
Database Applications

 Database Programming
 Application Architecture
 Objects and Relational Databases

John Edgar 2

 Users do not usually interact directly with a
database via the DBMS

▪ The DBMS provides a “back-end” that stores the
data on a database server

 A separate application is built on top of the
database

▪ In a general purpose programming language

▪ That retrieves and manipulates the data in the
database as necessary

John Edgar 4

 Many different types of applications require data
stored in a database

 The applications can therefore vary in depth and
sophistication and might include

▪ Interface to provide appropriate access to data

▪ Business logic to ensure consistency of data

▪ Providing constraints that are not easily implemented in the
underlying DBMS

▪ Sophisticated presentation of data

▪ Substantial processing and computation of data

John Edgar 5

 In an application an SQL DB may have to be

accessed from a programming language

 The database has to be connected to the host

language

▪ The host language is the programming language that

the application is written in

▪ Through a variety of connection protocols

▪ Data from the database has to be read into

programming language constructs

John Edgar 6

SQLprogram

files

DBMS

database

storage

?

John Edgar 7

 There are a number of ways to access DB data from
within a host language application

▪ Embedded SQL

▪ SQL statements are identified at compile time with a preprocessor

▪ Dynamic SQL

▪ Allows a program to construct SQL queries at runtime

▪ e.g. ODBC and JDBC

▪ Mapping DB tables to host language constructs

▪ e.g. CRecordSet

 Stored procedures can be called from an application to
perform to perform previously specified tasks

John Edgar 8

Host Language
+

Embedded SQL

preprocessor

Host Language
+

Functions

host-language
compiler

Object-code
program

SQL Library

John Edgar 10

 SQL statements can be embedded in some host
language

▪ The SQL statements have to be marked so that they can
be dealt with by a preprocessor

▪ Host language variables used to pass arguments into an
SQL command must be declared in SQL
▪ However SQL data types may not be recognized by the host

language, and vice versa, and

▪ SQL is set-oriented

 The syntax for embedded SQL varies by language,
assume that the host language is C

John Edgar 11

 To declare host language variables to be used in SQL
statements
▪ EXEC SQL BEGIN DECLARE SECTION;

▪ long sin;

▪ char[20] fname;

▪ char[20] lname;

▪ int age;

▪ EXEC SQL END DECLARE SECTION;

 Embedded SQL statements must be clearly marked

▪ In C they must be preceded by EXEC SQL

▪ When used in SQL variables must be prefixed by a colon

John Edgar 12

 This embedded SQL statement inserts a row into the
Customer table

▪ The statement uses values that have been assigned to
host language variables:

EXEC SQL

INSERT INTO Customer VALUES

(:sin, :fname, :lname, :age);

 Note that the entire statement is one line of C code,
and is terminated by a semi-colon (;)

▪ Just like any normal statement in C

John Edgar 13

 How do we know if an update or other
statement succeeds?

▪ SQLSTATE connects the host language program with
the SQL execution system

 SQLSTATE is an array of five characters

▪ Whenever a function of the SQL library is called the
value of SQLSTATE is set to a code

▪ '00000' – no error occurred

▪ '02000' – a requested record was not found

▪ Can be stored as a string and analyzed

John Edgar 14

 As long as an SQL statement only returns one
record the value can be stored in a variable

 The keyword INTO is used in the SELECT clause to
insert data into a variable

EXEC SQL SELECT AVG(income)

FROM Customer WHERE age = :age

INTO :avgIncome;

John Edgar 15

 SQL operates on sets of records, and SQL queries frequently
return sets of records

 Consider this embedded SQL statement
EXEC SQL SELECT sin, lname

FROM Customer WHERE age = :age

INTO :sin, :lname;

 The idea is to read SINs and last names into the given
variables
▪ However, the query returns a set of sin, lname pairs, and the set

cannot be cast into the variables

 The solution is to use a cursor to retrieve the set of records
one record at a time

John Edgar 16

 Cursors can be declared on any table or query

▪ A cursor has a position in a relation so can be used to
retrieve one row at a time

▪ Cursors can be used to both query and modify tables

 Cursors can be declared with a number of different
properties
▪ FOR READ ONLY

▪ FOR UPDATE

 Cursors must be opened before being used

John Edgar 17

 Consider creating a cursor to query customer data
▪ EXEC SQL DECLARE custInfo CURSOR FOR

▪ SELECT sin, age

▪ FROM Customer

▪ FOR READ ONLY

▪ END_EXEC

 The cursor has to be opened to evaluate the query
▪ EXEC SQL OPEN custInfo;

