CMPT 354

Normalization

Normalization

Desirable database characteristics
Database design, revisited

Normal Forms

First Normal Form

Second Normal Form

Third Normal Form

Boyce-Codd Normal Form
Normal forms and functional dependencies

ERD and normal forms
Fourth Normal Form, multi-valued dependencies

John Edgar 2

Desirable DB Qualities

Minimal repetition of data to avoid
Inefficiency in space usage and data processing

Potential loss of data integrity caused by data
Inconsistencies

Lossless joins to ensure that

When two tables are joined the appropriate data,
and only that data, is returned

John Edgar 3

Repetition and Inconsistent Data

Record data about accounts and who owns them
A customer can own many accounts, and accounts can be
owned by many customers
Account = {customerlD, accNumber, balance, type}
There are multiple rows for

each account, making the
table larger than it would be

123 67,000 CHQ 11
if account data was stored 5
separately 123 7,000 CHQ 12
123 73,700 CHQ 13

What happens if we want to add 10% to the balance of accounts owned by
customer 13?

John Edgar 4

Why Lossless Joins?

Consider the Customer table

Customer = {ustomerID, name, income, age}
Let's decompose it (badly) into two tables 11 Jane

Customer_ID = {customerID, name}

12 Jane
Customer_data = {name, income, age}
11 Jane 43,000 1997 Jane 43,000 1997
12 Jane 67,000 1975 Jane 67,000 1975

What happens if we want to recreate the original table?

John Edgar 5

Lossy Joins

11

12

11

11

12

12

Jane

Jane

Jane
Jane
Jane

Jane

43,000
67,000
43,000

67,000

John Edgar

1997
1975
1997
1975

Jane 43,000 1997
Jane 67,000 1975

There are more records than
the original table, but less
information — we don't know
how old the two customers are

This is known as a lossy join

Obtaining Desirable DB

Characteristics

Create an ERD that follows strict rules and
convert it into a relational DB schema
Composite attributes are not allowed
Set valued attributes are not allowed

Relationship sets may only have descriptive attributes
Perform a decomposition of the information
required for the database and

Ensure that the resulting tables satisfy one or more
normal forms

John Edgar 7

Normal Forms

A Strange Example

Meet Mr. Strange

You are to create a small DB for Zauw(:°

To record information about the use of capital
assets by departments within 2z @®

You discuss the requirements for the
database with the CIO, Mr. A. Strange

A transcript of this discussion follows:

John Edgar 9

Capital Assets

John Edgar

Department Data

John Edgar

Say What?

Explanation

John Edgar 13

No Stickies Please

John Edgar 14

Summary

Department name
Manager number
Manager name
Manager extension
Asset number
Asset name

John Edgar

Cost

Purchase date
Asset type
Depreciation rate
CCA

Department use

15

Quick and Dirty

First Normal Form

Maintain all the data in one table but remove
repeating groups

By adding rows for the repeated groups

The table has a compound primary key

This results in fixed length records
Reduces disk fragmentation,
Complies with the relational model, and is
Required for most DBMSs

John Edgar 17

One Table

Department = {departmentName, assetNumber, managerSIN, managerName,
managerPhone, assetName, cost, purchaseDate, type, depreciation, cca, usage}

John Edgar 18

Disadvantages of INF

Introduces redundancy

Much of the data needs to be repeated

All of the department data (like the manager’s name) is
repeated for each asset that a department owns

John Edgar 19

Disadvantages of INF

Insert anomalies

A department cannot be inserted if it doesn't have
at least one asset

Delete anomalies

Deleting the last asset of a department also
deletes the department

John Edgar 20

Disadvantages of INF

Update anomalies

Many records may have to be changed to change
the value of one attribute

A change to the department manager's phone number
has to be made for each asset the department owns

John Edgar 21

Second Normal Form

In 2NF there are non-key attributes that
depend on only part of the compound key, so
Remove partial key dependencies

f a set of attributes only depends on part of the
key separate the attributes into a new table

n each table each non-key attribute should be
dependent only on the entire primary key

Resulting in a Second Normal Form
decomposition

John Edgar

Asset Types

Department = {departmentName, managerSIN, managerName, managerPhone,}
Asset = {assetNumber, assetName, cost, purchaseDate, type, depreciation, cca}

