
CMPT 354

 Desirable database characteristics
 Database design, revisited

 Normal Forms

 First Normal Form

 Second Normal Form

 Third Normal Form

 Boyce-Codd Normal Form

 Normal forms and functional dependencies
 ERD and normal forms
 Fourth Normal Form, multi-valued dependencies

John Edgar 2

 Minimal repetition of data to avoid

 Inefficiency in space usage and data processing

 Potential loss of data integrity caused by data
inconsistencies

 Lossless joins to ensure that

 When two tables are joined the appropriate data,
and only that data, is returned

John Edgar 3

accNumber balance type customerID

…

123 67,000 CHQ 11

123 67,000 CHQ 12

123 67,000 CHQ 13

…

 Record data about accounts and who owns them
 A customer can own many accounts, and accounts can be

owned by many customers
 Account = {customerID, accNumber, balance, type}

There are multiple rows for
each account, making the
table larger than it would be
if account data was stored
separately

What happens if we want to add 10% to the balance of accounts owned by
customer 13?

John Edgar 4

accNumber balance type customerID

…

123 67,000 CHQ 11

123 67,000 CHQ 12

123 73,700 CHQ 13

…

 Consider the Customer table
 Customer = {ustomerID, name, income, age}

 Let's decompose it (badly) into two tables
 Customer_ID = {customerID, name}

 Customer_data = {name, income, age}

customerID name income birth

…

11 Jane 43,000 1997

12 Jane 67,000 1975

…

What happens if we want to recreate the original table?

customerID name

…

11 Jane

12 Jane

…

name income birth

…

Jane 43,000 1997

Jane 67,000 1975

…

John Edgar 5

customerID name income birth

…

11 Jane 43,000 1997

11 Jane 67,000 1975

12 Jane 43,000 1997

12 Jane 67,000 1975

…

There are more records than
the original table, but less
information – we don't know
how old the two customers are

This is known as a lossy join

John Edgar 6

customerID name

…

11 Jane

12 Jane

…

name income birth

…

Jane 43,000 1997

Jane 67,000 1975

…

 Create an ERD that follows strict rules and
convert it into a relational DB schema

 Composite attributes are not allowed

 Set valued attributes are not allowed

 Relationship sets may only have descriptive attributes

 Perform a decomposition of the information
required for the database and

 Ensure that the resulting tables satisfy one or more
normal forms

John Edgar 7

A Strange Example

 You are to create a small DB for RannCo©

 To record information about the use of capital
assets by departments within RannCo©

 You discuss the requirements for the
database with the CIO, Mr. A. Strange

 A transcript of this discussion follows:

What does RannCo manufacture, Mr. Strange?

Jet packs, hover cars, moving walkways, robot maids, really it's

your basic 1950's science fiction technology company

John Edgar 9

Right. So, I gather that the database is going to
record information about capital assets.

Was that a question?

Yes, look this is supposed to be a transcript of a
conversation, so you can't expect perfect grammar
… What is a capital asset anyway?

A capital asset is a long term asset of a company, like a car, or

machinery, or hardware. That sort of thing. Capital assets help

produce the goods that a company sells, as distinct from the raw

materials to make those goods.

John Edgar 10

OK. So what information will you need?

Hmm. Well …. Right. We need the name of each department,

basically the point of this is so that we know what each

department owns, you see. We'll want to keep track of each

department's manager's name, SIN, and phone extension. And

of course all of the assets that a department is in charge of.

And what information do you need to record about
the assets?

Let me see …

John Edgar 11

We need to record each asset's name and number, we give each asset

a unique number, you see. We also want to keep track of the

purchase cost and date, the type of the asset, its CCA class,

and its depreciation rate.

CCA class!? Depreciation rate!? You're just making
this stuff up aren't you? And what's the difference
between an asset's name and type? You name the
asset? Like the type is screwdriver and the name is
Shirley?

