
CMPT 354

 Simple queries
 Set operations
 Aggregate operators
 Null values
 Joins
 Query Optimization

John Edgar 2

 Data Manipulation Language (DML) to

▪ Write queries

▪ Insert, delete and modify records

 Data Definition Language (DDL) to

▪ Create, modify and delete table definitions

▪ Define integrity constraints

▪ Define views

John Edgar 3

Account

customerID

owns

Transaction

Customer Branchholds

transacts

Employee

works

lastName

firstName

birthDate income

accNumber rate

type

branchName phone

city

transNumber

transDate

amount
firstName

description

sin

salary

lastName startDate

balance

John Edgar 4

 Customer = {customerID, firstName, lastName, birthDate, income}

 Account = {accNumber, type, balance, rate, branchName}

▪ branchName is a foreign key referencing Branch

 Owns = {customerID, accNumber}

▪ customerID and accNumber are foreign keys referencing Customer and Account

 Transaction = {accNumber, transNumber, amount, transDate, description}

▪ accNumber is a foreign key referencing Account

 Branch = {branchName, city, phone}

 Employee = {sin, firstName, lastName, salary, startDate, branchName}

▪ branchName is a foreign key referencing Branch

John Edgar 5

 There have been a number of SQL standards

▪ SQL-92: the third revision of the standard

▪ New data types and operations

▪ SQL 1999: fourth revision, also known as SQL 3

▪ More data types

▪ User-defined types

▪ Object-relational extensions

▪ Regular expression matching

▪ Some OLAP extensions (rollup, cube and grouping)

John Edgar 6

 Even more SQL standards
▪ SQL 2003

▪ Modifications to SQL-1999
▪ XML features
▪ More OLAP capabilities including a window function

▪ SQL 2008
▪ Additions to triggers
▪ XQuery pattern matching

▪ SQL 2011
▪ Support for temporal databases

▪ SQL 2016
▪ Row pattern matching, polymorphic table functions, JSON

John Edgar 7

 The basic form of an SQL query is

 Which is equivalent to

SELECT select-list

FROM from-list

WHERE condition

select-list(condition(from-list1  …  from-listn))

John Edgar 9

 The select-list is a list of column names belonging to
tables named in the from-list

▪ Column names may be prefixed by their table name or a
range variable to remove ambiguity

 The from-list is a list of table names
▪ A table name may be followed by a range variable

 The condition is a Boolean expression

▪ Using the <, <=, =, <>, >=, and > operators, and

▪ AND, NOT, and OR to join expressions

John Edgar 10

 Although derived from relational algebra SQL does
not remove duplicates unless instructed to do so

▪ This is because removing duplicates entails sorting the
result which can be very expensive

▪ An SQL query returns a multiset, or bag, of rows

▪ A bag allows more than one occurrence of an element, but
the elements are unordered
▪ e.g.{1,2,1} and {2,1,1} are the same bag

 The DISTINCT keyword specifies that duplicates are
to be removed from a result

John Edgar 11

▪ Calculate the Cartesian product of tables in the from-list
▪ Not necessary since this query only refers to the Customer table

▪ Remove any rows from the resulting table that do not
meet the specified condition

▪ Remove all columns that do not appear in the select-list

▪ Remove duplicates if DISTINCT is specified

SELECT DISTINCT firstName, lastName, income

FROM Customer

WHERE birthdate < '1950-09-27' AND income > 100000

John Edgar 12

 Return the types, owner customerIDs, account
numbers, and balances of accounts

 Where the balance is greater than $80,000 and the
account is held at the Lonsdale branch

SELECT O.customerID, A.type, A.accNumber, A.balance

FROM Owns O, Account A

WHERE A.accNumber = O.accNumber AND A.balance > 80000
AND A.branchName = 'Lonsdale'

Tuple Variables

John Edgar 13

 Return customer information relating to customers
whose last name is 'Summers'

SELECT *

FROM Customer

WHERE lastName = 'Summers'

i.e. all columns

John Edgar 14

 Tuple (or range) variables allow tables to be referred
to in a query using an alias

▪ The tuple variable is declared in the FROM clause by
writing it immediately after the table it refers to

 If columns in two tables have the same names, tuple
variables must be used to refer to them

