
CMPT 354

 Introduction
 Relational Algebra Operations

▪ Projection and Selection

▪ Set Operations

▪ Joins

▪ Division

 Tuple Relational Calculus

John Edgar 2

 Query languages allow the manipulation and
retrieval of data from a database

 The relational model supports simple, but powerful
query languages that

▪ Have a strong formal foundation, and

▪ Allow for optimization

 A query language is not a general purpose
programming language

▪ They are not Turing complete, and

▪ Are not intended for complex calculations

John Edgar 3

 Two mathematical query languages form the
basis for SQL (and other query languages)

▪ Relational Algebra – a procedural query language
that is relatively close to SQL

▪ Relational Calculus – a non-procedural language

 Understanding formal query languages is
important for understanding

▪ The origins of SQL

▪ Query processing and optimization

John Edgar 4

 A procedural query consists of a series of operations

▪ Which describe a step-by-step process for calculating the
answer

▪ e.g. giving precise directions on how to get somewhere
▪ "…, turn left at the blue sign, drive for 1.5 miles, turn right at the cat,

then left again at the red tower, …"

 A non-procedural (or declarative) query describes
what output is desired, and not how to compute it

▪ e.g.. giving the address someone is to go to
▪ "go to the TD bank at 15th. and Lonsdale"

John Edgar 5

 A query is applied to a relation instance, and the
result of a query is a relation instance
▪ The schema of the result relation is determined by the

input relation and the query

▪ Because the result of a query is a relation instance, it
can be used as input to another query

John Edgar 6

?() = ,?() = , …

 Fields in an instance can be referred to either

by position or by name

▪ Positional notation is easier for formal definitions

▪ Using field names make queries easier to read

 The schema of the result is inherited from the

input relations

John Edgar 7

 The selection operator,  (sigma), specifies the rows
to be retained from the input relation

 A selection has the form: condition(relation), where
condition is a Boolean expression

▪ Terms in the condition are comparisons between two
fields (or a field and a constant)

▪ Using one of the comparison operators: , , , , , 

▪ Terms may be connected by  (and), or  (or),

▪ Terms may be negated using  (not)

John Edgar 9

sin firstName lastName birth

111 Buffy Summers 1981

222 Xander Harris 1981

333 Cordelia Chase 1980

444 Rupert Giles 1955

555 Dawn Summers 1984

sin firstName lastName birth

333 Cordelia Chase 1980

444 Rupert Giles 1955

sin firstName lastName birth

111 Buffy Summers 1981

555 Dawn Summers 1984

Customer

birth < 1981(Customer)

lastName = "Summers"(Customer)

John Edgar 10

 The projection operator,  (pi), specifies the
columns to be retained from the input relation

 A selection has the form:  columns(relation)

▪ Where columns is a comma separated list of column
names

▪ The list contains the names of the columns to be retained
in the result relation

John Edgar 11

sin firstName lastName birth

111 Buffy Summers 1981

222 Xander Harris 1981

333 Cordelia Chase 1980

444 Rupert Giles 1955

555 Dawn Summers 1984

firstName lastName

Buffy Summers

Xander Harris

Cordelia Chase

Rupert Giles

Dawn Summers

birth

1981

1980

1955

1984

firstName,lastName(Customer)

birth(Customer)

Customer

John Edgar 12

 Selection and projection eliminate duplicates

▪ Since relations are sets

▪ In practice (SQL), duplicate elimination is expensive,
therefore it is only done when explicitly requested

 Both operations require one input relation
 The schema of the result of a selection is the same

as the schema of the input relation
 The schema of the result of a projection contains

just those attributes in the projection list

John Edgar 13

intermediate relation

sin firstName lastName birth

111 Buffy Summers 1981

222 Xander Harris 1981

333 Cordelia Chase 1980

444 Rupert Giles 1955

555 Dawn Summers 1984

sin firstName

111 Buffy

sin firstName lastName birth

111 Buffy Summers 1981

sin, firstName(birth < 1982  lastName = "Summers"(Customer))

