attributes from both
relations

 (depending on specific SQL implementation) For common attributes (e.g., ID),
the attributes in the resulting table are renamed using the relation name
(e.g., instructor.ID)

 Cartesian product is not very useful directly, but is useful combined with where-
clause condition (selection operation in relational algebra)



Examples

* Find the names of all instructors who have taught some
course and the course_id

select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID

* Find the names of all instructors in the Art department
who have taught some course and the course_id

select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID
and instructor. dept_name ="'Art'

name course_id
Srinivasan | CS-101
Srinivasan | CS-315
Srinivasan | CS-347
Wu FIN-201
Mozart MU-199
Einstein PHY-101
El Said HISs-351
Katz Cs-101
Katz CS-319
Crick BIO-101
Crick BIO-301
Brandt CS-190
Brandt CS-190
Brandt CS-319
Kim EE-181




The Rename Operation

e The SQL allows renaming relations and attributes using the as clause:

old-name as new-name

* Find the names of all instructors who have a higher salary than

some instructor in 'Comp. Sci'.

* select distinct .name
from instructor as T, instructor as S

where T.salary > S.salary and S.dept_name = 'Comp. Sci.”

» Keyword as is optional and may be omitted
instructor as T = instructor T

S
l 1D | name dept_name l salary ‘ ‘ D ‘ name ‘ dept_name ‘ salary ‘
22222 | Einstein Physics 95000 22222 | Einstein Physics 95000
12121 | Wu Finance 90000 12121 | Wu Finance 90000
32343 | El Said History 60000 32343 | El Said History 60000
45565 | Katz Comp. Sci. | 75000 45565 | Katz Comp. Sci. | 75000
98345 | Kim Elec. Eng. 80000 98345 | Kim Elec. Eng. 80000
76766 | Crick Biology 72000 76766 | Crick Biology 72000
10101 | Srinivasan | Comp. Sci. | 65000 10101 | Srinivasan | Comp. Sci. | 65000
58583 | Califieri History 62000 58583 | Califieri History 62000
83821 | Brandt Comp. Sci. | 92000 83821 | Brandt Comp. Sci. | 92000
15151 | Mozart Music 40000 15151 | Mozart Music 40000
33456 | Gold Physics 87000 33456 | Gold Physics 87000
76543 | Singh Finance 80000 76543 | Singh Finance 80000

J. Pei: CMPT 354 -- Introduction to SQL

23



To-Do List

person | supervisor
Bob Alice
. Mary Susan
* Relation emp-super Alice | David
David Mary

* Find the supervisor of “Bob”
* Find the supervisor of the supervisor of “Bob”
* Can you find ALL the supervisors (direct and indirect) of “Bob”?



To-Do List

* Find the department names which has at least one instructor whose
salary is at least 80000

* Find the pair of instructor names (x, y) such that x and y work in the
same department

 Find the names of instructors who teaches the same course twice



String Operations

SQL includes a string-matching operator for comparisons on character strings

The operator like uses patterns that are described using two special characters:
* The % character matches any substring, including empty
* The _ character matches any single character

Find the names of all instructors whose name includes the substring “dar”

select name
from instructor
where name like "%dar%'

Use backslash (\) as the escape character
* Match the string “100%”

like '100 \%' escape '\



String Operations

e Patterns are case sensitive

e Pattern matching examples:
* 'Intro%' matches any string beginning with “Intro”
* '%Comp%' matches any string containing “Comp” as a substring

' "matches any string of exactly three characters

' %'matches any string of at least three characters

e SQL supports a variety of string operations such as
e concatenation (using “||”)
e converting from upper to lower case (and vice versa)
* finding string length, extracting substrings, etc.