▪ Tuple variables are not required if a column name is
unambiguous

 The full name of a table is an implicit tuple variable

▪ e.g. SELECT Customer.firstName …

John Edgar 15

 There are a number of reasons to use short explicit
tuple variables

▪ Distinguishing between columns with the same name but
from different tables

▪ Readability

▪ Laziness
▪ C.birthDate is less to type than Customer.birthDate

▪ To make it easier to re-use queries

▪ Because a query refers to the same table twice in the
FROM clause

John Edgar 16

 Find the names and customerIDs of customers who
have an income greater than Rupert Giles
▪ By comparing each customer’s income to Rupert’s income

▪ And using two references to the customer table

SELECT C.customerID, C.firstName, C.lastName

FROM Customer C, Customer RG

WHERE RG.firstName = 'Rupert' AND RG.lastName = 'Giles'
AND C.income > RG.income

The implicit range name, Customer, cannot distinguish between the two
references to the Customer table

What would the query return if there are two customers called Rupert
Giles?

John Edgar 17

 Both the select and condition statements can
include arithmetical operations

▪ Arithmetical operations can be performed on numeric
data in the SELECT statement

▪ Arithmetical operations can also be included in the
operands to Boolean operators in the WHERE condition

 Column names in the result table can be named, or
renamed using the AS keyword

John Edgar 18

 Return the balance of each account, and an
estimate of the balance at the end of the year

▪ Assuming an interest rate of 5%

SELECT accNumber, balance AS current,

balance * 1.05 AS yearEndBalance

FROM Account

This query would return a table whose columns were titled
accNumber, current, and yearEndBalance

John Edgar 19

 SQL strings are enclosed in single quotes

▪ e.g. firstName = 'Buffy'

▪ Single quotes in a string can be specified using an
initial single quote character as an escape

▪ author = 'O''Brian'

 Strings can be compared lexicographically
with the comparison operators

▪ e.g. 'fodder' < 'foo' is TRUE

Don't use “smart quotes”

John Edgar 20

 SQL provides pattern matching support with the LIKE
operator and two symbols

▪ The % symbol stands for zero or more arbitrary characters

▪ The _ symbol stands for exactly one arbitrary character

▪ The % and _ characters can be escaped with \

▪ LIKE 'C:\\Program Files\\%'

 Most comparison operators ignore white space,
however LIKE does not, hence

▪ 'Buffy' = 'Buffy ' is TRUE but

▪ 'Buffy' LIKE 'Buffy ' is FALSE

▪ Actual implementations of LIKE vary

John Edgar 21

 Return the customerIDs, and first and last names of
customers whose last name is similar to 'Smith'

SELECT customerID, firstName, lastName

FROM Customer

WHERE lastName LIKE 'Sm_t%'

This query would return customers whose last name is Smit,
or Smith, or Smythe, or Smittee, or Smut (!) but not Smeath,
or Smart, or Smt

John Edgar 22

 The SQL standard allows for more powerful pattern
matching using SIMILAR

 This operator allows regular expressions to be used
as patterns while searching text

▪ Similar to Unix regular expressions

 Again, note that not all SQL implementations may
fully support the SQL standard

▪ And some may extend it

John Edgar 23

 The SQL standard includes date and time types

▪ DATE – for dates, e.g. 2015-10-17

▪ TIME – for times, e.g. 17:30:29
▪ More precise time can be represented

▪ TIMEZ – time with time zone information

▪ TIMESTAMP – date and time together
▪ e.g. 2015-10-17 17:30:29

▪ TIMESTAMPZ – date and time with time zone information

 Dates and times are enclosed in single quotes

▪ They can be compared using comparison operators

John Edgar 24

 The implementation of SQL in a DBMS product may differ
from the standard

 As an example consider the Transact-SQL date and time
types used in MS SQL Server

▪ date – date

▪ datetime – date and time combined

▪ datetime2 – extension of datetime

▪ datetimeoffset – date and time with time zone

▪ smalldatetime – date and time with smaller range and less
precision, that requires less memory

▪ time – time

John Edgar 25

 A database may contain NULL values where

▪ Data is unknown, or

▪ Data does not exist for an attribute for a particular row

 There are special operators to test for null values

▪ IS NULL tests for the presence of nulls and

▪ IS NOT NULL tests for the absence of nulls

 Other comparisons with nulls evaluate to UNKNOWN

▪ Even when comparing two nulls

▪ Except that two rows are evaluated as duplicates, if all their
corresponding attributes are equal or both null

 Arithmetic operations on nulls return NULL

John Edgar 26

 23 < NULL
▪ UNKNOWN

 NULL >= 47
▪ UNKNOWN

 NULL = NULL
▪ UNKNOWN

 NULL IS NULL
▪ TRUE

 23 + NULL - 3
▪ NULL

 NULL * 0
▪ NULL

So don't do this to find nulls!

