
CMPT 354

 Constraints

▪ Primary Key

▪ Foreign Key

▪ General table constraints

▪ Domain constraints

▪ Assertions

 Triggers

John Edgar 2

Account

customerID

owns

Transaction

Customer Branchholds

transacts

Employee

works

lastName

firstName

birthDate income

accNumber rate

type

branchName phone

city

transNumber

transDate

amount
firstName

description

sin

salary

lastName startDate

balance

John Edgar 3

 Customer = {customerID, firstName, lastName, birthDate, income}

 Account = {accNumber, type, balance, rate, branchName}

▪ branchName is a foreign key referencing Branch

 Owns = {customerID, accNumber}

▪ customerID and accNumber are foreign keys referencing Customer and Account

 Transaction = {accNumber, transNumber, amount, transDate, description}

▪ accNumber is a foreign key referencing Account

 Branch = {branchName, city, phone}

 Employee = {sin, firstName, lastName, salary, startDate, branchName}

▪ branchName is a foreign key referencing Branch

John Edgar 4

 Every table should have a primary key
 When a primary key constraint is created it

specifies that:

▪ The attributes of the primary key cannot be null

▪ The primary key must be unique

 Violating a primary key causes the violating
update to be rejected

John Edgar 6

 A primary key constraint can be specified in a
number of ways

▪ Create or alter table statement

▪ PRIMARY KEY (<attribute>)

▪ Selecting the attribute(s) and choosing the
primary key menu item in the context menu

 By default SQL server creates a clustered
index on the primary key attributes

▪ Clustered indexes support range queries

John Edgar 7

 Represents a relationship between two tables
 If table R contains a foreign key, on attributes

{a}, that references table S

▪ {a} must correspond to the primary key of S

▪ Must have the same number of attributes, and

▪ The same domains

▪ Values for {a} in R must also exist in S except that

▪ If {a} is not part of the primary key of R it may be null

▪ There may be values for {a} in S that are not in R

John Edgar 8

 Foreign keys specify the actions to be taken if
referenced records are updated or deleted
▪ For example, create a foreign key in Account that

references Branch
▪ Assign accounts of a deleted branch to Granville

▪ Cascade any change in branch names

…

branchName CHAR(20) DEFAULT ‘Granville’,

FOREIGN KEY (branchName) REFERENCES Branch

ON DELETE SET DEFAULT

ON UPDATE CASCADE)

John Edgar 9

 It is possible that there can be a chain of
foreign key dependencies

▪ e.g. branches, accounts, transactions

 A cascading deletion in one table may cause
similar deletions in a table that references it

▪ If any cascading deletion or update causes a
violation, the entire transaction is aborted

John Edgar 10

 Foreign keys can be specified in a number of
different ways
▪ A separate foreign key statement

▪ Very similar to the SQL standard

▪ A References statement following a column name

▪ Using the GUI
 Updates and deletions in the referenced table

can be set to a number of actions
▪ No action (the default) – the transaction is rejected

▪ Cascade, set null or set default

John Edgar 11

 To use the GUI to create
constraints in SQL Server

▪ Select Design on the desired
table using the context menu

 This opens design view for
the selected table

▪ The schema can be changed

▪ Constraints can be added

John Edgar 12

 To add a constraint

▪ Use the context menu

▪ And select the desired
constraint type

 Primary key constraints are
added with no more input

 For other constraints, more
input is required

John Edgar 13

Foreign keys

Shows relationship

Press to change relationship

John Edgar 14

Specify action on
update and deletion

John Edgar 15

 By default SQL foreign keys reference the
primary key (of the referenced table)

 It is possible to reference a list of attributes

▪ The list must be specified after the name of the
referenced table

▪ The specified list of attributes must be declared as
a candidate key of the referenced table (UNIQUE)

▪ In SQL Server in Create or Alter Table statement or

▪ Select Indexes/Keys from the context menu

John Edgar 16

 A general or table constraint is a constraint over a

single table

▪ Included in a table's CREATE TABLE statement

▪ Table constraints may refer to other tables

 Defined with the CHECK keyword followed by a

description of the constraint

▪ The constraint description is a Boolean expression,

evaluating to true or false

▪ If the condition evaluates to false the update is rejected

John Edgar 18

 Check that a customer's income is greater than zero,
and that customer ID is not equal to an employee SIN