Well, I guess some of those are good questions …

John Edgar 12

The type of an asset describes the class of asset, car, machinery

and so on. Its name is a more detailed description, Toyota

Echo, for example. The depreciation rate is an estimation for

accounting purposes of how fast the asset loses value over time.

For example, if the depreciation rate is 20% then we are

estimating that we could resell the asset for only 80% of its

original cost at the end of one year. CCA stands for Capital

Cost Allowance, and is basically the same as the depreciation

rate, except it is the rate recognized by the Canada Revenue

Agency for tax purposes.

John Edgar 13

Got you. At least I think so. Anything else you can
think of?

Hmm. One thing that you might need to know is that some assets

are actually shared by two or more departments. In these cases

we want to record what percentage of the time the asset is used by

each department. But this doesn't happen very often so I guess

we could just write this stuff down on yellow post-it notes and

stick them on the assets.

That doesn't sound ideal, let's include that in the
database. So this is what we've got:

John Edgar 14

Here is the information we need to record about
capital assets

 Department name
 Manager number
 Manager name
 Manager extension
 Asset number
 Asset name

I think that's everything – so now go earn your pay and design my

new database!

 Cost
 Purchase date
 Asset type
 Depreciation rate
 CCA
 Department use

John Edgar 15

Great. That's pretty much all I need to know. By the
way can two departments have the same name?

No.
OK, so we'll use the department name as the primary key

and throw everything into one table.
Um, that just sounds like our Excel spreadsheet …
So we can only have one row for each department.
Remember that one department can have many assets.
Right, good point, well we could give some records more

columns for their extra assets, but then the records
may be different lengths, so I guess the table wouldn’t
be in first normal form

John Edgar 16

 Maintain all the data in one table but remove
repeating groups

 By adding rows for the repeated groups

 The table has a compound primary key
▪ {department, assetNumber}

 This results in fixed length records

 Reduces disk fragmentation,

 Complies with the relational model, and is

 Required for most DBMSs

John Edgar 17

OK, so here is the first normal form database schema for
our Department table:
Department = {departmentName, assetNumber, managerSIN, managerName,

managerPhone, assetName, cost, purchaseDate, type, depreciation, cca, usage}

The table has a compound primary key consisting of
department name and asset number. Sweet, huh?

So can I get paid now?

Well, I suppose that would work. But, whenever we want to add an

asset to a department wouldn't we have to repeat all of the department

information?

Yeah, but what can you do …

John Edgar 18

 Introduces redundancy

 Much of the data needs to be repeated

▪ All of the department data (like the manager’s name) is
repeated for each asset that a department owns

 Insert anomalies
 Delete anomalies
 Update anomalies

John Edgar 19

 Introduces redundancy
 Insert anomalies

 A department cannot be inserted if it doesn't have
at least one asset

 Delete anomalies

 Deleting the last asset of a department also
deletes the department

 Update anomalies

John Edgar 20

 Introduces redundancy
 Insert anomalies
 Delete anomalies
 Update anomalies

 Many records may have to be changed to change
the value of one attribute

▪ A change to the department manager's phone number
has to be made for each asset the department owns

John Edgar 21

 In 1NF there are non-key attributes that
depend on only part of the compound key, so

 Remove partial key dependencies

 If a set of attributes only depends on part of the
key separate the attributes into a new table

 In each table each non-key attribute should be
dependent only on the entire primary key

 Resulting in a Second Normal Form
decomposition

John Edgar 22

I've changed the schemata from First Normal Form to Second
Normal Form. Here is the new decomposition.

Department = {departmentName, managerSIN, managerName, managerPhone,}

Asset = {assetNumber, assetName, cost, purchaseDate, type, depreciation, cca}

Uses = {departmentName, assetNumber, usage}

The usage information depends on both department name
and asset number, so stays in the Uses table,

Are you happy now?

That looks much better. Though, does it matter that the depreciation rate and

the CCA rate are the same for all assets of the same type? We would never

have two assets with the same type that have different rates.