Uses = {departmentName, assetNumber, usage}

John Edgar 23

Disadvantages of 2NF

Second Normal Form only considers partial
key dependencies
And ignores any non-key dependencies
Therefore 2NF may still result in the same
problems observed with 1NF, that is:
Redundancy

Insert, delete and update anomalies

Here, CCA rate and depreciation depend on asset type,
but the type is not part of a primary key

John Edgar 24

Third Normal Form

Remove any non-key dependencies

Remove the attributes with a non-key dependency
from the table and

Create a new table containing those attributes and
the attribute(s) that they depend on

The latter being the primary key of the new table

Third Normal Form decomposition

A
T
T

| records are fixed length
nere are no delete, insert or update anomalies

nere is very little redundancy

John Edgar 25

By the way ...

Department = {departmentName, managerSIN, managerName, managerPhone}

Asset = {assetNumber, assetName, cost, purchaseDate, type}

AssetType = {type, depreciation, cca}
Uses = {departmentName, assetNumber, usage}

to be continued ...

John Edgar 26

Functional Dependencies

Dependencies

A superkey is a set of attributes that uniquely
identifies a record

Let R
super

For al

Unlike

be a relation schema, subset Kof Ris a
ey if:

pairst,andt,inR|t,#t, t.[K]#t,[K]
a key, a functional dependency is a

constraint on any set of attributes

Functional dependencies can assist us in achieving

a desi

rable decomposition

John Edgar 28

Decomposition Goals

Lossless join

The decomposition should not result in a lossy join
if tables are re-combined

A lossy join is a join where the resulting table
includes data that should not exist

John Edgar 29

Decomposition Goals

Dependency preservation

If a set of attributes depends on an attribute that
dependency should be maintained in one table

To avoid having to join tables to test whether or
not the data is correct

John Edgar

Decomposition Goals

No redundancy

A decomposition should contain a minimum
amount of redundancy

This goal is less important than the preceding two
goals

John Edgar

Functional Dependencies

A functional dependency is an integrity constraint

that generalizes the idea of a key

If Ris arelation and X and Y are sets of attributes of

R then an instance r of R satisfiesthe FD X — Y, if
Foralltuplest , i inr,if then

e.g. type — cca, depreciation

which states that cca and depreciation must be the same for any
two assets that have the same type

A functional dependency is a statement about all
possible legal instances of a relation

John Edgar 32

Terminology

We can test relations to see if they are legal
under a given set of functional dependencies

If a relation, R, is legal under a set of functional
dependencies, F, then R satisfies F

To specify constraints on a set of legal
relations

If a schema, R, is to be constrained so that it
satisfies a set of FDs, F, then F holds on R

John Edgar 33

FD Example: AB —> C

Whenever {A, B} are the same
then C must also be the same

If two tuples differ in either A
or B fields then they may also
differ in the Cfield

The dependency AB — Cis violated by this tuple

Which FDs are satisfied in the original relation:

A->C,B—->C2,A—>D? AB—>D?

John Edgar

dl

d2

dal

b2
ba

——

C2

3

c2

di
di
di

di

34

FDs and Keys

A primary key constraint is a special case of a FD
If thereisa FD: X > Yon R, and Yis the set of all
attributes of R, then Xis a superkey

Note that X may not be a candidate key (or a primary key)

The definition of a FD does not require that the set of
attributes is minimal

John Edgar 35

Reasoning About FDs

A set of FDs, F, can be identified for a relation

By enquiring about the problem domain
In other words, by talking to people
Given a set of FDs, additional FDs can usually be

identified

The additional FDs are implied by F
The set of all FDs implied by F is called the closure of
F, denoted F*

F* can be calculated by repeatedly applying Armstrong'’s
Axioms to F

John Edgar 36

Calculating Closure and Cover

As noted earlier a set of functional
dependencies, F, can imply further FDs

The set of all FDs implied by Fis known as the
closure of F, or F*

The minimal set of FDs from which F* can be
calculated is known as the canonical cover

We can use axioms, or rules of inference, to
reason about FDs

Known as Armstrong's axioms

John Edgar 37

Armstrong's Axioms

Reflexivity

superset

IfX;) Y, then X—>Y remember that X and Y are sets of attributes
That is, if X contains Ythen X —> Y

