
Introduction to SQL
CMPT 354

Jian Pei
jpei@cs.sfu.ca

Outline

• Overview of the SQL Query Language
• SQL Data Definition
• Basic Query Structure of SQL Queries
• Additional Basic Operations
• Set Operations
• Null Values
• Aggregate Functions
• Nested Subqueries
• Modification of the Database

J. Pei: CMPT 354 -- Introduction to SQL 2

Where Did SQL Come From?

• IBM Sequel language developed as part of the System R project at the IBM San
Jose Research Laboratory (70s)
• Renamed Structured Query Language (SQL) (1981)
• ANSI and ISO standard SQL

• SQL-86 – ANSI standard
• SQL-89 – added integrity constraints
• SQL-92 – major revision, adding new data types, character sets, scalar/set operations,

conditional expressions, …
• SQL:1999 (language name became Y2K compliant!) – added regular expression

matching, recursive queries (e.g. transitive closure), triggers, …
• SQL:2003 – introduced XML related features, window function, …

• Commercial systems offer most, if not all, SQL-92 features, plus varying feature
sets from later standards and special proprietary features
• Not all examples here may work on your particular system

J. Pei: CMPT 354 -- Introduction to SQL 3

SQLite

• We use SQLite in this course <https://www.sqlite.org/index.html>
• a C-language library that implements a small, fast, self-contained, high-reliability, full-

featured, SQL database engine
• the most used database engine in the world

• Download it and install it in your computer in this week, please
• Alternatively, use the online SQL interpreter based on SQLite/sql.js

<https://www.db-book.com/db7/university-lab-dir/sqljs.html>
• The database used in the textbook is available at <https://www.db-

book.com/db7/university-lab-dir/univdb-sqlite.db>
• Many useful documents/tutorials online
• If you have any questions about setting up or using SQLite in your

computer, please come to our office hours

J. Pei: CMPT 354 -- Introduction to SQL 4

SQL Parts

• DML – provide the ability to query information from a database and to
insert tuples into, delete tuples from, and modify tuples in the database
• Integrity – the DDL includes commands for specifying integrity constraints
• View definition – the DDL includes commands for defining views
• Transaction control –commands for specifying the beginning and ending of

transactions
• Embedded SQL and dynamic SQL – define how SQL statements can be

embedded within general-purpose programming languages
• Authorization – commands for specifying access rights to relations and

views

J. Pei: CMPT 354 -- Introduction to SQL 5

Data Definition Language (DDL)

• The SQL data-definition language (DDL) allows the specification of
information about relations, including
• The schema for each relation
• The type of values associated with each attribute
• The Integrity constraints
• The set of indices to be maintained for each relation
• Security and authorization information for each relation
• The physical storage structure of each relation on disk

J. Pei: CMPT 354 -- Introduction to SQL 6

Domain Types in SQL

• char(n) – fixed length character string, with user-specified length n
• varchar(n) – variable length character strings, with user-specified maximum

length n
• int – integer (a finite subset of the integers that is machine-dependent)
• smallint – small integer (a machine-dependent subset of the integer domain

type)
• numeric(p,d) – fixed point number, with user-specified precision of p digits, with

d digits to the right of decimal point. (ex., numeric(3,1), allows 44.5 to be stored
exactly, but not 444.5 or 0.32)
• real, double precision – floating point and double-precision floating point

numbers, with machine-dependent precision
• float(n) – floating point number, with user-specified precision of at least n digits
• More to come later

J. Pei: CMPT 354 -- Introduction to SQL 7

Create Table Construct

• An SQL relation is defined using the create table command

create table r

(A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),

...,
(integrity-constraintk))

• r is the name of the relation
• each Ai is an attribute name in the schema of relation r
• Di is the data type of values in the domain of attribute Ai

• Example:

create table instructor (
ID char(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2));

J. Pei: CMPT 354 -- Introduction to SQL 8

Integrity Constraints in Create Table

• Types of integrity constraints
• primary key (A1, ..., An)
• foreign key (Am, ..., An) references r
• not null

• SQL prevents any update to the database that violates an integrity constraint

• Example

create table instructor (
ID char(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2),
primary key (ID),
foreign key (dept_name) references department);