John Edgar 27

 Truth values for unknown results

▪ true OR unknown = true,

▪ false OR unknown = unknown,

▪ unknown OR unknown = unknown ,

▪ true AND unknown = unknown,

▪ false AND unknown = false,

▪ unknown AND unknown = unknown

▪ NOT unknown = unknown

 The result of a WHERE clause is treated as false if it
evaluates to unknown

John Edgar 28

 Let's say there are 2,753 records in Customer

▪ How many rows would be returned by selecting customers
whose incomes are 50,000 or less, or more than 50,000?

SELECT customerID, firstName, lastName

FROM Customer

WHERE income <= 50000 OR income > 50000

null <= 50000 = unknown and null > 50000 = unknown and
unknown or unknown = unknown which is treated as false!

This should return 2,753 customers, but what happens when
we don't know a customer's income (i.e. it is null)?

John Edgar 29

 The output of an SQL query can be ordered
▪ By any number of attributes, and

▪ In either ascending or descending order

 Return the name and incomes of customers, ordered
alphabetically by name

SELECT lastName, firstName, income

FROM Customer

ORDER BY lastName, firstName

The default is to use ascending order, the keywords ASC and
DESC, following the column name, sets the order

John Edgar 30

 SQL supports union, intersection and set difference
operations

▪ Called UNION, INTERSECT, and EXCEPT

▪ These operations must be performed on union compatible
tables

 Although these operations are supported in the SQL
standard, implementations may vary

▪ EXCEPT may not be implemented
▪ When it is, it is sometimes called MINUS

John Edgar 32

 Find customerIDs, and first and last names of customers
▪ Who have accounts in either the Robson or the Lonsdale

branches

SELECT C.customerID, C.firstName, C.lastName
FROM Customer C, Owns O, Account A
WHERE C.customerID = O.customerID AND

A.accNumber = O.accNumber AND
(A.branchName = 'Lonsdale' OR
A.branchName = 'Robson')

This query would return the desired result, note that the
brackets around the disjunction (or) are important

John Edgar 33

SELECT C1.customerID, C1.firstName, C1.lastName
FROM Customer C1, Owns O1, Account A1
WHERE C1.customerID = O1.customerID AND

A1.accNumber = O1.accNumber AND
A1.branchName = 'Lonsdale'

UNION
SELECT C2.customerID, C2.firstName, C2.lastName
FROM Customer C2, Owns O2, Account A2
WHERE C2.customerID = O2.customerID AND

A2.accNumber = O2.accNumber AND
A2.branchName = 'Robson'

This query returns
the same result as
the previous
version, there are
often many
equivalent queries

John Edgar 34

 Now find customers who have accounts in both of
the Lonsdale or Robson branches

SELECT C.customerID, C.firstName, C.lastName
FROM Customer C, Owns O, Account A
WHERE C.customerID = O.customerID AND

A.accNumber = O.accNumber AND
(A.branchName = 'Lonsdale' AND
A.branchName = 'Robson')

A single account can be held at only one branch, therefore this
query returns the empty set

Exactly which records does this query return?

John Edgar 35

 And here is another version …

SELECT C.customerID, C.firstName, C.lastName

FROM Customer C, Owns O1, Account A1,

Owns O2, Account A2

WHERE C.customerID = O1.customerID AND

O1.customerID = O2.customerID AND

O1.accNumber = A1.accNumber AND

O2.accNumber = A2.accNumber AND

A1.branchName = 'Lonsdale' AND

A2.branchName = 'Robson'

This query would
return the desired
result, but it is not
pretty, nor is it very
efficient - there are
five tables in the
FROM clause!

John Edgar 36

SELECT C1.customerID, C1.firstName, C1.lastName

FROM Customer C1, Owns O1, Account A1

WHERE C1.customerID = O1.customerID AND

A1.accNumber = O1.accNumber AND

A1.branchName = 'Lonsdale'

INTERSECT

SELECT C2.customerID, C2.firstName, C2.lastName

FROM Customer C2, Owns O2, Account A2

WHERE C2.customerID = O2.customerID AND

A2.accNumber = O2.accNumber

AND A2.branchName = 'Robson'

What if you don't want
customerID in the result ?