Augmentation
If X —> Y, then XZ — YZforany Z

NotethatZ —> Z

subset = A functional dependency X — Y isreferred to as trivial where
Yc X

Transitivity
fX—>YandY— Z thenX—>Z

John Edgar 38

Armstrong's Axioms

Named after William W. Armstrong

Who earned his PhD from UBC in 1966

Dependency Structures of Data Base Relationships (1974)
Armstrong's axioms are both sound and complete

They are sound because they do not generate any
incorrect functional dependencies

They are complete because they allow F* to be generated
from a given F

Additional rules can be derived from Armstrong's
axioms

John Edgar 39

Additional Rules

Union

fX—> Yand X —>Z, thenX—> YZ
X—>Yand X—>Z
X—>XY if it helps, think of this as XX — XY but
XY —>YZ
X—>YZ

as Xand Yaresets XX =X

John Edgar 40

Additional Rules

Decomposition

fX—>YZ thenX—> Yand X—>Z
X—>YZ

YZ Y, YZ—>Z

X—>Y

X—>Z

John Edgar 41

Additional Rules

Pseudotransitivity

IfX— Yand WY — Z, thenXW —> Z
X—=>Yand WY —>Z
XW —-> WY
XW—->Z

John Edgar 42

Example

Identify additional FDs in F*
R=(A, B, C, G,H, I F={A—B, A>C, CG—>H, CG—>|, B—H}

A—>H
transitivity fromA—->Band B—> H

AG — |
augmentation of A — C with G, to get AG - CG
then transitivity with CG — /
CG— HI
augmentation of CG — /to get CG — CGl,
then augmentation of CG — H to get CG/ — Hi,

then transitivity

John Edgar 43

Generating F*

F There may be many functional dependencies

F+

The left and right sides of a functional
dependency are both subsets of R

F* does not change
Note - a set of size n has 2" subsets

John Edgar A

Closure of Attribute Sets

It can be useful to determine what attributes are

functionally dependent on a particular attribute set
To determine if the attribute set is a superkey

Compute F* and take the union of the right side of

each FD whose left side is the relevant attribute set

This can also be performed without computing F*

result =X
X*isthe closure of aset of while (there are changes to result)

attributes, X, under F foreachFD, Y—> ZinF
if Y c result then result=resultu Z

John Edgar 45

Attribute Set Closure Example

What is the set of attributes, AG*?
R=(A,B,C, G, H,I) F={A—>B, A—>C, CG>H, CG—>l, B—>H}
result = AG
result = ABCG (A—B, A—>()
result = ABCGH (CG—H and CG < AGB()
result = ABCGHI (CG—I and CG < AGBCH)

Is AG a superkey?
i.e.does AG —> R?i.e.isAG* D R?

Is any subset of AG a superkey?
doesA > R?i.e.isA*DR?
doesG—> R?i.e.isG*DOR?

John Edgar 46

Uses of Attribute Closure

There are several uses of attribute closure
Testing for a superkey

If A* contains R then A is a superkey
Testing functional dependencies

To checkifaFD X — Yisin F" checktoseeif Y X*

i.e. compute X™ by using attribute closure, and check to
see if it contains Y

Computing closure of F

For each X c R, find the closure X™, and for each Y = X7,
outputaFDX—>Y

John Edgar 47

Canonical Cover

Sets of FDs may contain redundant dependencies
Individual dependencies may contain unnecessary

attributes
A canonical cover of Fis a minimal set of FDs that is

equivalentto F
With no redundant dependencies or parts of dependencies

John Edgar 48

Redundant Dependencies

Dependencies can be derived from other FDs
e.g. A— Cisredundantin: {A—>B, B— (}

Because it can be obtained through transitivity
Parts of a functional dependency may be redundant

e.g.onRHS:{A—> B, B—>(C, A— CD} can be simplified
{A—>B, B—>(C, A— D}since A— Ccan be derived

e.g.onLHS: {A > B, B—> (C, AC— D} can be simplified

f{A—>B, B—>C(C, A— D}since A— C(through transitivity) so Cis
not necessary on the left hand side of the dependency

For example sin — name and sin, name — birthDate

As birth date cannot be determined by name alone the inclusion of
name on the left hand side is unnecessary