 The FETCH command reads the first row of the table into
the given variables, …
▪ EXEC SQL FETCH custInfo INTO :sin, :age;

▪ and moves the cursor to the next row

John Edgar 18

 The SQLSTATE is set to '02000' when no
more data is available

 The close statement causes the database
system to delete the query result

▪ EXEC SQL close custInfo;

 The details for using cursors vary by language

John Edgar 19

 The CURRENT keyword allows the row currently
referred to by a cursor to be accessed
▪ EXEC SQL UPDATE Customer

▪ SET income = 200000

▪ WHERE CURRENT of custData;

 Assuming that custData refers to the Customer table
and has been set FOR UPDATE

 Note that the examples shown would require other host
language constructs to behave as desired

▪ Loops to iterate through every row in a table, and

▪ If statements to update the desired record

John Edgar 20

 Embedded SQL allows the use of variables to
change the values being referenced in a query

▪ But does not allow the program to create new SQL queries

 Dynamic SQL allows entire queries to be created at
run-time

▪ The query is first created as a string then parsed and
executed
▪ char sqlString[] = {"DELETE FROM Customer

WHERE age < 19"}

▪ EXEC SQL PREPARE sqlCommand FROM :sqlString

▪ EXEC SQL EXECUTE sqlCommand

John Edgar 21

 Dynamic SQL allows users to write and run
queries at run time

▪ Without having to re-write program source code

 This is often performed through a user-
friendly interface

▪ Where queries are generated from choices
entered by the user

 Be careful t0 prevent injection attacks

John Edgar 22

https://xkcd.com/327/

 A database connection allows a database
server and client software to communicate

▪ The client uses the connection to send commands
and receive replies from the DB server

 Connections are built by supplying a driver
with a connection string

▪ The connection string gives the address of a DB

John Edgar 24

 It is common for an application program to
run on a different machine to the database

 The application has to

▪ Open a connection to the database server

▪ Which entails specifying the URL of the server's machine

▪ And providing logon information

▪ Once the connection is made the program can
interact with the database

▪ The connection should be closed when finished

John Edgar 25

 Embedded SQL programs allow the same source
code to be compiled to work with different DBMSs

▪ However, the embedded SQL calls are translated into host
language functions by a DBMS specific preprocessor

▪ Therefore the final executable code only works with one
DBMS

 Various APIs allow a single executable to access
different DBMSs without recompilation

▪ ODBC and JDBC for example

John Edgar 26

 ODBC and JDBC integrate SQL with programming
languages

▪ ODBC – Open Database Connectivity

▪ JDBC – Sun trademark (not Java Database Connectivity)

 The integration is through an API (Application
Programming Interface) and allows

▪ Access to different DBMSs without recompilation and

▪ Simultaneous access to several different DBMSs

 Achieved by introducing an extra level of indirection

▪ A DBMS specific driver interacts with the DBMS

▪ The drivers are loaded dynamically on demand

John Edgar 27

 The application starts and ends connection
with the DB

 The driver manager loads ODBC drivers and
passes calls to the appropriate driver

 The driver makes a connection to the data
source and translates between the data
source and the ODBC standard

 The DB processes commands from the driver
and returns the results

John Edgar 28

 First create an ODBC data source

▪ In Windows, using the Windows Data Source
Administrator

 The connection methods vary by language and
implementation

▪ Depending on your choice of language and compiler there
may be library classes to assist with connection
▪ e.g. the Microsoft Foundation Classes CRecordSet classes

▪ In addition the IDE may provide support for database
applications

John Edgar 29

 Like ODBC, JDBC has four main components

▪ Application

▪ Driver manager

▪ Data source specific drivers

▪ Data source

 There are different types of JDBC drivers

▪ The types are dependent on the relationship
between the application and the data source

John Edgar 30

 JDBC contains classes and interfaces that support

▪ Connecting to a remote data source

▪ Executing SQL statements

▪ Transaction management

▪ Exception handling

 The classes and interfaces are part of the java.sql
package
▪ Programs must be prefaced with import java.sql.*

to allow access to these classes and interfaces

John Edgar 31

 There are numerous APIs that assist in rapid
development of DB applications

▪ One example is Django

 Django is an open-source web application
framework

▪ Written in Python

▪ Includes classes that aid in accessing data from
the underlying DB

John Edgar 32

 There are many class libraries that are written
for database programming
▪ In many different programming languages