CREATE TABLE Customer

(customerID CHAR(11),

…,

income REAL,

PRIMARY KEY (customerID),

CONSTRAINT zeroIncome CHECK (income > 0),

CONSTRAINT notEmp CHECK (customerID NOT IN

(SELECT sin FROM Employee)))

this wouldn’t work
in SQL Server

John Edgar 19

 SQL Server check constraint are limited to
comparisons with scalar expressions

▪ That is, expressions that contain single values

▪ Expressions that contain SQL queries are
therefore not allowed

 Check expressions can include comparisons
to results of User Defined Functions (UDFs)

▪ As long as the function returns a scalar value

John Edgar 20

 A UDF is an SQL Server function
 UDFs purpose and output vary widely

▪ They can return scalar values or tables

▪ They can be written in T-SQL or a .NET language

 UDF are useful for a number of reasons

▪ Modular programming

▪ Faster execution

▪ Reduced network traffic

John Edgar 21

CREATE FUNCTION checkEmpNotCustomer()
RETURNS int
AS
BEGIN

DECLARE @result int
if (select COUNT(*) from Employee e, Customer c

where c.customerID = e.sin) = 0
SET @result = 1

ELSE
SET @result = 0

RETURN @result
END

The corresponding check expression is
dbo.checkEmpNotCustomer = 1

Warning: Check constraints that call
UDFs introduce overhead

Note that this constraint should also
be added to the Customer table

John Edgar 22

 New domains can be created using the
CREATE DOMAIN statement

▪ Each such domain must have an underlying
source type (i.e. an SQL base type)

▪ A domain must have a name, base type, a
restriction, and a default optional value

▪ The restriction is defined with a CHECK statement

 Domains are part of the DB schema but are
not attached to individual table schemata

John Edgar 24

 Create a domain for minors, who have ages
between 0 and 18

▪ Make the default age 10 (!)

CREATE DOMAIN minorAge INTEGER DEFAULT 10

CHECK (VALUE > 0 AND VALUE <= 18)

John Edgar 25

 A domain can be used instead of one of the
base types in a CREATE TABLE statement

▪ Comparisons between two domains are made in
terms of the underlying base types

▪ e.g. comparing an age with an account number domain
simply compares two integers

 SQL also allows distinct types to be created

▪ Types are distinct so that values of different types
cannot be compared

John Edgar 26

 The SQL CREATE TYPE clause defines new
types

▪ To create distinct ID and account number types:

▪ CREATE TYPE ID AS INTEGER

▪ CREATE TYPE Accounts AS INTEGER

▪ Assignments, or comparisons between ages and
account numbers would now be illegal

▪ Although it is possible to cast one type to another

John Edgar 27

bigint binary(n) bit char(n)

8 bytes fixed length binary single bit fixed length

date datetime datetime2 datetimeoffset

yyyy-mm-dd date and time larger range includes time zones

decimal float image int

select precision, scale approximate variable length binary 4 bytes

money nchar(n) ntext numeric

8 byte monetary fixed length unicode variable length unicode equivalent to decimal

nvarchar(n | max) real smalldatetime smallint

variable length unicode 4 byte float limited range 2 bytes

smallmoney sql_variant text time

4 byte monetary allows many types variable length time (not date)

tinyint uniqueidentifier varbinary(n | max) varchar(n | max)

1 byte used for keys variable length binary variable length

John Edgar 28

 SQL Server allows types to be created using
syntax similar to the SQL standard

▪ CREATE TYPE SSN FROM varchar(11);

John Edgar 29

 Table constraints apply to only one table
 Assertions are constraints that are separate

from CREATE TABLE statements

▪ Similar to domain constraints, they are separate
statements in the DB schema

▪ Assertions are tested whenever the DB is updated

▪ Therefore they may introduce significant overhead

 Transact-SQL (MS SQL) does not implement
assertions

John Edgar 31

 Check that a branch's assets are greater than
the total account balances held in the branch

CREATE ASSERTION assetCoverage

CHECK (NOT EXISTS

(SELECT *

FROM Branch B

WHERE assets <

(SELECT SUM (A.balance)

FROM Account A

WHERE A.branchName = B.branchName)))

This prevents changes to both
the Branch and Account tables

John Edgar 32

 There are some constraints that cannot be
modeled with table constraints or assertions

▪ What if there were participation constraints
between customers and accounts?