J. Pei: CMPT 354 -- Introduction to SQL 9

More Relation Definitions

create table student (
ID varchar(5),
name varchar(20) not null,
dept_name varchar(20),
tot_cred numeric(3,0),
primary key (ID),

foreign key (dept_name) references department);

create table takes (
ID varchar(5),
course_id varchar(8),
sec_id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2),

primary key (ID, course_id, sec_id, semester, year) ,
foreign key (ID) references student,

foreign key (course_id, sec_id, semester, year) references section);

J. Pei: CMPT 354 -- Introduction to SQL 10

More Relation Definitions

create table course (
course_id varchar(8),
title varchar(50),
dept_name varchar(20),
credits numeric(2,0),

primary key (course_id),
foreign key (dept_name) references department);

J. Pei: CMPT 354 -- Introduction to SQL 11

To-Do List

• Suppose we want to create two tables
student (stud-id, name, address, supervisor-id);
supervisor(supervisor-id, name, address, student-id);

• Foreign key constraints
• Attribute supervisor-id in table student is the foreign key referencing table

supervisor
• Attribute student-id in table supervisor is the foreign key referencing table

student
• How to create those two tables?
• What difficulties may those two tables lead to?
• Is this a good design? If yes, why? If not, how to improve it?

J. Pei: CMPT 354 -- Introduction to SQL 12

Updates to Tables

• Insert
• insert into instructor values ('10211', 'Smith', 'Biology', 66000);

• Delete
• Remove all tuples from the student relation

• delete from student
• Drop Table

• drop table r
• Alter

• alter table r add A D
• A is the name of the attribute to be added to relation r and D is the domain of A
• All exiting tuples in the relation are assigned null as the value for the new attribute

• alter table r drop A
• A is the name of an attribute of relation r
• Dropping of attributes not supported by many databases

J. Pei: CMPT 354 -- Introduction to SQL 13

Basic Query Structure

• A typical SQL query has the form:

select A1, A2, ..., An
from r1, r2, ..., rm
where P

• Ai represents an attribute
• Ri represents a relation
• P is a predicate

• The result of an SQL query is a relation

J. Pei: CMPT 354 -- Introduction to SQL 14

The select Clause

• The select clause lists the attributes desired in the result of a query
• Corresponds to the projection operation of the relational algebra

• Example: find the names of all instructors: Õname (instructor)
select name
from instructor

• NOTE: SQL names are case insensitive (i.e., you may use upper- or
lower-case letters)
• E.g., Name ≡ NAME ≡ name
• Some people use upper case wherever we use bold font

J. Pei: CMPT 354 -- Introduction to SQL 15

The select Clause

• SQL allows duplicates in relations as well as in query results
• Does relational algebra allow duplicates?

• To force the elimination of duplicates, use the keyword distinct after select
• Find the department names of all instructors, and remove duplicates

select distinct dept_name
from instructor

• The keyword all specifies that duplicates should NOT be removed

select all dept_name
from instructor

• Relational algebra: Õdept_name (instructor)

J. Pei: CMPT 354 -- Introduction to SQL 16

The select Clause

• An asterisk in the select clause denotes “all attributes”
select *
from instructor

• An attribute can be a literal with no from clause
select '437'

• Results is a table with one column and a single row with value “437”
• Can give the column a name using:

select '437' as FOO
• An attribute can be a literal with from clause

select 'A'
from instructor

• Result is a table with one column and N rows (number of tuples in the instructors
table), each row with value “A”

J. Pei: CMPT 354 -- Introduction to SQL 17

To-Do List

• What is the output of the following query? Why?
select ‘a’ ‘A’, ‘b’ ‘B’

• What is the output of the following query? Why?
select ‘a’ ‘A’, ‘b’ ‘B’
from instructor

• What is the output of the following query? Why?

J. Pei: CMPT 354 -- Introduction to SQL 18

The select Clause

• The select clause can contain arithmetic expressions involving the
operation, +, –, *, and /, and operating on constants or attributes of
tuples
• Query

select ID, name, salary/12
from instructor

• Result: a relation that is the same as the instructor relation, except
that the value of the attribute salary is divided by 12
• Can rename “salary/12” using the as clause:

select ID, name, salary/12 as monthly_salary

J. Pei: CMPT 354 -- Introduction to SQL 19

The where Clause

• The where clause specifies conditions that the result must satisfy
• Corresponds to the selection predicate of the relational algebra

• To find all instructors in Comp. Sci. dept: s dept_name=“Comp. Sci.” (instructor)
select name
from instructor
where dept_name = ’Comp. Sci.'