Oh, #**&!!

John Edgar 23

 Second Normal Form only considers partial
key dependencies

 And ignores any non-key dependencies

 Therefore 2NF may still result in the same
problems observed with 1NF, that is:

 Redundancy

 Insert, delete and update anomalies

▪ Here, CCA rate and depreciation depend on asset type,
but the type is not part of a primary key

John Edgar 24

 Remove any non-key dependencies

 Remove the attributes with a non-key dependency
from the table and

 Create a new table containing those attributes and
the attribute(s) that they depend on

▪ The latter being the primary key of the new table

 Third Normal Form decomposition

 All records are fixed length

 There are no delete, insert or update anomalies

 There is very little redundancy

John Edgar 25

I've changed the schemas from Second Normal Form to Third

Normal Form.

Department = {departmentName, managerSIN, managerName, managerPhone}

Asset = {assetNumber, assetName, cost, purchaseDate, type}

AssetType = {type, depreciation, cca}

Uses = {departmentName, assetNumber, usage}

By the way, if something is in 3NF it is also in 2NF and in

1NF. So I guess we are done now. Time for beer!

That looks good. Ah, sorry, I've just realized that we may be missing some

information.

Aaaargh!!
to be continued …

John Edgar 26

 A superkey is a set of attributes that uniquely
identifies a record

 Let R be a relation schema, subset K of R is a
superkey if:

 For all pairs t1 and t2 in R | t1 t2, t1[K] t2[K]

 Unlike a key, a functional dependency is a
constraint on any set of attributes

 Functional dependencies can assist us in achieving
a desirable decomposition

John Edgar 28

 Lossless join

 The decomposition should not result in a lossy join
if tables are re-combined

 A lossy join is a join where the resulting table
includes data that should not exist

 Dependency preservation
 No redundancy

John Edgar 29

 Lossless join
 Dependency preservation

 If a set of attributes depends on an attribute that
dependency should be maintained in one table

 To avoid having to join tables to test whether or
not the data is correct

 No redundancy

John Edgar 30

 Lossless join
 Dependency preservation
 No redundancy

 A decomposition should contain a minimum
amount of redundancy

 This goal is less important than the preceding two
goals

John Edgar 31

 A functional dependency is an integrity constraint
that generalizes the idea of a key

 If R is a relation and X and Y are sets of attributes of
R then an instance r of R satisfies the FD X Y, if

 For all tuples t1, t2 in r, if t1.X = t2.X then t1.Y = t2.Y

▪ e.g. type cca, depreciation

▪ which states that cca and depreciation must be the same for any
two assets that have the same type

 A functional dependency is a statement about all
possible legal instances of a relation

John Edgar 32

 We can test relations to see if they are legal
under a given set of functional dependencies

 If a relation, R, is legal under a set of functional
dependencies, F, then R satisfies F

 To specify constraints on a set of legal
relations

 If a schema, R, is to be constrained so that it
satisfies a set of FDs, F, then F holds on R

John Edgar 33

A B C D

a1 b1 c1 d1

a1 b1 c1 d1

a1 b2 c2 d1

a2 b1 c3 d3

a1 b1 c2 d1

A B C D

a1 b1 c1 d1

a1 b1 c1 d1

a1 b2 c2 d1

a2 b1 c3 d3

Whenever {A,B} are the same
then C must also be the same

If two tuples differ in either A
or B fields then they may also
differ in the C field

The dependency ABC is violated by this tuple

Which FDs are satisfied in the original relation:

AC?, BC?, AD?, ABD?