▪ Every customer must have at least one account and
every account must be held by at least one customer

▪ An assertion could be created to check this
situation

▪ But would prevent new customers or accounts being
added!

John Edgar 33

 A trigger is a procedure that is invoked by the
DBMS as a response to a specified change

▪ A DB that has a set of associated triggers is
sometimes referred to as an active database

▪ Triggers are available in most current commercial DB
products

▪ And are part of the SQL standard

 Triggers carry out actions when their triggering
conditions are met

▪ Generally SQL constraints only reject transactions

John Edgar 35

 Triggers can implement business rules

▪ e.g. creating a new loan when a customer's
account is overdrawn

 Triggers may also be used to maintain data in
related database tables

▪ e.g. Updating derived attributes when underlying
data is changed, or maintaining summary data

 Many trigger actions can also be performed
by stored procedures

John Edgar 36

 Event

▪ A specified modification to the DB

▪ May be an insert, deletion, or change

▪ May be limited to specific tables

▪ A trigger may fire before or after a transaction

 Condition
 Action

John Edgar 37

 Event
 Condition

▪ A Boolean expression or a query

▪ If the query answer set is non-empty it evaluates to true,
otherwise false

▪ If the condition is true the trigger action occurs

 Action

John Edgar 38

 Event
 Condition
 Action

▪ A trigger's action can be very far-ranging, e.g.

▪ Execute queries

▪ Make modifications to the DB

▪ Create new tables

▪ Call host-language procedures

John Edgar 39

 The SQL standard gives a syntax for triggers

▪ In practice, trigger syntax varies from system to
system

▪ Many features of triggers are common to the
major DBMS products, and the SQL standard

John Edgar 40

 Write a trigger to send a message when
customer data is added or changed

 The trigger has three components

▪ Event – insert or update of the Customer table

▪ Condition – always!

▪ Acton – print a message

▪ By printing an SQL Server error message

CREATE TRIGGER reminder1
ON Sales.Customer
AFTER INSERT, UPDATE
AS RAISERROR ('Notify Customer Relations', 16, 10);

Example from SQL Server Books Online

John Edgar 41

CREATE TRIGGER trigger_name
ON { table | view }
{ FOR | AFTER | INSTEAD OF } { [INSERT] [,] [UPDATE] [,] [DELETE] }
AS { sql_statement }

Abbreviated trigger syntax, from SQL Server Books Online

table that the trigger applies to

event

action, may be preceded by a
condition – IF ...

John Edgar 42

 Triggers can apply to any change to a table

▪ Deletion, insertion or update

▪ Or any combination of the three

 Triggers can be specified as

▪ AFTER
▪ The default (sometimes referred to as for triggers)

▪ Occur after the transaction has taken place

▪ INSTEAD OF
▪ The trigger replaces the triggering statement

▪ Only one instead of trigger is allowed for each insert, update or
delete statement for a table

John Edgar 43

 After triggers only fire after referential cascade
actions and constraint checks

▪ Such constraints checks must succeed
▪ Otherwise the transaction would not take place

 Specifically the order is

▪ Enforce constraints

▪ Enforce foreign key constraints

▪ Create inserted and deleted tables

▪ Execute the triggering statement

▪ Execute after trigger

John Edgar 44

 A trigger’s action can be almost anything

▪ Here is a second version of the reminder trigger
that sends an email

CREATE TRIGGER reminder2
ON Sales.Customer
AFTER INSERT, UPDATE, DELETE
AS
EXEC msdb.dbo.sp_send_dbmail

@profile_name = 'AdventureWorks Administrator',
@recipients = 'danw@Adventure-Works.com',
@body = 'Don''t forget to print a report for the sales force.',
@subject = 'Reminder';

Example from SQL Server Books Online

John Edgar 45

 Trigger conditions are contained in an if
statement

▪ IF should be followed by a Boolean expression

▪ The Boolean expression is commonly an SQL
expression

▪ e.g. IF EXISTS(subquery)