Customer

John Edgar 14

 Relational algebra includes the standard set
operations:
▪ Union, 

▪ Intersection, 

▪ Set Difference, 

▪ Cartesian product (Cross product), 

 All relational algebra operations can be implemented
using five basic operations

▪ Selection, projection, union, set difference and Cartesian
product

These are all binary operators

John Edgar 15

A = {1, 3, 6} B = {1, 2, 5, 6}

Union () A  B  B A A  B = {1, 2, 3, 5, 6}

Intersection() A  B  B A A  B = {1, 6}

Set Difference() A  B  B A A  B = {3} B A = {2, 5}

Cartesian Product () A  B  B A* A  B ={(1,1),(1,2),(1,5),(1,6),(3,1),(3,2),(3,5),
(3,6),(6,1),(6,2),(6,5),(6,6)}

* not strictly true, as pairs are ordered

John Edgar 16

 Union, set difference, and intersection can only be
performed on union compatible operands

 Two relations, R and S, are union compatible if

▪ They have the same number of fields

▪ Corresponding fields, from left to right, have the same
domains

 For convenience, we will assume that the result
relation will inherit the field names of R

▪ The schema of the result relation will be the same as the
schema of R

John Edgar 17

We can carry out preliminary operations to make the relations union compatible

sin firstName lastName birth

111 Buffy Summers 1981

222 Xander Harris 1981

333 Cordelia Chase 1980

444 Rupert Giles 1955

555 Dawn Summers 1984

sin firstName lastName salary

208 Clark Kent 80000.55

111 Buffy Summers 22000.78

412 Carol Danvers 64000.00

sin, firstName, lastName(Customer) sin, firstName, lastName(Employee)

Intersection of the Employee and Customer relations

The two relations are not union compatible as
birth is a DATE and salary is a REAL

Customer Employee

John Edgar 18

sin firstName lastName

111 Buffy Summers

222 Xander Harris

333 Cordelia Chase

444 Rupert Giles

555 Dawn Summers

208 Clark Kent

412 Carol Danverssin firstName lastName

208 Clark Kent

111 Buffy Summers

412 Carol Danvers

sin firstName lastName

111 Buffy Summers

222 Xander Harris

333 Cordelia Chase

444 Rupert Giles

555 Dawn Summers

R  S

Returns all records in either relation (or both)

R

S

John Edgar 19

sin firstName lastName

111 Buffy Summers

Only returns records that are in both relations

John Edgar 20

sin firstName lastName

208 Clark Kent

111 Buffy Summers

412 Carol Danvers

sin firstName lastName

111 Buffy Summers

222 Xander Harris

333 Cordelia Chase

444 Rupert Giles

555 Dawn Summers

R  SS

R

sin firstName lastName

222 Xander Harris

333 Cordelia Chase

444 Rupert Giles

555 Dawn Summers

R  S

R  S returns all records in R that are not in S

sin firstName lastName

208 Clark Kent

412 Carol Danvers

S  R

John Edgar 21

sin firstName lastName

208 Clark Kent

111 Buffy Summers

412 Carol Danvers

sin firstName lastName

111 Buffy Summers

222 Xander Harris

333 Cordelia Chase

444 Rupert Giles

555 Dawn Summers

S

R

 The schema of the result of R  S has one attribute
for each attribute of the input relations

▪ All of the fields of R, followed by all of the fields of S

▪ Names are inherited if possible (i.e. if not duplicated)
▪ If two field names are the same a naming conflict occurs and the

affected columns are referred to by position

 The result relation contains one record for each pair
of records r  R, s  S

▪ Each record in R is paired with each record in S
▪ If R contains m records, and S contains n records, the result relation

will contain m * n records

John Edgar 22

sin firstName lastName birth

111 Buffy Summers 1981

555 Dawn Summers 1984

acc type balance sin

01 CHQ 2101.76 111

02 SAV 11300.03 333

03 CHQ 20621.00 444

1 firstName lastName birth acc type balance 8

111 Buffy Summers 1981 01 CHQ 2101.76 111

111 Buffy Summers 1981 02 SAV 11300.03 333

111 Buffy Summers 1981 03 CHQ 20621.00 444

555 Dawn Summers 1984 01 CHQ 2101.76 111

555 Dawn Summers 1984 02 SAV 11300.03 333

555 Dawn Summers 1984 03 CHQ 20621.00 444

lastName = "Summers"(Customer)

lastName = "Summers"(Customer) Account

Account

John Edgar 23

 It is sometimes useful to assign names to the
results of a relational algebra query