Ordering the Display of Tuples

* List in alphabetic order the names of all instructors

select distinct name
from instructor

order by name

* We may specify desc for descending order or asc for ascending order, for
each attribute; ascending order is the default

* Example: order by name desc

e Can sort on multiple attributes

* Example: order by dept_name, name

* First by dept_name, sort all tuples having the same dept_name by
name



Where Clause Predicates

* SQL includes a between comparison operator

* Example: Find the names of all instructors with salary
between $90,000 and $100,000 (that is, > $90,000 and <
$100,000)

select name
from instructor
where salary between 90000 and 100000

* Tuple comparison

select name, course_id

from instructor, teaches

where (instructor.ID, dept_name) = (teaches.ID,
'‘Biology');

J. Pei: CMPT 354 -- Introduction to SQL

‘ ID ‘ name dept_name l salary ‘
22222 | Einstein Physics 95000

12121 | Wu Finance 90000

32343 | El Said History 60000

45565 | Katz Comp. Sci. | 75000
98345 | Kim Elec. Eng. 80000

76766 | Crick Biology 72000

10101 | Srinivasan | Comp. Sci. | 65000

58583 | Califieri History 62000

83821 | Brandt Comp. Sci. | 92000

15151 | Mozart Music 40000

33456 | Gold Physics 87000

76543 | Singh Finance 80000

ID course_id | seciid | semester  year
10101 CS-101 1 Fall 2017
10101 | CS-315 1 Spring 2018
10101 | CS-347 1 Fall 2017
12121 | FIN-201 1 Spring 2018
15151 MU-199 1 Spring 2018
22222 | PHY-101 1 Fall 2017
32343 | HIS-351 1 Spring 2018
45565 | CS-101 1 Spring 2018
45565 | CS-319 1 Spring 2018
76766 | BIO-101 1 Summer | 2017
76766 | BIO-301 1 Summer | 2018
83821 | CS-190 1 Spring 2017
83821 | CS-190 2 Spring 2017
83821 | CS-319 2 Spring 2018
98345 | EE-181 1 Spring 2017

29




Set Operations

* Find courses that ran in Fall 2017 or in Spring 2018

(select course_id from section where sem = 'Fall' and year = 2017)
union
(select course _id from section where sem ='Spring' and year = 2018)

* Find courses that ran in Fall 2017 and in Spring 2018

(select course_id from section where sem = "Fall' and year = 2017)
intersect
(select course _id from section where sem ='Spring' and year = 2018)

* Find courses that ran in Fall 2017 but not in Spring 2018

(select course_id from section where sem = 'Fall' and year = 2017)
except
(select course_id from section where sem ='Spring' and year = 2018)



Set Operations

e Set operations union, intersect, and except
e Each of the above operations automatically eliminates duplicates

* To retain all duplicates, use the
e union all,
* intersect all
* except all

J. Pei: CMPT 354 -- Introduction to SQL

31



To-Do List

* Find all instructors and their ids who did not teach any courses



Null Values

* It is possible for tuples to have a null value, denoted by null, for some of
their attributes

* null signifies an unknown value or that a value does not exist
* The result of any arithmetic expression involving null is null

 Example: 5+ null returns null
* The predicate is null can be used to check for null values

* Example: Find all instructors whose salary is null

select name

from instructor
where salary is null

. Thﬁ predicate is not null succeeds if the value on which it is applied is not
nu



Null Values

e SQL treats as unknown the result of any comparison involving a null value (other
than predicates is null and is not null).

 Example: 5<null or null<>null or null=null
* The predicate in a where clause can involve Boolean operations (and, or, not);
thus the definitions of the Boolean operations need to be extended to deal with
the value unknown.

e and : (true and unknown) = unknown,
(false and unknown) = false,
(unknown and unknown) = unknown

 or: (unknown or true) = true,
(unknown or false) = unknown
(unknown or unknown) = unknown

* Result of where clause predicate is treated as false if it evaluates to unknown



To-Do List

* What is the output of the following query? Why?
select 5+null ‘5+null’

* What is the output of the following query? Why?

select 5+null ‘5+null’
from instructor



Aggregate Functions

* These functions operate on the multiset of values of a column of a
relation, and return a value

avg: average value

min: minimum value
max: maximum value
sum: sum of values
count: number of values



Aggregate Functions Examples

* Find the average salary of instructors in the Computer Science department

select avg (salary)
from instructor
where dept_name= 'Comp. Sci.';

* Find the total number of instructors who teach a course in the Spring 2018
semester

select count (distinct /D)
from teaches
where semester = 'Spring' and year = 2018;