John Edgar 34

AB C

 A primary key constraint is a special case of a FD
 If there is a FD: X Y on R, and Y is the set of all

attributes of R, then X is a superkey

 Note that X may not be a candidate key (or a primary key)

 The definition of a FD does not require that the set of
attributes is minimal

John Edgar 35

 A set of FDs, F, can be identified for a relation

 By enquiring about the problem domain
▪ In other words, by talking to people

 Given a set of FDs, additional FDs can usually be
identified

 The additional FDs are implied by F

 The set of all FDs implied by F is called the closure of
F, denoted F+

 F+ can be calculated by repeatedly applying Armstrong's
Axioms to F

John Edgar 36

 As noted earlier a set of functional
dependencies, F, can imply further FDs

 The set of all FDs implied by F is known as the
closure of F, or F+

 The minimal set of FDs from which F+ can be
calculated is known as the canonical cover

 We can use axioms, or rules of inference, to
reason about FDs

 Known as Armstrong's axioms

John Edgar 37

 Reflexivity

 If X Y, then X Y

▪ That is, if X contains Y then X Y

 Augmentation

 If X Y, then XZ YZ for any Z

 Note that Z Z
▪ A functional dependency X Y is referred to as trivial where

Y X

 Transitivity

 If X Y and Y Z, then XZ

remember that X and Y are sets of attributes

superset

John Edgar 38

subset

 Named after William W. Armstrong

 Who earned his PhD from UBC in 1966

 Dependency Structures of Data Base Relationships (1974)

 Armstrong's axioms are both sound and complete

 They are sound because they do not generate any
incorrect functional dependencies

 They are complete because they allow F+ to be generated
from a given F

 Additional rules can be derived from Armstrong's
axioms

John Edgar 39

 Union

 If X Y and XZ, then X YZ

▪ X Y and X Z – assumption

▪ X XY – augmentation

▪ XY YZ – augmentation

▪ X YZ – transitivity

 Decomposition

 If X YZ then X Y and X Z

 Pseudotransitivity

 If X Y and WY Z, then XW Z

if it helps, think of this as XX XY but

as X and Y are sets XX = X

John Edgar 40

 Union

 If X Y and X Z, then X YZ

 Decomposition

 If X YZ, then X Y and X Z

▪ X YZ – assumption

▪ YZ Y, YZ Z – reflexivity

▪ X Y – transitivity

▪ X Z – transitivity

 Pseudotransitivity

 If X Y and WY Z, then XW Z

John Edgar 41

 Union

 If X Y and X Z, then X YZ

 Decomposition

 If X YZ, then X Y and X Z

 Pseudotransitivity

 If X Y and WY Z, then XW Z

▪ X Y and WY Z – assumption

▪ XWWY – augmentation

▪ XW Z – transitivity

John Edgar 42

 Identify additional FDs in F+

 R = (A, B, C, G, H, I) F = {AB, AC, CGH, CGI, BH}

 A H
▪ transitivity from A B and B H

 AG I
▪ augmentation of A C with G, to get AG CG

▪ then transitivity with CG I

 CG HI
▪ augmentation of CG I to get CG CGI,

▪ then augmentation of CG H to get CGI HI,

▪ then transitivity

John Edgar 43

F+ = F
repeat

for each FD f in F+

apply reflexivity and augmentation rules on f
add the resulting FDs to F+

for each pair of FDs f1, f2 in F+

if f1 and f2 can be combined using transitivity
then add the resulting FD to F+

until F+ does not change

There may be many functional dependencies

The left and right sides of a functional
dependency are both subsets of R

Note - a set of size n has 2n subsets

John Edgar 44

 It can be useful to determine what attributes are
functionally dependent on a particular attribute set

 To determine if the attribute set is a superkey

 Compute F+ and take the union of the right side of
each FD whose left side is the relevant attribute set

 This can also be performed without computing F+

result = X
while (there are changes to result)

for each FD, Y Z in F
if Y result then result = result Z

X+ is the closure of a set of
attributes, X, under F

John Edgar 45

 What is the set of attributes, AG+?