 Such libraries often include implementations of
cursors
▪ MS C++ CRecordSet

▪ Java ResultSet

▪ Python pymssql cursor

▪ These classes have methods which allow records in
tables to be accessed and modified

John Edgar 33

 A stored procedure is a program executed with a single SQL

statement

▪ The procedure is executed at the DB server and

▪ The result of the stored procedure can be returned to the application

(if necessary)

 This contrasts with the use of cursors

▪ Which may require that DB objects be locked while the cursor is in use

▪ DBMS resources (locks and memory) may be tied up while an

application is processing records retrieved by a cursor

 Stored procedures are beneficial for software engineering

reasons

John Edgar 35

 Stored procedures are modular

▪ It is easier to change a stored procedure than it is to edit an
embedded query

▪ This makes it easier to maintain stored procedures, and to

▪ Change the procedure to increase its efficiency

 Stored procedures are registered with the DB server

▪ They can be used by multiple users applications and

▪ Separate server side functions from client side functions

 Stored procedures are written by DB developers

▪ Who are more likely than application developers to have the
SQL experience to write efficient procedures

John Edgar 36

 Many commercial DBMSs include support for
stored procedures

▪ Including SQL Server

 The SQL Standard includes a specification for
stored procedures and functions

▪ SQL/PSM – Persistent Stored Modules

▪ Includes both procedure and function definition

▪ Stored functions return values, procedures do not

John Edgar 37

Static Queries
Query form known

at compile time

Dynamic Queries

Execution in
Application Space

Embedded SQL API:
Dynamic SQL
ODBC, JDBC, …

Server Execution Stored Procedure
SQL/PSM

 Three broad categories of application
architecture

▪ Single tier

▪ How things used to be …

▪ Two tier

▪ Client-server architecture

▪ Three tier (and multi-tier)

▪ Used for many web systems

▪ Very scalable

John Edgar 40

 Historically, data intensive applications ran on a single tier
which contained
▪ The DBMS,

▪ Application logic and business rules, and

▪ User interface

 Typically, such applications ran on a mainframe and were
accessed by users through dumb terminals

 Dumb terminals do not have the computational power to
support GUIs
▪ Centralizing computation of GUIs makes it impossible for a single

server to support thousands of users

John Edgar 41

 Two-tier architectures consist of client and server computers

 Typically, the client implements the GUI

▪ Referred to as thin clients, e.g. streaming services such as Netflix

 The server implements the business logic and data

management

Application
Logic

Client

Client

…

DBMS

network

John Edgar 42

 A thick client is one where the client software
implements the UI and part of the business logic

▪ Example – computer game

 Thick clients are less common because

▪ There is no central place to update and maintain the business
logic

▪ The server has to trust that the client application code will run
correctly (and is not tampered with)

▪ Thick clients do not scale as well

▪ More communication is required between the application and the DB
than between the UI and the application

John Edgar 43

 Clients are not responsible for data processing

▪ Request input from users and data from server

▪ Analyze and present the data from the server

 Clients are not dependent on the location of the
data

 Clients can be optimized for the presentation of
the data

▪ And can display data differently dependent on the
client processor

John Edgar 44

DBMS

 The thin-client two-tier architecture separates
presentation from the rest of the application

 Three-tier architecture further separates the
application logic from the data management

Application
Logic

Client

Client

…networknetwork

Presentation
Layer

Middle Layer
Data

Management
Layer

John Edgar 45

 Responsible for handling the user's
interaction with the middle tier

▪ One application may have multiple versions
that correspond to different interfaces

▪ Web browsers, mobile phones, …

▪ Style sheets can assist in controlling versions

 The presentation layer itself may be
further broken up into layers

John Edgar 46

 Different clients may have widely differing displays

▪ e.g. black and white screens, or phone displays

 A style sheet is a method to format the same document
in different ways

▪ The same document can be displayed differently depending on
the context allowing reuse

▪ Documents can be tailored to the reader’s preference

▪ Documents can de displayed differently on different output
devices

▪ Display format can be standardized by using the same style
sheet conventions to multiple documents

John Edgar 47

 The middle layer is responsible for running the
business logic of the application which controls

▪ What data is required before an action is performed

▪ The control flow of multi-stage actions

▪ Access to the database layer

 Multi-stage actions performed by the middle tier
may require database access

▪ But will not usually make permanent changes until the end
of the process
▪ e.g. adding items to a shopping basket in an Internet shopping site

John Edgar 48

 The data management tier contains one, or more
databases

▪ Which may be running on different DBMSs

 Data needs to be exchanged between the middle
tier and the database servers

▪ This task is not required if a single data source is used but,

▪ May be required if multiple data sources are to be
integrated

▪ XML is a language which can be used as a data exchange
format between database servers and the middle tier

John Edgar 49

 Consider the three tiers in a system for airline
reservations

 Database System

▪ Airline info, available seats, customer info, etc.