 The rename operator,  (rho) allows a
relational algebra expression to be renamed

▪ x(E) names the result of the expression, or

▪ x(A1,A2,…,An)(E) names the result of the expression,
and its attributes

John Edgar 24

 To find the largest balance first find accounts which
are less than some other account
▪ By performing a comparison on the Cartesian product of

the account table with itself
▪ The Account relation is referred to twice so with no renaming we

have an ambiguous expression:

▪ account.balance  account.balance (Account × Account)

▪ So rename one version of the Account relation
▪ account.balance  d.balance (Account × d (Account))

 Then use set difference to find the largest balance

John Edgar 25

accNumber, balance(Account) –
account.accNumber, account.balance(account.balance  d.balance (Account × d (Account)))

 It is often useful to simplify some queries that
require a Cartesian product

 There is often a natural way to join two relations

▪ e.g., finding data about customers and their accounts
▪ Owns has foreign keys that reference Account and Customer

▪ Compute the Cartesian product of Customer and Owns
▪ Select the tuples where the primary key of Customer equals the

foreign key attribute in Owns

▪ Then repeat, using accNumber, with the result and Account

John Edgar 26

ownsCustomer Account

 A natural join (denoted by ⋈) combines a Cartesian
product and a selection

▪ The selection consists of equality on all attributes that
appear in both relations

▪ Duplicate fields are dropped from the result relation

 The natural join of two tables with no fields in
common is the Cartesian product

▪ Not the empty set

John Edgar 27

i.e. with matching names and domains

sin firstName lastName birth

111 Buffy Summers 1981

222 Xander Harris 1981

333 Cordelia Chase 1980

444 Rupert Giles 1955

555 Dawn Summers 1984

sin firstName lastName salary

208 Clark Kent 80000.55

111 Buffy Summers 22000.78

396 Dawn Allen 41000.21

412 Carol Danvers 64000.00

sin firstName lastName birth salary

111 Buffy Summers 1981 22000.78

Customer Employee

Customer ⋈ Employee

John Edgar 28

 A theta join is an extension of the natural join
operation

▪ That combines any selection with a Cartesian product

▪ Denoted as R ⋈ S where R ⋈ S  (R  S)

 Each record in one relation is paired with each
record of the other relation (a Cartesian product)

 Rows are only included in the result if they meet the
join condition

John Edgar 29

sin firstName lastName birth

111 Buffy Summers 1981

222 Xander Harris 1981

333 Cordelia Chase 1980

444 Rupert Giles 1955

555 Dawn Summers 1984

sin firstName lastName salary

208 Clark Kent 80000.55

111 Buffy Summers 22000.78

412 Carol Danvers 64000.00

1 2 3 birth 5 6 7 salary

111 Buffy Summers 1981 208 Clark Kent 80000

111 Buffy Summers 1981 412 Carol Danvers 64000

222 Xander Harris 1981 412 Carol Danvers 64000

333 Cordelia Chase 1980 412 Carol Danvers 64000

Customer ⋈Customer.sin < Employee.sin Employee

Customer Employee

John Edgar 30

 Division is useful for queries which return records
associated with all of the records in some subset

▪ Find people who like all types of music
▪ Country and Western??

▪ Find tourists who have visited all of the
provinces in Canada

 This operator is not always implemented in DBMSs
 But it can be expressed in terms of the basic set

operators

▪ Implementing a division query in SQL is a fun exercise

John Edgar 31

 If R has two fields, x and y, and S has one field, y, then

▪ R  S is equivalent to: x(R)  x ((x(R)  S)  R)

 R = {(a,1), (a,2), (a,3), (b,2), (b,3), (c,1), (c,3), (d,2)}
 S = {1, 2, 3}
 x(R)  S =

▪ {(a,1), (a,2), (a,3), (b,1), (b,2), (b,3), (c,1), (c,2), (c,3), (d,1), (d,2), (d,3)}

 (x(R)  S) – R =
▪ {(b,1), (c,2), (d,1), (d,3)}

 x((x(R)  S) – R) =
▪ {b, c, d}

 x(R)  x((x(R)  S)  R) = {a, b, c, d} – {c, b, d} =

▪ {a}

John Edgar 32

 Find the sins of employees who have worked on all of
a company’s projects

▪ Assume that Works is a many-to-many relationship
between Employee and Project

▪ Works = {sin, projectName}

 The schemas of the input relations have to be
carefully chosen

▪ Works  projectName(Project)