John Edgar 49

Extraneous Attributes

Some FDs contain extraneous attributes

extraneous - not constituting a vital element or part

Considera FD X — Yin a set F of FDs
Attribute a is extraneous in Xif a € X and if Fimplies FDs:
(F-sX—>YHuiX-a)—>Y} use Fto determine (X—a) > Y
e.g.ifF={A—>D,D— C, AB— (3}, Bis extraneousin AB—C
Because {A — D, D — C, AB — (} logically implies A — C

Attribute a is extraneousin Yif a € Y and the set of FDs:

(F —{X—>Y}) UiX—>(Y-a)logically implies F repr_odUC,e
e.q.if F={A—> C, AB —> (D}, Cis extraneous in AB —» (D 219"
Because AB — C can be inferred even after deleting C

John Edgar 50

Testing for Extraneousness

ConsideraFD X — Yin aset Fof FDs
To test if attribute a € X is extraneous in X

compute —a)t usingthe FDs in F
P et) J check that the attribute closure

check that (X} —a)” contains Y of the LHS still implies Y after
if it does, a is extraneous in X removing a
To test if attribute a € Yis extraneousin Y

compute X using only the dependencies in:

F=(F-{X>Y)UiX—>(Y=a)} checkthatthe attribute closure

check that X* contains a of the LHS still includes a after

. _ _ removing it from the RHS in F'
if it does, a is extraneousin Y

John Edgar 51

Canonical Cover

A canonical cover for Fis a set of FDs, F such
that

Flogically implies all dependencies in F. and
F.logically implies all dependencies in F, and

No functional dependency in F_ contains an
extraneous attribute, and

Each left side of a functional dependency in F_is
unique

Standardized format for cover

John Edgar 52

Computing Canonical Cover

To compute a canonical cover for F:

F does not change
Note that the union rule may become applicable after
the deletion of an extraneous attributes

John Edgar 53

Canonical Cover Example 1

Compute the canonical cover, F_, of R
R=(A,B,C,G,H,I F={A—>BC, B—>C, A—>B, AB—>C}
First use the union rule to combine dependencies

CombineA— BCand A > Binto A — BC

The setisnow {A —> BC, B—>C, AB— (}
Check for extraneous attributes

A is extraneous in AB — C

To confirm this show that the result of deleting A from AB — C is
implied by the other dependencies

Which it is since B — C already exists in F

John Edgar 54

Canonical Cover Example 2

Compute the canonical, F_, cover of R
R=(A,B,C,G,H,I F={A—>BC, B—>C, A~>B, AB—>C}
Continue to check for extraneous attributes
Setisnow {A — B(C, B— (}
C is extraneousin A — BC

Show that A — Cislogically implied by A — B and the
other functional dependencies

Which it is, using transitivity on A — Band B — C
The attribute closure of A may be used in more complex cases

F.={A—> B, B— (}

John Edgar 55

Decomposition

Boyce Codd Normal Form

BCNF is a desirable normal form that can be
found by identifying functional dependencies

BCNF eliminates all redundancy that can be
discovered by studying a set of FDs

Although BCNF ignores multi-valued dependencies

Generally BCNF is preferable to 3NF
3NF allow some redundancy

Let's look at the definitions of each in terms of
functional dependencies

John Edgar 57

BCNF Definition

Boyce-Codd Normal Form is defined in terms of

functional dependencies
A relational schema, R, is in BCNF with respect to a

set of FDs Fif for all FDs in F* of the form

X —> Ywhere XcRand YC R, < meansisasubset of
At least one of the following holds

X — Y istrivial (i.e., Y € X), or | such as {name} — {name}

Xis a superkey for R

John Edgar 58

Third Normal Form Definition

A relational schema, R, is in 3NF with respect to a
set of FDs F if

For all functional dependencies in F* of the form
X— Ywhere Xc Rand YCR,

At least one of the following holds
X — Y istrivial (i.e.,, Y X), or
Xis a superkey for R, or

(Y- X) is contained in a candidate key for R

Note that the only difference between 3NF and BCNF is
the last condition

John Edgar 59

BCNF Description

In a BCNF decomposition the only FDs are those
where the key of the table determines attributes

Except for trivial dependencies
Each table represents either an entity set or a

relationship set
Identified by the key, and

Described by the remaining attributes
A database design is in BCNF if each table schema is

in BCNF

John Edgar 60

BCNF Decomposition

Assume that there is some schema R and a non-trivial
dependency X — Y which causes a violation of BCNF
Because Xis not a key for the entire table (R)
R should be decomposed into
(XUY)and (R-(Y-X))
e.g. Asset = {assetNumber, assetName, cost, purchaseDate,
type, depreciation, cca}
Where (type — type, cca, depreciation)
Decompose asset into
ftype, cca, depreciation} and
{Asset — (type, cca, depreciation - type)}, i.e.
fassetNumber, assetName, cost, purchaseDate, type}