 R = (A, B, C, G, H, I) F = {AB, AC, CGH, CGI, BH}

 result = AG

 result = ABCG (AB, AC)

 result = ABCGH (CGH and CG AGBC)

 result = ABCGHI (CGI and CG AGBCH)

 Is AG a superkey?

 i.e. does AG R? i.e. is AG+ R?

 Is any subset of AG a superkey?

 does A R? i.e. is A+ R?

 does G R? i.e. is G+ R?

John Edgar 46

 There are several uses of attribute closure
 Testing for a superkey

 If A+ contains R then A is a superkey

 Testing functional dependencies

 To check if a FD X Y is in F+ check to see if Y X+

 i.e. compute X+ by using attribute closure, and check to
see if it contains Y

 Computing closure of F

 For each X R, find the closure X+, and for each Y X+,
output a FD X Y

John Edgar 47

 Sets of FDs may contain redundant dependencies
 Individual dependencies may contain unnecessary

attributes
 A canonical cover of F is a minimal set of FDs that is

equivalent to F

 With no redundant dependencies or parts of dependencies

John Edgar 48

 Dependencies can be derived from other FDs

 e.g. A C is redundant in: {A B, B C}
▪ Because it can be obtained through transitivity

 Parts of a functional dependency may be redundant

 e.g. on RHS: {A B, B C, A CD} can be simplified
▪ {A B, B C, A D} since A C can be derived

 e.g. on LHS: {A B, B C, ACD} can be simplified
▪ {A B, B C, A D} since A C (through transitivity) so C is

not necessary on the left hand side of the dependency

▪ For example sin name and sin, name birthDate

▪ As birth date cannot be determined by name alone the inclusion of
name on the left hand side is unnecessary

John Edgar 49

 Some FDs contain extraneous attributes

 extraneous - not constituting a vital element or part

 Consider a FD X Y in a set F of FDs

 Attribute a is extraneous in X if a X and if F implies FDs:
(F – {X Y}) {(X – a) Y}
▪ e.g. if F = {A D, D C, AB C}, B is extraneous in ABC

▪ Because {A D, D C, ABC} logically implies A C

 Attribute a is extraneous in Y if a Y and the set of FDs:
(F – {X Y}) {X(Y – a)} logically implies F
▪ e.g. if F = {A C, AB CD}, C is extraneous in ABCD

▪ Because AB C can be inferred even after deleting C

use F to determine (X – a) Y

John Edgar 50

reproduce
F using F'

 Consider a FD X Y in a set F of FDs
 To test if attribute a X is extraneous in X

 compute ({X} – a)+ using the FDs in F

 check that ({X} – a)+ contains Y

 if it does, a is extraneous in X

 To test if attribute a Y is extraneous in Y
 compute X+ using only the dependencies in:

F’ = (F – {X Y}) {X(Y – a)}

 check that X+ contains a

 if it does, a is extraneous in Y

check that the attribute closure
of the LHS still implies Y after
removing a

check that the attribute closure
of the LHS still includes a after
removing it from the RHS in F’

John Edgar 51

 A canonical cover for F is a set of FDs, Fc, such
that

 F logically implies all dependencies in Fc, and

 Fc logically implies all dependencies in F, and

 No functional dependency in Fc contains an
extraneous attribute, and

 Each left side of a functional dependency in Fc is
unique

▪ Standardized format for cover

John Edgar 52

 To compute a canonical cover for F:
repeat

Use the union rule to replace any dependencies in F
X Y and X Z with X YZ

Find a functional dependency XY with an
extraneous attribute either in X or in Y
delete such extraneous attributes from X Y

until F does not change

 Note that the union rule may become applicable after
the deletion of an extraneous attributes