• SQL allows the use of the logical connectives and, or, and not
• The operands of the logical connectives can be expressions involving the comparison operators <, <=, >,

>=, =, and <>
• Comparisons can be applied to results of arithmetic expressions
• To find all instructors in Comp. Sci. dept with salary > 70000: s dept_name=“Physics” Ù salary > 70000 (instructor)

select name
from instructor
where dept_name = 'Comp. Sci.' and salary > 70000

J. Pei: CMPT 354 -- Introduction to SQL 20

The from Clause

• The from clause lists the relations involved in the query
• Corresponds to the Cartesian product operation of the relational algebra

• Find the Cartesian product instructor X teaches
select *
from instructor, teaches

• Generate every possible instructor-teaches pair, with all attributes from both
relations
• (depending on specific SQL implementation) For common attributes (e.g., ID),

the attributes in the resulting table are renamed using the relation name
(e.g., instructor.ID)

• Cartesian product is not very useful directly, but is useful combined with where-
clause condition (selection operation in relational algebra)

J. Pei: CMPT 354 -- Introduction to SQL 21

Examples

• Find the names of all instructors who have taught some
course and the course_id

select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID

• Find the names of all instructors in the Art department
who have taught some course and the course_id

select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID

and instructor. dept_name = 'Art'

J. Pei: CMPT 354 -- Introduction to SQL 22

The Rename Operation

• The SQL allows renaming relations and attributes using the as clause:
old-name as new-name

• Find the names of all instructors who have a higher salary than
some instructor in 'Comp. Sci'.
• select distinct T.name

from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = 'Comp. Sci.’

• Keyword as is optional and may be omitted
instructor as T ≡ instructor T

J. Pei: CMPT 354 -- Introduction to SQL 23

T S

To-Do List

• Relation emp-super
• Find the supervisor of “Bob”
• Find the supervisor of the supervisor of “Bob”
• Can you find ALL the supervisors (direct and indirect) of “Bob”?

J. Pei: CMPT 354 -- Introduction to SQL 24

To-Do List

• Find the department names which has at least one instructor whose
salary is at least 80000
• Find the pair of instructor names (x, y) such that x and y work in the

same department
• Find the names of instructors who teaches the same course twice

J. Pei: CMPT 354 -- Introduction to SQL 25

String Operations

• SQL includes a string-matching operator for comparisons on character strings
• The operator like uses patterns that are described using two special characters:

• The % character matches any substring, including empty
• The _ character matches any single character

• Find the names of all instructors whose name includes the substring “dar”
select name
from instructor
where name like '%dar%'

• Use backslash (\) as the escape character
• Match the string “100%”

like '100 \%' escape '\'

J. Pei: CMPT 354 -- Introduction to SQL 26

String Operations

• Patterns are case sensitive
• Pattern matching examples:
• 'Intro%' matches any string beginning with “Intro”
• '%Comp%' matches any string containing “Comp” as a substring
• '_ _ _' matches any string of exactly three characters
• '_ _ _ %' matches any string of at least three characters

• SQL supports a variety of string operations such as
• concatenation (using “||”)
• converting from upper to lower case (and vice versa)
• finding string length, extracting substrings, etc.

J. Pei: CMPT 354 -- Introduction to SQL 27

Ordering the Display of Tuples

• List in alphabetic order the names of all instructors
select distinct name
from instructor
order by name

• We may specify desc for descending order or asc for ascending order, for
each attribute; ascending order is the default
• Example: order by name desc

• Can sort on multiple attributes
• Example: order by dept_name, name
• First by dept_name, sort all tuples having the same dept_name by

name

J. Pei: CMPT 354 -- Introduction to SQL 28

Where Clause Predicates

• SQL includes a between comparison operator
• Example: Find the names of all instructors with salary

between $90,000 and $100,000 (that is, ³ $90,000 and £
$100,000)

select name
from instructor
where salary between 90000 and 100000

• Tuple comparison
select name, course_id
from instructor, teaches
where (instructor.ID, dept_name) = (teaches.ID,
'Biology');