John Edgar 33

worksEmployee Project

 There are additional relational algebra operators

▪ Usually used in the context of query optimization

 Duplicate elimination – 

▪ Used to turn a bag into a set

 Aggregation operators

▪ e.g. sum, average

 Grouping – 

▪ Used to partition tuples into groups

▪ Typically used with aggregation

John Edgar 34

 Relational algebra is a procedural language that is
used as the internal representation of SQL

 There are five basic operators: selection, projection,
cross-product, union and set difference

▪ Additional operators are defined in terms of the basic
operators: intersection, join, and division

 There are often several equivalent ways to express a
relational algebra query

▪ These equivalencies are exploited by query optimizers to
re-order the operations in a relational algebra expression

John Edgar 35

 Both relational algebra and SQL are
procedural languages

▪ Where the query specifies how the result relation
is computed

 Non-procedural languages just specify what
the result should contain

▪ Tuple Relational Calculus

▪ Domain Relational Calculus

John Edgar 37

 A tuple relational calculus query is expressed as

▪ {t | P(t)}
▪ The set of tuples t, such that P is true for t

 In such a query t is a tuple variable and P(t) is a
formula that describes t

 For example: find all customers with incomes
greater than 40000

▪ {t | t  Customer  t.income > 40000}
▪ The set of tuples t, such that t is in Customer and t’s income is

greater than 40000

 The query languages is a subset of first order logic

John Edgar 38

 Tuple relational calculus queries are of the form

▪ {t | P(t)}

 Where P is a formula, and formulae are built up
using these rules

▪ An atomic formula is a formula

▪ If P1 is a formula so are P1 and (P1)

▪ If P1 and P2 are formulae so are P1  P2, P1  P2 and P1  P2

▪ If P1(s) is a formula with a free tuple variable s, and r is a
relation, then s  r(P1(s)) and s  r(P1(s)) are formulae

John Edgar 39

 If Relation is a relation name
 And R and S are tuple variables

▪ And a is an attribute of R and b an attribute of S

 And if op is an operator in the set {, , , , , }
 Then an atomic formula is one of:

▪ R  Relation

▪ R.a op S.b

▪ R.a op constant or constant op R.a

 Tuple variables are either free or bound

▪ A bound variable is quantified by  or 

John Edgar 40

 The symbol  means there exists
 Suppose we want to specify that only certain

attributes are to be returned by a query

▪ Return the customer’s first and last names for
customers with incomes greater than 40000

▪ {t | s  Customer (s.income > 40000  t.firstName 
s.firstName  t.lastName  s.lastName)}

▪ The set t such that there exists an s in Customer for
which t has the same first and last names and the value
of s for its income attribute is greater than 40000

John Edgar 41

 The quantifiers  and  have these meanings

▪  is the existential quantifier

▪ Which means … there is some …

▪  is the universal quantifier

▪ Which means … for all …

 Like relational algebra, different tuple relational calculus
queries may be equivalent

▪ P1  P2 is equivalent to ((P1)  (P2))

▪ t  r(P1(t)) is equivalent to  t  r ((P1(t))

▪ For all t in r where condition – is equivalent to: there is no t in r where
condition is not true

▪ P1  P2 is equivalent to (P1)  P2

John Edgar 42

 Schemata
▪ Project = {pNumber, pName, description, npv, irr, advisorSIN}
▪ Company = { companyName, city, …}
▪ Undertakes = {pNumber, companyName, monitorSIN}

John Edgar 43

Return the project numbers, names and company names of projects that are
monitored by employee 222 and that are undertaken by Vancouver companies (only
include Vancouver company names in the result).

{t | pProject uUndertakes cCompany (p.pNumber = u.pNumber 
u.monitorSIN = 222  c.companyName = u.companyName  c.city = “Vancouver” 
t.pNumber = p.pNumber  t.pName = p.pName  t.cName = c.cName)}

 Query-By-Example (QBE) is a query language
that works in a non-procedural way

▪ QBE was also the name of an early DBMS that
used the language

▪ In QBE queries are written as (and look like) tables

 Some modern DBMS have query builders
that are similar to QBE

▪ Graphical interfaces that allow the user to select
what a query result should contain

John Edgar 44