John Edgar 37

 Find the customerIDs of customers who have an account in
the Lonsdale branch

 But who do not have an account in the Robson branch

SELECT O.customerID

FROM Owns O, Account A

WHERE O.accNumber = A.accNumber AND

A.branchName = 'Lonsdale' AND

A.branchName <> 'Robson'

What does this query return?

Customers who own an account at Lonsdale (and
note that Lonsdale is not the same as Robson …)

John Edgar 38

 Find the customerIDs of customers who have an account in
the Lonsdale branch but don't have one in Robson
▪ And get it right this time!

SELECT O1.customerID

FROM Owns O1, Account A1, Owns O2, Account A2

WHERE O1.customerID = O2.customerID AND

O1.accNumber = A1.accNumber AND

O2.accNumber = A2.accNumber AND

A1.branchName = 'Lonsdale' AND

A2.branchName <> 'Robson'

What does this
query return?

Customers who own any account that isn't at
the Robson branch

John Edgar 39

 This time find the customerIDs of customers who have an
account at the Lonsdale branch but not at Robson

SELECT O1.customerID

FROM Owns O1, Account A1

WHERE A1.accNumber = O1.accNumber AND

A1.branchName = 'Lonsdale'

EXCEPT

SELECT O2.customerID

FROM Owns O2, Account A2

WHERE A2.accNumber = O2.accNumber AND

A2.branchName = 'Robson'

John Edgar 40

 Unlike other SQL operations, UNION, INTERSECT, and
EXCEPT queries eliminate duplicates by default

 SQL allows duplicates to be retained in these three
operations using the ALL keyword

 If ALL is used, and there are m copies of a row in the
upper query and n copies in the lower

▪ UNION returns m + n copies

▪ INTERSECT returns min(m, n) copies

▪ EXCEPT returns m – n copies

 It is generally advisable not to specify ALL

John Edgar 41

firstName lastName

Arnold Alliteration

Bob Boyd

Bob Boyd

Charlie Clements

Bob Boyd

firstName lastName

Bob Boyd

Charlie Clements

Susie SummerTree

Desmond Dorchester

firstName lastName

Arnold Alliteration

SELECT firstName, lastName

FROM Customer

EXCEPT

SELECT firstName, lastName

FROM Employee

firstName,lastName(Customer) firstName,lastName(Employee)

John Edgar 42

firstName lastName

Arnold Alliteration

Bob Boyd

Bob Boyd

Charlie Clements

Bob Boyd

firstName lastName

Bob Boyd

Charlie Clements

Susie SummerTree

Desmond Dorchester

SELECT firstName, lastName

FROM Customer

EXCEPT ALL

SELECT firstName, lastName

FROM Employee

firstName,lastName(Customer) firstName,lastName(Employee)

John Edgar 43

firstName lastName

Arnold Alliteration

Bob Boyd

Bob Boyd

 SQL allows table to be joined in the FROM clause
 SQL joins implement relational algebra joins

▪ Natural joins and theta joins are implemented by
combining join types and conditions

 SQL also allows outer joins which retain records of
one or both tables that do not match the condition

 Exact syntax and implementation of joins for a
DBMS may differ from the SQL standard

John Edgar 44

 INNER – only includes records where attributes from
both tables meet the join condition

 LEFT OUTER – includes records from the left table that
do not meet the join condition

 RIGHT OUTER – includes records from the right table
that do not meet the join condition

 FULL OUTER – includes records from both tables that do
not meet the join condition

 In outer joins, results are padded with NULL values for
the attributes of records in only one of the tables

John Edgar 45

 NATURAL – equality on all attributes in common

▪ Similar to a relational algebra natural join

 USING (A1, …, An) – equality on all the attributes in the
attribute list

▪ Similar to a relational algebra theta join on equality

 ON(condition) – join using condition
▪ Similar to a relational algebra theta join

 Join conditions can be applied to outer or inner joins

▪ If no condition is specified for an inner join the Cartesian
product is returned

▪ A condition must be specified for an outer join

John Edgar 46

 Return the SINs and salaries of all employees, if they
are customers also return their income