J. Pei: CMPT 354 -- Introduction to SQL 29

Set Operations

• Find courses that ran in Fall 2017 or in Spring 2018
(select course_id from section where sem = 'Fall' and year = 2017)
union
(select course_id from section where sem = 'Spring' and year = 2018)

• Find courses that ran in Fall 2017 and in Spring 2018
(select course_id from section where sem = 'Fall' and year = 2017)
intersect
(select course_id from section where sem = 'Spring' and year = 2018)

• Find courses that ran in Fall 2017 but not in Spring 2018
(select course_id from section where sem = 'Fall' and year = 2017)
except
(select course_id from section where sem = 'Spring' and year = 2018)

J. Pei: CMPT 354 -- Introduction to SQL 30

Set Operations

• Set operations union, intersect, and except
• Each of the above operations automatically eliminates duplicates

• To retain all duplicates, use the
• union all,
• intersect all
• except all

J. Pei: CMPT 354 -- Introduction to SQL 31

To-Do List

• Find all instructors and their ids who did not teach any courses

J. Pei: CMPT 354 -- Introduction to SQL 32

Null Values

• It is possible for tuples to have a null value, denoted by null, for some of
their attributes
• null signifies an unknown value or that a value does not exist

• The result of any arithmetic expression involving null is null
• Example: 5 + null returns null

• The predicate is null can be used to check for null values
• Example: Find all instructors whose salary is null

select name
from instructor
where salary is null

• The predicate is not null succeeds if the value on which it is applied is not
null

J. Pei: CMPT 354 -- Introduction to SQL 33

Null Values

• SQL treats as unknown the result of any comparison involving a null value (other
than predicates is null and is not null).
• Example: 5 < null or null <> null or null = null

• The predicate in a where clause can involve Boolean operations (and, or, not);
thus the definitions of the Boolean operations need to be extended to deal with
the value unknown.
• and : (true and unknown) = unknown,

(false and unknown) = false,
(unknown and unknown) = unknown

• or: (unknown or true) = true,
(unknown or false) = unknown
(unknown or unknown) = unknown

• Result of where clause predicate is treated as false if it evaluates to unknown

J. Pei: CMPT 354 -- Introduction to SQL 34

To-Do List

• What is the output of the following query? Why?
select 5+null ‘5+null’

• What is the output of the following query? Why?
select 5+null ‘5+null’
from instructor

J. Pei: CMPT 354 -- Introduction to SQL 35

Aggregate Functions

• These functions operate on the multiset of values of a column of a
relation, and return a value

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

J. Pei: CMPT 354 -- Introduction to SQL 36

Aggregate Functions Examples

• Find the average salary of instructors in the Computer Science department
select avg (salary)
from instructor
where dept_name= 'Comp. Sci.';

• Find the total number of instructors who teach a course in the Spring 2018
semester

select count (distinct ID)
from teaches
where semester = 'Spring' and year = 2018;

• Find the number of tuples in the course relation
select count (*)
from course;

J. Pei: CMPT 354 -- Introduction to SQL 37

To-Do List

• Find the name of the instructor and the salary who has the highest
salary
• What is the output of the follow query? Why?

select name, avg(salary)
from instructor

J. Pei: CMPT 354 -- Introduction to SQL 38

Aggregate Functions – Group By

• Find the average salary of instructors in each department
select dept_name, avg (salary) as avg_salary
from instructor
group by dept_name;

J. Pei: CMPT 354 -- Introduction to SQL 39

Aggregation

•Attributes in select clause outside of aggregate
functions must appear in group by list

/* erroneous query */
select dept_name, ID, avg (salary)
from instructor
group by dept_name;

J. Pei: CMPT 354 -- Introduction to SQL 40

To-Do List

• What is the output of the following query? Why?
select dept_name, name, avg(salary)
from instructor
group by dept_name

J. Pei: CMPT 354 -- Introduction to SQL 41

Aggregate Functions – Having Clause

• Find the names and average salaries of all departments whose
average salary is greater than 42000

select dept_name, avg (salary) as avg_salary
from instructor
group by dept_name
having avg (salary) > 42000;

• Predicates in the having clause are applied after the formation of
groups whereas predicates in the where clause are applied before
forming groups

J. Pei: CMPT 354 -- Introduction to SQL 42

To-Do List

• Find all instructors who taught at least 2 sections
• Can you use aggregate function count() to find all instructors who did

not teach any courses?