* Find the number of tuples in the course relation

select count (*)
from course;



To-Do List

* Find the name of the instructor and the salary who has the highest
salary
* What is the output of the follow query? Why?

select name, avg(salary)
from instructor



Aggregate Functions — Group By

* Find the average salary of instructors in each department

select dept_name, avg (salary) as avg_salary
from instructor

group by dept_name; ID name dept.name | salary deptname | avg_salary
76766 | Crick Biology 72000 Biology 72000
45565 | Katz Comp. Sci. | 75000 Comp. Sci. | 77333
10101 | Srinivasan | Comp. Sci. | 65000 Elec. Eng. 80000
83821 | Brandt Comp. Sci. | 92000 Finance 85000
98345 | Kim Elec. Eng. 80000 History 61000
12121 | Wu Finance 90000 Music 40000
76543 | Singh Finance 80000 Physics 91000
32343 | El Said History 60000
58583 | Califieri History 62000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
22222 | Einstein Physics 95000

J. Pei: CMPT 354 -- Introduction to SQL

39




Aggregation

e Attributes in select clause outside of aggregate
functions must appear in group by list

/* erroneous query */

select dept _name, ID, avg (salary)
from instructor

group by dept_name;



To-Do List

* What is the output of the following query? Why?
select dept_name, name, avg(salary)
from instructor
group by dept_name



Aggregate Functions — Having Clause

* Find the names and average salaries of all departments whose
average salary is greater than 42000
select dept_name, avg (salary) as avg_salary
from instructor
group by dept name
having avg (salary) > 42000;
* Predicates in the having clause are applied after the formation of

groups whereas predicates in the where clause are applied before
forming groups



To-Do List

* Find all instructors who taught at least 2 sections

e Can you use aggregate function count() to find all instructors who did
not teach any courses?



Nested Subqueries

* SQL provides a mechanism for the nesting of subqueries
* A subquery is a select-from-where expression that is nested within another query
* The nesting can be done in the following SQL query

select A, A,, ..., A,
fromr,r,, ..., 1,
where P

as follows:
* From clause: r; can be replaced by any valid subquery
* Where clause: P can be replaced with an expression of the form:
B <operation> (subquery)
B is an attribute and <operation> to be explained later
* Select clause:
A, can be replaced by a subquery that generates a single value



Set Membership

* Find courses offered in Fall 2017 and in Spring 2018
select distinct course_id
from section
where semester = 'Fall' and year= 2017 and
course_id in (select course_id
from section
where semester = 'Spring' and year= 2018);

* Find courses offered in Fall 2017 but not in Spring 2018
select distinct course_id
from section
where semester = 'Fall' and year= 2017 and
course_id not in (select course_id
from section
where semester = 'Spring' and year= 2018);

J. Pei: CMPT 354 -- Introduction to SQL

45



Set Comparison — some’ Clause

* Find names of instructors with salary greater than that of some (at
least one) instructor in the Biology department
select distinct T.name
from instructor as T, instructoras S
where T.salary > S.salary and S.dept_name = 'Biology";

* Same query using > some clause
select name
from instructor
where salary > some (select salary
from instructor
where dept_name = 'Biology');



Definition of "some Clause

* F <comp>somer< 3t e r suchthat (F <comp>t)

e <comp>canbe: <, £, >, =, # 0

(b<some | 5 | ) =true |
6 (read: 5 < some tuple in the relation
0

(5<some | 5 | )="false
0

(6=some| 5 | )=true
0

(5#some | 5 | ) =true (since 0 # 5)

(=some) =in
However, (# some);é not in



Set Comparison — "all” Clause

* Find the names of all instructors whose salary is greater than the
salary of all instructors in the Biology department

select name
from instructor

where salary > all (select salary
from instructor
where dept name = 'Biology');



Definition of “all” Clause

e F<comp>allre Vter (F<comp>t)

0
(b<all | 5 | )=false
6
6
(5<all 10| )=true
4
(5=all| 5 | )="false
4
(5#all| 6 | )=true (since 5+ 4 and 5 # 6)