John Edgar 53

 Compute the canonical cover, Fc, of R

 R = (A, B, C, G, H, I) F = {ABC, BC, AB, ABC}

 First use the union rule to combine dependencies

 Combine A BC and A B into A BC
▪ The set is now {A BC, B C, AB C}

 Check for extraneous attributes

 A is extraneous in AB C
▪ To confirm this show that the result of deleting A from AB C is

implied by the other dependencies

▪ Which it is since B C already exists in F

John Edgar 54

 Compute the canonical, Fc, cover of R

 R = (A, B, C, G, H, I) F = {ABC, BC, AB, ABC}

 Continue to check for extraneous attributes

 Set is now {A BC, B C}

 C is extraneous in A BC

 Show that A C is logically implied by A B and the
other functional dependencies

 Which it is, using transitivity on A B and B C
▪ The attribute closure of A may be used in more complex cases

 Fc = {A B, BC}

John Edgar 55

 BCNF is a desirable normal form that can be
found by identifying functional dependencies

 BCNF eliminates all redundancy that can be
discovered by studying a set of FDs

▪ Although BCNF ignores multi-valued dependencies

 Generally BCNF is preferable to 3NF

 3NF allow some redundancy

 Let's look at the definitions of each in terms of
functional dependencies

John Edgar 57

 Boyce-Codd Normal Form is defined in terms of
functional dependencies

 A relational schema, R, is in BCNF with respect to a
set of FDs F if for all FDs in F+ of the form

 X Y where X R and Y R,

 At least one of the following holds

 X Y is trivial (i.e., Y X), or

 X is a superkey for R

means is a subset of

such as {name} {name}

John Edgar 58

 A relational schema, R, is in 3NF with respect to a
set of FDs F if

 For all functional dependencies in F+ of the form

 X Y where X R and Y R,

 At least one of the following holds

 X Y is trivial (i.e., Y X), or

 X is a superkey for R, or

 (Y – X) is contained in a candidate key for R

 Note that the only difference between 3NF and BCNF is
the last condition

John Edgar 59

 In a BCNF decomposition the only FDs are those
where the key of the table determines attributes

 Except for trivial dependencies

 Each table represents either an entity set or a
relationship set

 Identified by the key, and

 Described by the remaining attributes

 A database design is in BCNF if each table schema is
in BCNF

John Edgar 60

 Assume that there is some schema R and a non-trivial
dependency XY which causes a violation of BCNF
 Because X is not a key for the entire table (R)

 R should be decomposed into

 (XY) and (R - (Y – X))

 e.g. Asset = {assetNumber, assetName, cost, purchaseDate,
type, depreciation, cca}

 Where (type type, cca, depreciation)

 Decompose asset into

▪ {type, cca, depreciation} and

▪ {Asset – (type, cca, depreciation - type)}, i.e.

▪ {assetNumber, assetName, cost, purchaseDate, type}

John Edgar 61

result = R
done = false
compute F+

while (not done)
if (there is a schema Ri in result not in BCNF)

X Y is a nontrivial FD that holds on Ri

such that X Ri
* is not in F+, and X Y =

result = (result – Ri) (Ri – Y) (X, Y)
else done = true

end while

when complete all Ri are in BCNF, and
the decomposition is a lossless-join

*that is: X is not a key for the schema

John Edgar 62

 R = (A, B, C) F = {A B, B C}, Key = {A}

 R is not in BCNF since B C but B is not a superkey for R

 Decomposition

 R1 = (B, C)

 R2 = (A, B)

 Note that there may be more than one BCNF
decomposition for the same data

 Depending on the order in which the FDs are applied

John Edgar 63

Let Fc be a canonical cover for F
i = 0
for each functional dependency X Y in Fc

if none of the schemas Rj, 1 j i contains XY
i = i + 1
Ri = X Y

if none of the schemas Rj, 1 j i contains a
candidate key for R

i = i + 1
Ri = any candidate key for R

return (R1, R2, ..., Ri)

note that the algorithm looks at
dependencies in the canonical cover

John Edgar 64

We also need to record the SIN of the employee who is responsible

for monitoring an asset

That doesn't sound so bad, we can just add that to the
asset table, as it just depends on the asset number

Unfortunately its not that simple. When an asset is jointly owned

there is a responsible person for each of the owning departments.