John Edgar 61

Computing BCNF

result =R
done = false
compute F*

that is: Xis not a key for the schema

when complete all R; are in BCNF, and
the decomposition is a lossless-join

John Edgar 62

BCNF Decomposition Example

R=(A, B,C) F={A— B, B— C}, Key = {Al

R is not in BCNF since B — C but Bis not a superkey for R
Decomposition

R,=(B, ()

R,=(A, B)
Note that there may be more than one BCNF
decomposition for the same data

Depending on the order in which the FDs are applied

John Edgar 63

3NF Decomposition

Let F. be a canonical cover for F note that the algorithm looks at
i=o dependencies in the canonical cover

return (R, R,, ..., R)

John Edgar 64

More Dependencies

John Edgar 65

Transitive Dependencies

Consider the Uses table
Uses = {assetNumber, departmentName, respPerson, usage}

The FDs that relate to this table are
(dn,an — us,rp)

(rp — dn) and by pseudotransitivity
(rp,an — us)
Uses is therefore not in BCNF
The BCNF decomposition is:

Uses = {assetNumber, respPerson, usage}

Worksln = {respPerson, departmentName}

However departmentName also depends on respPerson

John Edgar 66

Transitive Dependencies

A BCNF decomposition would create a new table for
each functional dependency

Uses = {assetNumber, respPerson, usage}

In this case usage depends on the compound key of departmentName
and assetNumber, as does respPerson

WorksIn = {respPerson, departmentName}

However departmentName also depends on respPerson
The 3NF decomposition would ignore the transitive
dependency *since, in rp— dn, dn is part of a candidate key for Uses

Uses = {departmentName, assetNumber, usage, respPerson}
In this case the 3NF decomposition is preferred

John Edgar 67

BCNF Decomposition of Uses

Uses = {dName, assetNum, usage, respPerson} which gives the following BCNF
decomposition, sample data
F = (dp,an — us,rp), (rp = dp), (rp,an — us) included ...
11 Zak 30 Zak 1
11 Ann 70 Sue 1
12 Sue 4O Bob 2
12 Bob 60 Ann 2

13 Zak 37

frespPerson, dName}

13 Ann 63

fassetNumber, respPerson, usage}

John Edgar 68

BCNF Decomposition of Uses

Now let’s add a record that states that Joe is responsible for asset
number 11, and change the use percentage so that it all adds up

correctly

Why is this a

problem? il Zak 20 Zak 1
11 Ann 70 Sue 1
12 Sue 4O Bob 2
12 Bob 60 Ann 2
13 Zak 37 Joe 1

13 Ann 63

11 Joe 10 Because it violates dn,an — rp

John Edgar 69

Motivation for 3NF

If a relation is in BCNF it must also be in 3NF
The third condition of 3NF is a minimal relaxation of
BCNF to ensure dependency preservation
The third condition is when the right hand side of a FD is
part of a candidate key for the relation

Uses = {departmentName, assetNumber, usage, respPerson}

In this relation departmentName is part of a key for the relation so
the decomposition is in 3NF with respect to (rp — dn)

In this particular case the 3NF decomposition is preferable
to the BCNF decomposition

John Edgar 70

3NF Decomposition of Uses

Uses = {departmentName, assetNumber, usage, respPerson}

F = (dp,an — us,rp), (rp = dp), (rp,an — us) gives a 3NF decomposition, where
rp is part of a compound key

Attempting to insert Joe, working in

- : Zak 30 dept 1, as the responsible person for
12 1 Sue 40 asset #11, will fail, as it violates the
13 1 73k 37 IF:>gmary key which comes from the
11 2 Ann 60

(dp,an — us,rp)
12 2 Bob 37
13 2 Ann 63 But notice the redundant data

fassetNumber, departmentName, respPerson usage}

John Edgar 71

3NF vs. BCNF

A BCNF decomposition removes redundancy
Except for multi-valued dependencies

But does not guarantee a dependency preserving decomposition

In the example the BCNF decomposition did not preserve the
dependency (an,dp — rp,us)