 A left outer join is often preferred to a right outer join

▪ So that nulls appear on the right hand side of the result

SELECT E.sin, E.salary, C.income

FROM Employee E LEFT OUTER JOIN Customer C ON
E.sin = C.customerID

In this example the income column will contain nulls for
those employees who are not also customers

John Edgar 47

SELECT E.sin, E.salary, C.income

FROM Employee E LEFT OUTER JOIN Customer C ON E.sin = C.customerID

all employees

income of
customers who
are also
employees

John Edgar 48

sin salary income

111 29000 29000

222 73000 null

333 48000 null

444 83000 150000

555 48000 null

666 53000 53000

777 3200 null

 Return the customerIDs, first and last names, and
account numbers of customers who own accounts

SELECT C.customerID, c.firstName, C.lastName, O.accNumber

FROM Customer C NATURAL INNER JOIN Owns O

No records will be returned for customers who do not have
accounts

A natural join can be used here because the Owns and Customer
table both contain attributes called customerID

John Edgar 49

 Return the SINs of employees, and customerIDs and
first names of customers with the same last name

SELECT E.sin, C.customerID, C.firstName

FROM Employee E INNER JOIN Customer C USING (lastName)

In this case there will (probably) be many rows with repeated
data for both the left and right tables

John Edgar 50

 A nested query is a query that contains an
embedded query, called a sub-query

 Sub-queries can appear in a number of places

▪ In the FROM clause,

▪ In the WHERE clause, and

▪ In the HAVING clause

 Sub-queries referred to in the WHERE clause are
often used in additional set operations

 Multiple levels of query nesting are allowed

John Edgar 52

 IN
 NOT IN
 EXISTS
 NOT EXISTS
 UNIQUE
 ANY
 ALL

John Edgar 53

 Find customerIDs, birth dates and incomes of
customers with an account at the Lonsdale branch

SELECT C.customerID, C.birthDate, C.income

FROM Customer C

WHERE C.customerID IN

(SELECT O.customerID

FROM Account A, Owns A

WHERE A.accNumber = O.accNumber AND
A.branchName = 'Lonsdale')

Replacing IN with NOT IN in this query would return
the customers who do not have an account at Lonsdale

John Edgar 54

 The query shown previously contains an
uncorrelated, or independent, sub-query

▪ The sub-query does not contain references to attributes of
the outer query

 An independent sub-query can be evaluated before
evaluation of the outer query

▪ And needs to be evaluated only once
▪ The sub-query result can be checked for each row of the outer

query

▪ The cost is the cost for performing the sub-query (once)
and the cost of scanning the outer relation

John Edgar 55

 Find customerIDs, birth dates and incomes of
customers with an account at the Lonsdale branch

SELECT C.customerID, C.birthDate, C.income

FROM Customer C

WHERE EXISTS

(SELECT *

FROM Account A, Owns O

WHERE C.customerID = O.customerID AND
A.accNumber = O.accNumber AND
A.branchName = 'Lonsdale')

EXISTS and NOT EXISTS test whether
the associated sub-query is non-
empty or empty

John Edgar 56

 The previous query contained a correlated sub-query

▪ With references to attributes of the outer query
▪ … WHERE C.customerID = O.customerID …

▪ It is evaluated once for each row in the outer query
▪ i.e. for each row in the Customer table

 Correlated queries are often inefficient

▪ Unfortunately some DBMSs do not distinguish between
the evaluation of correlated and uncorrelated queries

John Edgar 57

 Find the names and customerIDs of customers who have
an account in all branches

▪ This is an example of a query that would use division

▪ However division is often not implemented in SQL

▪ But can be computed using NOT EXISTS or EXCEPT

 To build a division query start by finding all the branch
names

▪ As this part is easy!

SELECT B.branchName

FROM Branch B

John Edgar 58

 We can also find all of the branches that a particular
customer has an account in

SELECT A.branchName

FROM Account A, Owns O

WHERE O.customerID = some_customerAND

O.accNumber = A.accNumber

OK, so I'm cheating here by putting in "some customer" but
we'll fix that part later using a correlated sub-query

John Edgar 59

SQ1 – A list of all
branch names

SQ2 – A list of
branch names that
a customer has an
account at

EXCEPT

The result contains all of the branches that a
customer does not have an account at, if the
customer has an account at every branch then this
result is empty