(= all)=not in
However, (= all) £ in



Test for Empty Relations

* The exists construct returns the value true if the argument subquery
IS nonempty.

cexists re rd
*notexistsr r=0



Use of "exists Clause

* Yet another way of specifying the query “Find all courses taught in both the
Fall 2017 semester and in the Spring 2018 semester”

select course_id
from section as S
where semester = 'Fall' and year = 2017 and
exists (select *
from sectionas T
where semester = 'Spring' and year= 2018
and S.course _id = T.course_id);

* Correlation name — variable S in the outer query
* Correlated subquery — the inner query



Use of "not exists Clause

* Find all students who have taken all courses offered in the Biology department
select distinct S./D, S.name
from studentas S
where not exists ( (select course_id
from course
where dept_name = 'Biology')
except
(select T.course_id
from takesas T
where S.ID = T.ID));
* The first nested query lists all courses offered in Biology

* The second nested query lists all courses a particular student took
* X-Y=0 < XcVY
e Cannot write this query using = all and its variants



Test for Absence of Duplicate Tuples

* The unique construct tests whether a subquery has any duplicate
tuples in its result.

* The unique construct evaluates to “true” if a given subquery contains
no duplicates .

* Find all courses that were offered at most once in 2017

select T.course id
from courseas T
where unique ( select R.course_id
from section as R
where T.course id= R.course _id
and R.year = 2017);



To-Do List

* Find the course titles and the students take the courses
e Can you write it using join and no subqueries?
e Can you write it using subgueries?



Subqgueries in the Form Clause

* SQL allows a subquery expression to be used in the from clause

. glé?zdggg average instructors’ salaries of those departments where the average salary is greater than

select dept_name, avg_salary

from ( select dept_name, avg (salary) as avg_salary
from instructor
group by dept _name)

where avg_salary >42000;

* We do not need to use the having clause

* Another way to write the above query

select dept_name, avg_salary
from ( select dept_name, avg (salary)

from instructor

group by dept_name)

as dept_avg (dept_name, avg_salary)
where avg_salary > 42000;



With Clause

* The with clause provides a way of defining a temporary
relation whose definition is available only to the query in
which the with clause occurs

* Find all departments with the maximum budget

with max_budget (value) as
(select max(budget)
from department)
select department.name
from department, max_budget
where department.budget = max_budget.value;



Complex Queries using With Clause

* Find all departments where the total salary is greater than the average of
the total salary at all departments

with dept _total (dept_name, value) as
(select dept_name, sum(salary)
from instructor
group by dept_name),
dept_total_avg(value) as
(select avg(value)
from dept_total)
select dept_name
from dept_total, dept_total_avg
where dept_total.value > dept_total _avg.value;



To-Do List

* Find the students who has the highest scores in at least 2 courses



Scalar Subquery

* Scalar subquery is one which is used where a single value is expected

* List all departments along with the number of instructors in each
department

select dept _name,
( select count(*)
from instructor
where department.dept_name = instructor.dept_name)
as num_instructors
from department;

* Runtime error if subquery returns more than one result tuple



Ranking

® Ranking is done in conjunction with an order by specification

= Suppose we are given a relation student _grades(ID, GPA) giving the grade-point
average of each student

® Find the rank of each student

select /D, rank() over (order by GPA desc) as s_rank
from student_grades

= An extra order by clause is needed to get them in sorted order

select /D, rank() over (order by GPA desc) as s_rank
from student_grades
order by s _rank
® Ranking may leave gaps: if 2 students have the same top GPA, both have rank 1,

and the next rank is 3
* dense_rank does not leave gaps, so next dense rank would be 2



Ranking through Basic SQL Aggregation

* Ranking can be done using basic SQL aggregation, but the query is
very inefficient

select ID, (1 + (select count(*)

from student_grades B

where B.GPA > A.GPA)) as s_rank
from student_grades A
order by s _rank;



Ranking within Partitions

Ranking can be done within partition of the data
Find the rank of students within each department

select ID, dept name,
rank () over (partition by dept name order by GPA desc)
as dept_rank
from dept _grades
order by dept_name, dept_rank;