 If statements in triggers may have an else
clause

John Edgar 46

 Reject the insertion of new employees whose
salary is greater than their manager

CREATE TRIGGER TR_Richer_Boss

ON Employee AFTER INSERT

AS

IF EXISTS

(SELECT *

FROM Manager m, Employee e

WHERE e.brNumber = m.brNumber AND e.salary > m.salary)

BEGIN

ROLLBACK TRANSACTION

RAISERROR(‘Error: salary too high’, 16 ,1)

END

Could also be implemented as
a check constraint with a UDF

John Edgar 47

 When a table is changed temporary tables are
created containing the changed data

▪ The inserted table contains records that were
inserted by a transaction

▪ The deleted table contains records that were
removed by a transaction

▪ If a table is updated the inserted table contains the
new rows and the deleted table the old rows

John Edgar 48

 Add the amount of a transaction to the
balance of the associated account

CREATE TRIGGER TR_Account_Balance

ON Transactions AFTER INSERT

AS

BEGIN

UPDATE account

SET balance = balance + (SELECT amount FROM inserted)

END

This only works if there is only
one transaction being inserted

John Edgar 49

 Add the amount of a transaction to the balance
of its account – corrected version

ALTER TRIGGER TR_Account_Balance

ON Transactions AFTER INSERT

AS

BEGIN

UPDATE account SET balance = ins.newBalance FROM

(SELECT a.accnumber,

a.balance + SUM(i.amount) AS newBalance

FROM Account a INNER JOIN inserted i

ON i.accNumber = a.accNumber

GROUP BY a.accNumber, a.balance) AS ins

WHERE account.accnumber = ins.accnumber

END

John Edgar 50

 Triggers can be used for many purposes

▪ Enforcing business rows

▪ Adding functionality to the database

▪ ...

 Triggers do carry overhead

▪ Constraints should be enforced by PKs, FKs and
simple check constraints where possible

▪ Triggers should be made as efficient as possible

John Edgar 51

 An index is a data structure that provides
efficient access to records

▪ Based on the value of one or more attributes

▪ An index on a database is conceptually similar to
an index at the back of a book

▪ The index provides data to efficiently locate a record in a
table

▪ Without reading the entire table

John Edgar 53

 Database tables are typically resident on
secondary storage such as hard drives

▪ A table may be too large to fit in main memory

 The basic method for finding a record it to
read the table from disk

▪ Referred to as scanning a table

 This is a very inefficient way of finding one or
two records in a large table

John Edgar 54

 An index is a secondary data structure that
maps attribute values to record IDs

▪ A record ID contains the disk address of a record

▪ Indexes typically allow records to be looked up with a
handful of disk reads

 Typical OLTP indexes are variations of two
data structures

▪ Hash tables

▪ (Binary) search trees

John Edgar 55

 A hash index is a hash table where the hash
function maps attribute values to record IDs

▪ Hash indexes are very fast

▪ Typically requiring one or two disk reads

 A good hash function is uniform and random

▪ So cannot map a range of attribute values to
related locations in the hash table

▪ Therefore hash indexes cannot be used for range
searches

John Edgar 56

 A tree index directs searches in much the same

way as a binary search tree

▪ In practice, databases do not use binary search trees

▪ The common implementation is a B tree (or variant)

which is an n-ary tree structure

▪ Where the value of n is derived from the size of attribute

values, record IDs and disk pages

 Tree indexes are not as fast as hash indexes

▪ But do support range searches

John Edgar 57

 A database table may be supported by a number
of indexes

▪ One, and only one, of these indexes can be a clustered
index

 A clustered index is one where the underlying
data file is sorted on the index search key

▪ That is, the attribute used to look up index entries

▪ Clustered indexes provide much more support for
range queries than un-clustered indexes

▪ Provided that the index is a tree index

John Edgar 58

 Indexes increase the efficiency of operations
requiring look-up of attribute values

 There is a cost to maintaining indexes

▪ Every insertion and deletion requires modification
of each index on the table

▪ Updates may require modification of indexes

John Edgar 59

 Database tables can support multiple indexes

▪ With single attribute search keys, or

▪ Compound (multi-attribute) search keys

 The DB administrator is responsible for
determining which indexes to create

▪ By analyzing table work loads

▪ Modern DBMS have tools to aid in determining
which indexes are appropriate for a table

▪ Index tuning

John Edgar 60

SQL Server 2008 allows 1 clustered and
999 un-clustered indexes per table