John Edgar 60

 Putting it all together we have
SELECT C.customerID , C.firstName, C.lastName

FROM Customer C

WHERE NOT EXISTS

((SELECT B.branchName

FROM Branch B)

EXCEPT

(SELECT A.branchName

FROM Account A, Owns O

WHERE O.customerID = C.customerID AND

O.accNumber = A.accNumber))

John Edgar 61

 The UNIQUE operator tests to see if there are no
duplicate records in a query

▪ UNIQUE returns TRUE if no row appears twice in the
answer to the sub-query
▪ Two rows are equal if, for each attribute, the attribute values in one

row equal the values in the second

▪ Also, if the sub-query contains only one row or is empty
UNIQUE returns TRUE

 NOT UNIQUE tests to see if there are at least two
identical rows in the sub-query

John Edgar 62

 Find the customerIDs, first names, and last names of
customers who have only one account

SELECT C.customerID, C.firstName, C.lastName

FROM Customer C

WHERE UNIQUE

(SELECT O.customerID

FROM Owns O

WHERE C.customerID = O.customerID)

This is a correlated query, using NOT UNIQUE would
return customers with at least two accounts

What happens if a customer doesn't have an account?
John Edgar 63

 The ANY (SOME in some DBMS) and ALL keywords
allow comparisons to be made to sets of values

▪ The keywords must be preceded by a Boolean operator
▪ <, <=, =, <>, >=, or >

▪ ANY and ALL are used in the WHERE clause to make a
comparison to a sub-query

 ANY and ALL can be compared to IN and NOT IN

▪ IN is equivalent to = ANY

▪ NOT IN is equivalent to <> ALL

John Edgar 64

 Find the customerIDs and names, of customers who
earn more than any customer called Bruce

SELECT C.customerID, C.firstName, C.lastName

FROM Customer C

WHERE C.income > ANY

(SELECT Bruce.income

FROM Customer Bruce

WHERE Bruce.firstName = 'Bruce')

Customers in the result table must have incomes greater
than at least one of the rows in the sub-query result

John Edgar 65

 Find the customerIDs and names, of customers who
earn more than any customer called Bruce

SELECT C.customerID, C.firstName, C.lastName

FROM Customer C

WHERE C.income > ALL

(SELECT Bruce.income

FROM Customer Bruce

WHERE Bruce.firstName = 'Bruce')

If there were no customers called Bruce this query would
return all customers

John Edgar 66

 SQL has a number of operators which compute
aggregate values of columns

▪ COUNT – the number of values in a column

▪ SUM – the sum of the values in a column

▪ AVG – the average of the values in a column

▪ MAX – the maximum value in a column

▪ MIN – the minimum value in a column

 DISTINCT can be applied to any of these operations
but this should only be done with care!

John Edgar 68

 Find the average customer income

SELECT AVG (income) AS average_income

FROM Customer

The average column will be nameless unless it is given a
name, hence the AS statement

Note that this is a query where using DISTINCT would
presumably not give the intended results, as multiple
identical incomes would only be included once

John Edgar 69

 Find the number of different first names for customers
whose last name is Smith

SELECT COUNT (DISTINCT firstName) AS smith_names

FROM Customer

WHERE lastName = 'Smith' OR lastName = 'smith'

In this query it is important to use DISTINCT, otherwise the
query will simply count the number of people whose last
name is Smith

John Edgar 70

 Find the customerID and income of the customer with
the lowest income

SELECT customerID, MIN (income)

FROM Customer

There may be two people with the same minimum income

What is wrong with this query?

This query is therefore illegal, if any aggregation is used in
the SELECT clause it can only contain aggregations, unless
the query also contains a GROUP BY clause

John Edgar 71

 In the previous query a single aggregate value was,
potentially, matched to a set of values

 In the query below, a set of pairs is returned

▪ The income in each pair matches the single value returned
by the sub-query

SELECT C1.customerID, C1.income

FROM Customer C1

WHERE C1.income =

(SELECT MIN (C2.income)

FROM Customer C2)

John Edgar 72

 Consider a query to find out how many accounts
there are in each branch

▪ This requires that there are multiple counts, one for each
branch

▪ In other words a series of aggregations, based on the value
of the branch name

▪ Given the syntax shown so far this is not possible to
achieve in one query

▪ But it is possible using the GROUP BY clause

John Edgar 73

 Find the number of accounts held by each branch

SELECT branchName, COUNT (accNumber) AS num_acc

FROM Account

GROUP BY branchName

Every column that appears in the SELECT list that is not an
aggregation must also appear in the group list