Multiple rank clauses can occur in a single select clause
Ranking is done after applying group by clause/aggregation

e Can be used to find top-n results
* More general than the limit n clause supported by many databases, since it allows
top-n within each partition



Other Ranking Functions

® Other ranking functions:
* percent_rank (within partition, if partitioning is done)
* cume_dist (cumulative distribution)
= fraction of tuples with preceding values
* row_number (non-deterministic in presence of duplicates)

= SQL:1999 permits a user to specify nulls first or nulls last

select ID,
rank ( ) over (order by GPA desc nulls last) as s rank
from student grades



Windowing

® Smooth out random variations

" moving average: Given sales values for each date, calculate for each
date the average of the sales on that day, the previous day, and the
next day

= Window specification in SQL:
* Given relation sales(date, value)

select date, sum(value) over

(order by date between rows 1 preceding and 1 following)
from sales



Windowing within Partitions

® Given a relation transaction (account _number, date _time, value),
where value is positive for a deposit and negative for a withdrawal

* Find total balance of each account after each transaction on the
account

select account_number, date_time,
sum (value) over
(partition by account_number
order by date time
rows unbounded preceding)
as balance
from transaction
order by account_number, date_time



Modification of the Database

* Deletion of tuples from a given relation.
* Insertion of new tuples into a given relation
* Updating of values in some tuples in a given relation



Deletion

e Delete all instructors
delete from instructor

* Delete all instructors from the Finance department
delete from instructor
where dept _name= 'Finance’;

» Delete all tuples in the instructor relation for those instructors associated
with a department located in the Watson building

delete from instructor
where dept name in (select dept name
from department
where building = 'Watson');



Deletion

* Delete all instructors whose salary is less than the average salary of

instructors
delete from instructor
where salary < (select avg (salary)
from instructor);

* Problem: as we delete tuples from instructor, the average salary
changes
 Solution used in SQL:

1. First, compute avg (salary) and find all tuples to delete

2. Next, delete all tuples found above (without recomputing avg or retesting the
tuples)



Insertion

* Add a new tuple to course

insert into course
values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

* or equivalently

insert into course (course_id, title, dept _name, credits)
values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

* Add a new tuple to student with tot_creds set to null

insert into student
values ('3003’, 'Green', 'Finance’', null);



Insertion

* Make each student in the Music department who has earned more than
%44 credit hours an instructor in the Music department with a salary of
18,000

insert into instructor
select ID, name, dept _name, 18000
from student
where dept _name = 'Music' and total cred > 144,

* The select from where statement is evaluated fully before any of its results
are inserted into the relation

Otherwise queries like
insert into tablel select * from tablel
would cause problem



Updates

* Give a 5% salary raise to all instructors

update instructor
set salary = salary * 1.05

* Give a 5% salary raise to those instructors who €adl'N less than 70000

update instructor
set salary = salary * 1.05
where salary < 70000;

* Give a 5% salary raise to instructors whose salary is less than average

update instructor
set salary = salary * 1.05
where salary < (select avg (salary)
from instructor);



Updates

* |Increase salaries of instructors whose salary is over $100,000 by 3%, and all
others by a 5%

* Write two update statements:

update instructor
set salary = salary * 1.03
where salary > 100000;
update instructor
set salary = salary * 1.05
where salary <= 100000;

* The order is important



Case Statement for Conditional Updates

* Increase salaries of instructors whose salary is over $100,000 by 3%,
and all others by a 5%

update instructor
set salary = case
when salary <= 100000 then salary * 1.05
else salary * 1.03
end



Updates with Scalar Subqueries

* Recompute and update tot_creds value for all students

update student S
set tot cred = (select sum(credits)
from takes, course
where takes.course _id = course.course_id and
S.ID= takes.ID.and takes.grade <>'F' and
takes.grade is not null);

 Sets tot_creds to null for students who have not taken any course
* Instead of sum(credits), use:

case
when sum(credits) is not null then sum(credits)
else 0

end



summary

* Overview of the SQL Query Language
* SQL Data Definition

* Basic Query Structure of SQL Queries
* Additional Basic Operations

* Set Operations

* Null Values

* Aggregate Functions

* Nested Subqueries

* Modification of the Database