A dependency preserving 3NF decomposition can always
be found

But 3NF allows some repetition

In the example the 3NF decomposition repeated the department for
each responsible person

John Edgar 72

Lossless Join Decompositions

Consider decomposing a relation schema, R, with a
set of FDs, F, into two relations, Xand Y

If the original relation can be recovered by joining X and Y
it is a lossless-join decomposition with respect to F

A decomposition is only lossless if and only if F*
contains eitherXNMY—>XorXNnY—->Y

i.e. the attributes common to X and Y must contain a key
for either Xor Y

John Edgar 73

Dependency-Preserving

Decompositions

Consider decomposing a relation schema, R, with a

set of FDs, F, into two relations, Xand Y
The projection of F, F,, on X'is the set of FDs in F* that only
involve attributes of X
AFD A — Bisonlyin F,if all the attributes of Aand B are in X
A decomposition of R is dependency preserving if

(FyUF) =F
If that is the case, then only the dependencies of F, and F,
need to be enforced

As all the FDs in F* will be satisfied

John Edgar 74

Schema Refinement

In practice a DB designer usually uses an ER design
(or something similar) for an initial design
Ideally a good ER design should lead to a collection

of tables with no redundancy problems
ER design is complex and subjective, and

Certain constraints cannot be expressed in ER diagrams
A decomposition derived from an ER diagram may

need further refinement
To ensure that it is in 3NF or BCNF

John Edgar 75

Constraints on Entity Sets

When creating ERDs it is easy to miss dependencies
within an entity set

e.g. type — cca, depreciation

e.g. level - salary
This problem becomes particularly relevant in practice
when designing large schemas

Many real-world DBs may have hundreds of tables
A correct ERD would create additional entity sets for the
dependencies

But, a knowledge of FDs and DB design is required to recognize
this

John Edgar 76

ldentifying Attributes

Identifying FDs can make it easier to associate attributes
with the correct entity set

In some cases attributes may be associated with the wrong entity set
For example, employee parking lots

Assume that each employee is assigned a parking lot where they have
to park

It seems reasonable to make lot an attribute of Employee

However, the employees are assigned the lots based on the
department that they work in

Therefore dept — lot, and the lot attribute should be an attribute of
department rather than employee

John Edgar 77

Summary

Identifying functional dependencies can assist a DB
designer in producing a good schema
That is in BCNF, or 3NF, and is

A lossless-join decomposition, dependency preserving
with minimal redundancy

Functional dependencies can be used in conjunction
with ER diagrams to refine the schema

FDs are particularly useful in cases where there is difficulty
in deciding how some information should be modeled

John Edgar 78

How Good is BCNF?

It is still possible to have a schema in BCNF (or 3NF)
that is not sufficiently normalized

For example: Classes = {course, teacher, book}

A teacher, t, is qualified to teach course ¢, which requires textbook b

The table is supposed to list the set of teachers competent
to teach a course, and

The set of books which are required for that course
An instance of this schema follows ...

John Edgar 79

Courses

necromancy Amazo
necromancy Amazo
necromancy Samael
necromancy Samael
woodworking Larch
woodworking Larch
woodworking Larch

John Edgar

Bones
Tombs
Bones
Tombs
Planes
Trees

Tools

Only trivial FDs hold, so the table
isin BCNF

Whenever a new teacher s
added, one row must be inserted
for each book

And, multiple teacher rows are
added when a book is added

Leading to redundancy

This occurs because the books are
independent of the teachers

A multivaved dependency

80

Multivalued Dependencies

The following decomposition avoids the redundancy

necromancy Amazo necromancy Bones
necromancy Samael necromancy Tombs
woodworking Larch woodworking = Planes

woodworking Trees

woodworking Tools

A multi-valued dependency X —-— Y holds over R, if for every
instance of R, each X value is associated with a set of Y values, and
this set is independent of the values in other attributes

John Edgar 81

Other Normal Forms

Further normal forms exist which deal with issues
not covered by functional dependencies

Fourth Normal Form deals with multi-valued
dependencies

There is a 4NF decomposition algorithm similar to the
BCNF decomposition algorithm

And a set of rules for inferring additional MVDs
Fifth Normal Form addresses more complex (and
rarer) situations where 4NF is not sufficient

John Edgar 82