John Edgar 74

 Find the number of accounts held by each branch

▪ Only for branches that have budgets over $500,000 and
total account balances greater than $1,000,000

SELECT B.branchName, COUNT (A.accNumber) AS accs

FROM Account A, Branch B

WHERE A.branchName = B.brNname AND

B.budget > 500000

GROUP BY B.branchName

HAVING SUM (A.balance) > 1000000

The HAVING clause is a condition that is applied to each
group rather than to each row

John Edgar 75

 Create the Cartesian product of the tables in the
FROM clause

 Remove rows not meeting the WHERE condition
 Remove columns not in the SELECT clause
 Sort records into groups by the GROUP BY clause
 Remove groups not meeting the HAVING clause
 Create one row for each group
 Eliminate duplicates if DISTINCT is specified

John Edgar 76

A Brief Introduction

 Find the customer IDs, last names and balances of customers
called Bob who have an account at the London Branch

SELECT C.customerID, C.lastName, A.balance

FROM Customer C, Owns O, Account A

WHERE A.accNumber = O1.accNumber AND

C.customerID = O.customerID AND

A.branchName = 'London' AND

C.firstName = 'Bob'

John Edgar 78

This is a conceptually simple query, but how
expensive is it (that is how long does it take to run)?

join

 Some data about the (small) bank's data

▪ 100,000 customer records in 10,000 disk pages
▪ Barclays bank had 12 million UK customers in 2013

▪ 120,000 accounts in 10,000 disk pages

▪ 200,000 owns records in 2,000 disk pages

▪ 10 ms to access a block (page) on a hard drive

▪ 1,000 main memory pages available for the query

 Where did these numbers come from?

▪ I made them up
▪ But they are not completely unreasonable …

John Edgar 79

 The cost metric to be used is the number of disk
reads and writes required for the query

▪ Because reading a block from a disk is much slower
than performing main memory operations

▪ About 250,000 times slower!

▪ So we will just consider the disk access costs of the
query and ignore main memory costs

 10ms is a reasonable estimate for the time to
read 1 block from a hard disk

▪ But reading multiple blocks is usually faster per block

John Edgar 80

 The process this query describes is

▪ Compute the Cartesian product of the Customer,
Owns and Account tables

▪ Select records that match the condition

▪ Remove all columns except those in the select list

John Edgar 81

SELECT C.customerID, C.lastName, A.balance

FROM Customer C, Owns O, Account A

WHERE A.accNumber = O1.accNumber AND

C.customerID = O.customerID AND

A.branchName = 'London' AND

C.firstName = 'Bob'

 The Cartesian product operation is a binary
operation so requires two tables as its operands

 We need an algorithm to compute the product

▪ Every row in one table must be concatenated with
every row in the other table

▪ Doing this one row at a time would be bad …

▪ Read as much of one table into main memory as
possible (approximately 1,000 blocks)

▪ Then scan the other table once for each such set of
records

John Edgar 82

 For each 1,000 block portion of Owns

▪ Scan the entire Customer table

▪ Output the concatenated records

 Cost in disk reads or writes

▪ Read Owns once – 2,000 reads

▪ Read Customer twice – 20,000 reads

▪ Write out result relation once – 2*109 writes

John Edgar 83

Why 2*109?
There are 200,000 * 100,000 = 2*1010 records in the
result, let’s say each is the same size as a Customer
record so that’s 2*1010 / 10 = 2*109 blocks

 For each 1,000 block portion of Account

▪ Scan the entire Customer-Owns (CO) relation

▪ Output the concatenated records

 Cost in disk reads or writes

▪ Read Account once – 10,000 reads

▪ Read CO 10 times – 2*1010 reads

▪ What’s the size of the result?