And, of course, an employee can only belong to one department

So, in a sense, we could say that the department
depends on the employee

I suppose we could say that …

John Edgar 65

 Consider the Uses table

 Uses = {assetNumber, departmentName, respPerson, usage}

 The FDs that relate to this table are

▪ (dn,an us,rp)

▪ (rp dn) and by pseudotransitivity

▪ (rp,an us)

 Uses is therefore not in BCNF

 The BCNF decomposition is:

 Uses = {assetNumber, respPerson, usage}

 WorksIn = {respPerson, departmentName}

 However departmentName also depends on respPerson

John Edgar 66

 A BCNF decomposition would create a new table for
each functional dependency

 Uses = {assetNumber, respPerson, usage}

▪ In this case usage depends on the compound key of departmentName
and assetNumber, as does respPerson

 WorksIn = {respPerson, departmentName}

 However departmentName also depends on respPerson

 The 3NF decomposition would ignore the transitive
dependency*

 Uses = {departmentName, assetNumber, usage, respPerson}

 In this case the 3NF decomposition is preferred

*since, in rp dn, dn is part of a candidate key for Uses

John Edgar 67

Uses = {dName, assetNum, usage, respPerson}

an rp use

11 Zak 30

11 Ann 70

12 Sue 40

12 Bob 60

13 Zak 37

13 Ann 63

rp dn

Zak 1

Sue 1

Bob 2

Ann 2

{assetNumber, respPerson, usage}

{respPerson, dName}

F = (dp,an us,rp), (rp dp), (rp,an us)

which gives the following BCNF
decomposition, sample data
included …

John Edgar 68

an rp use

11 Zak 30

11 Ann 70

12 Sue 40

12 Bob 60

13 Zak 37

13 Ann 63

an rp use

11 Zak 20

11 Ann 70

12 Sue 40

12 Bob 60

13 Zak 37

13 Ann 63

11 Joe 10

rp dn

Zak 1

Sue 1

Bob 2

Ann 2

John Edgar 69

Now let’s add a record that states that Joe is responsible for asset
number 11, and change the use percentage so that it all adds up
correctly

Why is this a
problem?

Because it violates dn,an rp

rp dn

Zak 1

Sue 1

Bob 2

Ann 2

Joe 1

 If a relation is in BCNF it must also be in 3NF
 The third condition of 3NF is a minimal relaxation of

BCNF to ensure dependency preservation

 The third condition is when the right hand side of a FD is
part of a candidate key for the relation
▪ Uses = {departmentName, assetNumber, usage, respPerson}

▪ In this relation departmentName is part of a key for the relation so
the decomposition is in 3NF with respect to (rp dn)

 In this particular case the 3NF decomposition is preferable
to the BCNF decomposition

John Edgar 70

an dn rp use

11 1 Zak 30

12 1 Sue 40

13 1 Zak 37

11 2 Ann 60

12 2 Bob 37

13 2 Ann 63

{assetNumber, departmentName, respPerson usage}

Attempting to insert Joe, working in
dept 1, as the responsible person for
asset #11, will fail, as it violates the
primary key which comes from the
FD

(dp,an us,rp)

Uses = {departmentName, assetNumber, usage, respPerson}

F = (dp,an us,rp), (rp dp), (rp,an us) gives a 3NF decomposition, where
rp is part of a compound key

John Edgar 71

But notice the redundant data

 A BCNF decomposition removes redundancy

 Except for multi-valued dependencies

 But does not guarantee a dependency preserving decomposition

▪ In the example the BCNF decomposition did not preserve the

dependency (an,dp rp,us)

 A dependency preserving 3NF decomposition can always

be found

 But 3NF allows some repetition

▪ In the example the 3NF decomposition repeated the department for

each responsible person

John Edgar 72

 Consider decomposing a relation schema, R, with a
set of FDs, F, into two relations, X and Y