J. Pei: CMPT 354 -- Introduction to SQL 43

Nested Subqueries

• SQL provides a mechanism for the nesting of subqueries
• A subquery is a select-from-where expression that is nested within another query
• The nesting can be done in the following SQL query

select A1, A2, ..., Anfrom r1, r2, ..., rm
where P

as follows:
• From clause: ri can be replaced by any valid subquery
• Where clause: P can be replaced with an expression of the form:

B <operation> (subquery)
B is an attribute and <operation> to be explained later

• Select clause:
Ai can be replaced by a subquery that generates a single value

J. Pei: CMPT 354 -- Introduction to SQL 44

Set Membership

• Find courses offered in Fall 2017 and in Spring 2018
select distinct course_id
from section
where semester = 'Fall' and year= 2017 and

course_id in (select course_id
from section
where semester = 'Spring' and year= 2018);

• Find courses offered in Fall 2017 but not in Spring 2018
select distinct course_id
from section
where semester = 'Fall' and year= 2017 and

course_id not in (select course_id
from section
where semester = 'Spring' and year= 2018);

J. Pei: CMPT 354 -- Introduction to SQL 45

Set Comparison – “some” Clause

• Find names of instructors with salary greater than that of some (at
least one) instructor in the Biology department

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = 'Biology';

• Same query using > some clause
select name
from instructor
where salary > some (select salary

from instructor
where dept_name = 'Biology');

J. Pei: CMPT 354 -- Introduction to SQL 46

Definition of “some” Clause

• F <comp> some r Û $ t Î r such that (F <comp> t)
• <comp> can be: <, £, >, =, ¹

J. Pei: CMPT 354 -- Introduction to SQL 47

0
5
6

(5 < some) = true

0
5
0

) = false

5

0
5(5 ¹ some) = true (since 0 ¹ 5)

(read: 5 < some tuple in the relation)

(5 < some

) = true(5 = some

(= some) º in
However, (¹ some) º not in

Set Comparison – “all” Clause

• Find the names of all instructors whose salary is greater than the
salary of all instructors in the Biology department

select name
from instructor
where salary > all (select salary

from instructor
where dept name = 'Biology');

J. Pei: CMPT 354 -- Introduction to SQL 48

Definition of “all” Clause

• F <comp> all r Û" t Î r (F <comp> t)

J. Pei: CMPT 354 -- Introduction to SQL 49

0
5
6

(5 < all) = false

6
10
4

) = true

5

4
6(5 ¹ all) = true (since 5 ¹ 4 and 5 ¹ 6)

(5 < all

) = false(5 = all

(¹ all) º not in
However, (= all) º in

Test for Empty Relations

• The exists construct returns the value true if the argument subquery
is nonempty.
• exists r Û r ¹ Ø
• not exists r Û r = Ø

J. Pei: CMPT 354 -- Introduction to SQL 50

Use of “exists” Clause

• Yet another way of specifying the query “Find all courses taught in both the
Fall 2017 semester and in the Spring 2018 semester”

select course_id
from section as S
where semester = 'Fall' and year = 2017 and

exists (select *
from section as T
where semester = 'Spring' and year= 2018

and S.course_id = T.course_id);

• Correlation name – variable S in the outer query
• Correlated subquery – the inner query

J. Pei: CMPT 354 -- Introduction to SQL 51

Use of “not exists” Clause

• Find all students who have taken all courses offered in the Biology department
select distinct S.ID, S.name
from student as S
where not exists ((select course_id

from course
where dept_name = 'Biology')

except
(select T.course_id
from takes as T
where S.ID = T.ID));

• The first nested query lists all courses offered in Biology
• The second nested query lists all courses a particular student took

• X – Y = Ø Û X Í Y
• Cannot write this query using = all and its variants

J. Pei: CMPT 354 -- Introduction to SQL 52

Test for Absence of Duplicate Tuples

• The unique construct tests whether a subquery has any duplicate
tuples in its result.
• The unique construct evaluates to “true” if a given subquery contains

no duplicates .
• Find all courses that were offered at most once in 2017

select T.course_id
from course as T
where unique (select R.course_id

from section as R
where T.course_id= R.course_id

and R.year = 2017);

J. Pei: CMPT 354 -- Introduction to SQL 53

To-Do List

• Find the course titles and the students take the courses
• Can you write it using join and no subqueries?
• Can you write it using subqueries?