John Edgar 84

2*1010 * 120,000 = 2.4*1015. Each record has all of the attributes from
Customer, Owns and Account so a reasonable assumption is that there
are around 5 records per block. Fortunately this doesn’t really matter …

 Apply other operations as Customer-Owns-
Account (COA) records are computed

▪ Instead of writing out the entire COA relation and
then reading it in again

 The selection and projection therefore do not
require any additional disk reads or writes

▪ Since they are applied on
the fly

John Edgar 85

SELECT C.customerID, C.lastName, A.balance

FROM Customer C, Owns O, Account A

WHERE A.accNumber = O1.accNumber AND

C.customerID = O.customerID AND

A.branchName = 'London' AND

C.firstName = 'Bob'

 We could add up all of the costs but the cost of repeatedly
scanning the CO relation in the second product dominates

▪ The CO relation was read 10 times to compute the COA relation

▪ For a cost of 2*1010 disk reads

 Recall that each disk read takes 10 ms

▪ 2*1010 / 100 = 2*108 seconds

▪ 2*108 / 60 = 3.33 *106 minutes

▪ 3.33*106 / 60 = 55,556 hours

▪ 55,556 / 24 = 2,315 days

▪ 2,315 / 365 = 6.34 years

John Edgar 86

SELECT C.customerID, C.lastName, A.balance

FROM Customer C, Owns O, Account A

WHERE A.accNumber = O1.accNumber AND

C.customerID = O.customerID AND

A.branchName = 'London' AND

C.firstName = 'Bob'

SELECT C.customerID, C.lastName, A.balance

FROM Customer C, Owns O, Account A

WHERE A.accNumber = O1.accNumber AND

C.customerID = O.customerID AND

A.branchName = 'London' AND

C.firstName = 'Bob'

 This query is equivalent to the original query

SELECT C.customerID, C.lastName, A.balance

FROM (SELECT accNumber, balance

FROM Account

WHERE branchName = 'London') AS A

NATURAL INNER JOIN Owns

NATUAL INNER JOIN

(SELECT customerID, lastName

FROM Customer

WHERE C.firstName = 'Bob') AS C

John Edgar 87

More complex than
the original but is it
more efficient?

 The new query makes two major changes

▪ The selections and some preliminary projections
occur before any relations are joined

▪ And the Cartesian products are replaced by joins

 The two queries are equivalent

▪ They compute the same result

▪ But in different ways

▪ And the order in which the operations are performed is
very different

John Edgar 88

 Estimating the cost of the Account sub-query
is difficult without additional information

▪ However, the upper limit on its cost is the size of
the Account relation – 10,000 block reads

▪ Since the selection and projection can be satisfied
in a single scan of the entire Account table

 More importantly the size of the result of
these initial operations is much smaller

▪ How much smaller?

John Edgar 89

SELECT accNumber, balance

FROM Account

WHERE branchName = 'London'

 Estimate the number of London Accounts as
15% of the total

▪ 18,000 Accounts

 The query’s schema has just two attributes

▪ Let’s assume 100 records fit on one block

▪ As each record is similar in size to an Owns record

▪ The result is contained in just 180 blocks

John Edgar 90

SELECT accNumber, balance

FROM Account

WHERE branchName = 'London'

 We can follow a similar process for the
Customer sub-query
▪ At worst the cost is of the query is 10,000 reads

 The size of the result depends on the size of
each record and the number of Bobs
▪ The first name condition is very selective
▪ Babies were given 62,000 different first names in 2014

▪ Let’s assume that 0.01% of first names are Bob

▪ 10 records on 1 disk block!

John Edgar 91

SELECT customerID, lastName

FROM Customer

WHERE C.firstName = 'Bob'

 The estimated total cost of the new query is
roughly equal to the sum of the table sizes

▪ Since Account was scanned to perform a sub-
query

▪ And Customer was scanned for its sub-query

▪ The first join, at worst, requires reading all of
Owns once

▪ Then joining the relatively small result of that join
to Account

John Edgar 92

 Total cost in the order of 22,000 disk reads

▪ Let’s be extravagant and call it 30,000

▪ 30,000 / 100 = 300 seconds

▪ 300 seconds = 5 minutes
▪ This may seem like a long time but not as long as 6 years …

 Indexes might significantly reduce this cost

▪ By how much depends on the type of index
▪ An index on first name would greatly reduce the cost of the

Customer selection

▪ However, an index on city would have to be a clustered index to
reduce the cost of the Account selection

John Edgar 93

 Query optimization is the process of finding an

efficient equivalent query and entails

▪ Converting the original SQL query to relational algebra

▪ Finding equivalent queries

▪ Estimating the cost of each of the queries

▪ Each query can have multiple different costs since there is more

than one algorithm for many operations

▪ Selecting the most efficient query

 Modern DBMS automatically optimize queries

▪ This is a good thing …

John Edgar 94