 Application Server

▪ Logic to make reservations, cancel reservations, add new
airlines, etc.

 Client Program

▪ Log in different users, display forms and human-readable
output

 Student enrollment system tiers
 Database System

▪ Student information, course information, instructor
information, course availability, pre-requisites, etc.

 Application Server

▪ Logic to add a course, drop a course, create a new
course, etc.

 Client Program

▪ Log in different users (students, staff, faculty), display
forms and human-readable output

 Allows heterogeneous systems

▪ Applications can use different platforms and software
components at the different tiers

▪ It is easy to modify or replace code at one tier without affecting
other tiers

 Thin clients – clients only require enough processing
power for the presentation layer

 Integrated data access

▪ In some cases the data must be accessed from several sources

▪ The middle tier can manage connections to all databases and
integrate the sources

John Edgar 52

 Scalability

▪ Clients are thin and access to the system is controlled by the
middle tier

▪ If the middle tier becomes a bottleneck, more resources can be
deployed

▪ And clients can connect to any middle tier server

 Software development benefits

▪ Dividing the application into natural components makes it
easier to maintain

▪ Interaction between tiers can occur through standardized APIs

▪ Allowing for reuse, and more efficient development

John Edgar 53

 Web interfaces to databases are prevalent
 The web is an important front end to many

databases

▪ Web browsers allow access to data on servers
located anywhere in the world

▪ Web browsers can run on any system and users do
not need special purpose software

▪ Each document that can be accessed on the web
has a unique name (URL)

John Edgar 54

 In the domain of web applications three tier
architecture usually refers to

▪ Web server

▪ Application server

▪ Database server

 In this architecture the client accesses the
web server

▪ Sometimes referred to as 4 tier

▪ Or, generically as n tier

John Edgar 55

 A web server runs on the server machine

▪ It takes requests from a browser and sends
back results as html
▪ The browser and web server communicates via http

 The web server also communicates with
applications providing a service

▪ The Common Gateway Interface defines how
web servers communicate with applications

▪ Applications communicate with a database
server
▪ Usually via ODBC, JDBC or other protocols database

browser

network

database server

application server

web server

server
John Edgar 56

 What is a communication protocol?

▪ A set of standards that defines the structure of messages

▪ Examples: TCP, IP, HTTP

 What happens if you click on

http://www.cs.sfu.ca/CourseCentral/354/johnwill/?

▪ Client (web browser) sends HTTP request to server

▪ Server receives request and replies

▪ Client receives reply

http://www.cs.sfu.ca/CourseCentral/354/johnwill/

 HTTP is stateless

▪ No sessions

▪ Every message is completely self-contained

▪ No previous interaction is remembered by the
protocol

 The state of a user's interaction often needs to be
maintained across different web pages

▪ e.g. a web shopping site

 State can be maintained at the middle tier

▪ Either in main memory

▪ But such state is volatile, and may use a lot of space

▪ Or in local files, or even in the database tier

▪ Generally state is only stored in the middle tier if the data is
required for many user sessions

 State can be maintained at the presentation tier
▪ cookies …

John Edgar 59

 Storing text on the client which will be passed to the

application with every HTTP request.

▪ Can be disabled by the client

▪ Are perceived as "dangerous”

▪ May scare away site visitors if asked to enable cookies

 Are a collection of (Name, Value) pairs

 Advantages

▪ Easy to use in Java Servlets / JSP

▪ Provide a simple way to keep non-essential data on the client
side even when the browser has closed

 Disadvantages

▪ Limit of 4 kilobytes of information

▪ Users can (and often will) disable them

 Should use cookies to store interactive state

▪ The current user’s login information

▪ The current shopping basket

▪ Any non-permanent choices the user has made

 Typically multiple methods of state maintenance
are used

▪ User logs in and information is stored in a cookie

▪ User issues a query which is stored in the URL

▪ User places an item in a shopping basket cookie

▪ User purchases items and credit-card information is stored
and retrieved from a database

▪ User leaves a click-stream which is kept in a log on the web
server

 When a web server receives a request a
temporary connection is created

▪ The connection is closed after the response is
received from the server

▪ Leaving connections available for other requests

▪ Information has to be stored at the client and
returned with each request, in a cookie

 In contrast to an ODBC or JDBC connection

▪ Session information is retained at the server and
client until the session is terminated

John Edgar 63

 Scripting can provide an alternative to writing web
applications in languages like Java or C++

 Scripting languages allow constructs to be embedded
in html documents

▪ Before a web page is delivered the server executes the
embedded scripts

▪ Scripts may contain SQL code

 Scripting languages include JSP, ASP, PHP, ...