 If the original relation can be recovered by joining X and Y
it is a lossless-join decomposition with respect to F

 A decomposition is only lossless if and only if F+

contains either X Y X or X Y Y

 i.e. the attributes common to X and Y must contain a key
for either X or Y

John Edgar 73

 Consider decomposing a relation schema, R, with a
set of FDs, F, into two relations, X and Y

 The projection of F, FX, on X is the set of FDs in F+ that only
involve attributes of X

▪ A FD A B is only in FX if all the attributes of A and B are in X

 A decomposition of R is dependency preserving if
(FX FY)+ = F+

 If that is the case, then only the dependencies of FX and FY

need to be enforced

 As all the FDs in F+ will be satisfied

John Edgar 74

 In practice a DB designer usually uses an ER design
(or something similar) for an initial design

 Ideally a good ER design should lead to a collection
of tables with no redundancy problems

 ER design is complex and subjective, and

 Certain constraints cannot be expressed in ER diagrams

 A decomposition derived from an ER diagram may
need further refinement

 To ensure that it is in 3NF or BCNF

John Edgar 75

 When creating ERDs it is easy to miss dependencies
within an entity set

 e.g. type cca, depreciation

 e.g. level salary

 This problem becomes particularly relevant in practice
when designing large schemas

 Many real-world DBs may have hundreds of tables

 A correct ERD would create additional entity sets for the
dependencies

 But, a knowledge of FDs and DB design is required to recognize
this

John Edgar 76

 Identifying FDs can make it easier to associate attributes

with the correct entity set

 In some cases attributes may be associated with the wrong entity set

 For example, employee parking lots

 Assume that each employee is assigned a parking lot where they have

to park

 It seems reasonable to make lot an attribute of Employee

 However, the employees are assigned the lots based on the

department that they work in

 Therefore dept lot, and the lot attribute should be an attribute of

department rather than employee

John Edgar 77

 Identifying functional dependencies can assist a DB
designer in producing a good schema

 That is in BCNF, or 3NF, and is

 A lossless-join decomposition, dependency preserving
with minimal redundancy

 Functional dependencies can be used in conjunction
with ER diagrams to refine the schema

 FDs are particularly useful in cases where there is difficulty
in deciding how some information should be modeled

John Edgar 78

 It is still possible to have a schema in BCNF (or 3NF)
that is not sufficiently normalized

 For example: Classes = {course, teacher, book}
▪ A teacher, t, is qualified to teach course c, which requires textbook b

 The table is supposed to list the set of teachers competent
to teach a course, and

 The set of books which are required for that course

 An instance of this schema follows …

John Edgar 79

course teacher book

necromancy Amazo Bones

necromancy Amazo Tombs

necromancy Samael Bones

necromancy Samael Tombs

woodworking Larch Planes

woodworking Larch Trees

woodworking Larch Tools

Only trivial FDs hold, so the table
is in BCNF

Whenever a new teacher is
added, one row must be inserted
for each book

And, multiple teacher rows are
added when a book is added

Leading to redundancy

This occurs because the books are
independent of the teachers

A multivaued dependency

John Edgar 80

course teacher

necromancy Amazo

necromancy Samael

woodworking Larch

course book

necromancy Bones

necromancy Tombs

woodworking Planes

woodworking Trees

woodworking Tools

The following decomposition avoids the redundancy

A multi-valued dependency X Y holds over R, if for every
instance of R, each X value is associated with a set of Y values, and
this set is independent of the values in other attributes

John Edgar 81

 Further normal forms exist which deal with issues
not covered by functional dependencies

 Fourth Normal Form deals with multi-valued
dependencies

 There is a 4NF decomposition algorithm similar to the
BCNF decomposition algorithm

 And a set of rules for inferring additional MVDs

 Fifth Normal Form addresses more complex (and
rarer) situations where 4NF is not sufficient

John Edgar 82