J. Pei: CMPT 354 -- Introduction to SQL 54

Subqueries in the Form Clause

• SQL allows a subquery expression to be used in the from clause
• Find the average instructors’ salaries of those departments where the average salary is greater than

$42,000
select dept_name, avg_salary
from (select dept_name, avg (salary) as avg_salary

from instructor
group by dept_name)

where avg_salary > 42000;
• We do not need to use the having clause

• Another way to write the above query

select dept_name, avg_salary
from (select dept_name, avg (salary)

from instructor
group by dept_name)
as dept_avg (dept_name, avg_salary)

where avg_salary > 42000;

J. Pei: CMPT 354 -- Introduction to SQL 55

With Clause

• The with clause provides a way of defining a temporary
relation whose definition is available only to the query in
which the with clause occurs
• Find all departments with the maximum budget

with max_budget (value) as
(select max(budget)
from department)

select department.name
from department, max_budget
where department.budget = max_budget.value;

J. Pei: CMPT 354 -- Introduction to SQL 56

Complex Queries using With Clause

• Find all departments where the total salary is greater than the average of
the total salary at all departments

with dept _total (dept_name, value) as
(select dept_name, sum(salary)
from instructor
group by dept_name),

dept_total_avg(value) as
(select avg(value)
from dept_total)

select dept_name
from dept_total, dept_total_avg
where dept_total.value > dept_total_avg.value;

J. Pei: CMPT 354 -- Introduction to SQL 57

To-Do List

• Find the students who has the highest scores in at least 2 courses

J. Pei: CMPT 354 -- Introduction to SQL 58

Scalar Subquery

• Scalar subquery is one which is used where a single value is expected
• List all departments along with the number of instructors in each

department
select dept_name,

(select count(*)
from instructor
where department.dept_name = instructor.dept_name)

as num_instructors
from department;
• Runtime error if subquery returns more than one result tuple

J. Pei: CMPT 354 -- Introduction to SQL 59

Ranking

§ Ranking is done in conjunction with an order by specification
§ Suppose we are given a relation student_grades(ID, GPA) giving the grade-point

average of each student
§ Find the rank of each student

select ID, rank() over (order by GPA desc) as s_rank
from student_grades

§ An extra order by clause is needed to get them in sorted order
select ID, rank() over (order by GPA desc) as s_rank
from student_grades
order by s_rank

§ Ranking may leave gaps: if 2 students have the same top GPA, both have rank 1,
and the next rank is 3
• dense_rank does not leave gaps, so next dense rank would be 2

J. Pei: CMPT 354 -- Introduction to SQL 60

Ranking through Basic SQL Aggregation

• Ranking can be done using basic SQL aggregation, but the query is
very inefficient

select ID, (1 + (select count(*)
from student_grades B
where B.GPA > A.GPA)) as s_rank

from student_grades A
order by s_rank;

J. Pei: CMPT 354 -- Introduction to SQL 61

Ranking within Partitions

• Ranking can be done within partition of the data
• Find the rank of students within each department

select ID, dept_name,
rank () over (partition by dept_name order by GPA desc)

as dept_rank
from dept_grades
order by dept_name, dept_rank;

• Multiple rank clauses can occur in a single select clause
• Ranking is done after applying group by clause/aggregation
• Can be used to find top-n results

• More general than the limit n clause supported by many databases, since it allows
top-n within each partition

J. Pei: CMPT 354 -- Introduction to SQL 62

Other Ranking Functions

§Other ranking functions:
• percent_rank (within partition, if partitioning is done)
• cume_dist (cumulative distribution)

§ fraction of tuples with preceding values
• row_number (non-deterministic in presence of duplicates)

§ SQL:1999 permits a user to specify nulls first or nulls last
select ID,
rank () over (order by GPA desc nulls last) as s_rank
from student_grades