▪ Many of these come with tools and libraries to give a
framework for web application development

John Edgar 64

 Scripting languages can also add programs to
webpages that run directly at the client

▪ e.g.Javascript, PHP, ColdFusion

 Scripting languages are often used to generate
dynamic content

▪ Browser detection to detect the browser type and load a
browser-specific page

▪ Form validation to perform checks on form fields

▪ Browser control to open pages in customized windows
(such as pop-ups)

John Edgar 65

Material from Ted Neward's blog article – The Vietnam of Computer Science

 Most modern programming languages are object oriented

▪ Classes contain complex types that have composite and
multivalued attributes

▪ A relational database only allows atomic attributes

 Object relational mapping (ORM) is the process of
converting data between the two systems

▪ There are a number of automated ORM tools available on the
market

▪ Conversion from an OO to relational data types is a non trivial
problem

 An impedance mismatch is a system where inputs and outputs do
not match

▪ In our case the object and relational data models

 Object systems have four basic components

▪ Identity

▪ State

▪ Behaviour

▪ Encapsulation

 Relational systems contain relations in tables

▪ A relation is a statement of facts about the world

▪ From which other statements can be derived using set operations

 How should classes be matched to tables?

▪ Tables to classes

▪ Columns to member variables

 How can inheritance be dealt with?

▪ Table for each class,

▪ Table for each concrete class, or

▪ Table for each class family

 We have discussed the first of these three alternatives

▪ The most obvious solution, but it can lead to problems

 Complex data types are composed of composite
or multi-valued attributes

▪ A composite attribute has multiple component
attributes

▪ e.g. address composed of street, city, province

▪ Multi-valued attributes contain sets of values

▪ e.g. a person's phone numbers

 First normal form requires that all attributes
have atomic domains

▪ Complex attributes are not atomic

 If each class in an inheritance hierarchy gets its own table
the hierarchy requires multiple tables

 An object in an OO system is a sequence of memory that
contains all of its member variables

▪ To extract the equivalent set of data from a DB involves joining
each of the class hierarchy tables

▪ If the class hierarchy is large the sequence of joins can be very
expensive

 Therefore the other approaches (e.g. one table per
hierarchy) are often used

▪ Even though these approaches are more complex

 Who owns the DB schema?

▪ In many organizations the DB schema will not be
under the direct control of developers

▪ But will be owned by the DBA group

 Typically, at some point, the DB schema will
be frozen at some point

▪ Creating a barrier to object model refactoring

 Note that this is more of a political than a
technical problem

 In an ORM system the metadata is held in two places

▪ In the database schema and

▪ In the object model

 Updates or refactoring in one schema force updates in the
other

▪ It is usually considered easier to refactor code to match the DB
schema than vice versa

▪ An application often serves a single purpose whereas DBs are
often used by many applications

▪ It may become necessary to allow object models to diverge
from the schema to avoid expensive global changes

 Objects have an implicit sense of identity

▪ The this pointer

 In a relational DB identity is implicit in the
state of the data

▪ Two rows with identical data are usually not
permitted

 It is possible that an attempt may be made to
insert two records with the same data

▪ That correspond to two different objects

 Once an entity is stored in a DB how is it retrieved?

▪ In OOP objects are created through the use of

constructors

▪ And an object should be responsible for its own data

 Retrieving data from a DB may entail some form of

embedded SQL queries

▪ Which are easy to write incorrectly

▪ They involve strings which are easy to mistype

▪ And require a functioning DB to test

 Satisfying an SQL request is relatively expensive
compared to local network calls

▪ It typically involves traversing a network

▪ In SQL query optimization only required rows and columns and
retrieved

 This suggests that in the interests of efficiency only part
an object is retrieved

▪ Objects must therefore allow nullable fields,

▪ All object variables should be filled out on retrieval with the
associated performance issues, or

▪ Object variables should be loaded on demand

 Abandonment – give up on objects!
 Acceptance – give up on relational storage

▪ And maybe use NoSQL

 Manual mapping
 Acceptance of ORM limitations
 Integration of relational concepts into the

language