J. Pei: CMPT 354 -- Introduction to SQL 63

Windowing

§ Smooth out random variations
§moving average: Given sales values for each date, calculate for each

date the average of the sales on that day, the previous day, and the
next day

§Window specification in SQL:
• Given relation sales(date, value)

select date, sum(value) over
(order by date between rows 1 preceding and 1 following)

from sales

J. Pei: CMPT 354 -- Introduction to SQL 64

Windowing within Partitions

§Given a relation transaction (account_number, date_time, value),
where value is positive for a deposit and negative for a withdrawal
• Find total balance of each account after each transaction on the

account
select account_number, date_time,

sum (value) over
(partition by account_number
order by date_time
rows unbounded preceding)

as balance
from transaction
order by account_number, date_time

J. Pei: CMPT 354 -- Introduction to SQL 65

Modification of the Database

• Deletion of tuples from a given relation.
• Insertion of new tuples into a given relation
• Updating of values in some tuples in a given relation

J. Pei: CMPT 354 -- Introduction to SQL 66

Deletion

• Delete all instructors
delete from instructor

• Delete all instructors from the Finance department
delete from instructor
where dept_name= 'Finance’;

• Delete all tuples in the instructor relation for those instructors associated
with a department located in the Watson building

delete from instructor
where dept name in (select dept name

from department
where building = 'Watson');

J. Pei: CMPT 354 -- Introduction to SQL 67

Deletion

• Delete all instructors whose salary is less than the average salary of
instructors

delete from instructor
where salary < (select avg (salary)

from instructor);
• Problem: as we delete tuples from instructor, the average salary

changes
• Solution used in SQL:

1. First, compute avg (salary) and find all tuples to delete
2. Next, delete all tuples found above (without recomputing avg or retesting the

tuples)

J. Pei: CMPT 354 -- Introduction to SQL 68

Insertion

• Add a new tuple to course
insert into course

values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

• or equivalently

insert into course (course_id, title, dept_name, credits)
values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

• Add a new tuple to student with tot_creds set to null
insert into student

values ('3003', 'Green', 'Finance', null);

J. Pei: CMPT 354 -- Introduction to SQL 69

Insertion

• Make each student in the Music department who has earned more than
144 credit hours an instructor in the Music department with a salary of
$18,000

insert into instructor
select ID, name, dept_name, 18000
from student
where dept_name = 'Music' and total_cred > 144;

• The select from where statement is evaluated fully before any of its results
are inserted into the relation
Otherwise queries like

insert into table1 select * from table1
would cause problem

J. Pei: CMPT 354 -- Introduction to SQL 70

Updates

• Give a 5% salary raise to all instructors
update instructor

set salary = salary * 1.05

• Give a 5% salary raise to those instructors who earn less than 70000
update instructor

set salary = salary * 1.05
where salary < 70000;

• Give a 5% salary raise to instructors whose salary is less than average
update instructor

set salary = salary * 1.05
where salary < (select avg (salary)

from instructor);

J. Pei: CMPT 354 -- Introduction to SQL 71

Updates

• Increase salaries of instructors whose salary is over $100,000 by 3%, and all
others by a 5%
• Write two update statements:

update instructor
set salary = salary * 1.03
where salary > 100000;

update instructor
set salary = salary * 1.05
where salary <= 100000;

• The order is important

J. Pei: CMPT 354 -- Introduction to SQL 72

Case Statement for Conditional Updates

• Increase salaries of instructors whose salary is over $100,000 by 3%,
and all others by a 5%

update instructor
set salary = case

when salary <= 100000 then salary * 1.05
else salary * 1.03
end

J. Pei: CMPT 354 -- Introduction to SQL 73

Updates with Scalar Subqueries

• Recompute and update tot_creds value for all students
update student S
set tot_cred = (select sum(credits)

from takes, course
where takes.course_id = course.course_id and

S.ID= takes.ID.and takes.grade <> 'F' and
takes.grade is not null);

• Sets tot_creds to null for students who have not taken any course
• Instead of sum(credits), use:

case
when sum(credits) is not null then sum(credits)
else 0

end

J. Pei: CMPT 354 -- Introduction to SQL 74

Summary

• Overview of the SQL Query Language
• SQL Data Definition
• Basic Query Structure of SQL Queries
• Additional Basic Operations
• Set Operations
• Null Values
• Aggregate Functions
• Nested Subqueries
• Modification of the Database

J. Pei: CMPT 354 -- Introduction to SQL 75

