
C H A P T E R 6

O L I V E R S C H U L T E

S U M M E R 2 0 1 1

Constraint Satisfaction
Problems

Outline

  CSP examples

  Backtracking search for CSPs

  Problem structure and problem decomposition

  Local search for CSPs

Environment Type Discussed In this Lecture

  Static Environment

CMPT 310 - Blind Search

3

Fully
Observable

Deterministic

Sequential

yes

yes

Discrete
Discrete

yes

Planning,
heuristic
search

yes

Control,
cybernetics

no

no

Continuous Function
Optimization

Vector Search:
Constraint
Satisfaction

no

yes

Agent Architecture Discussed In this Lecture

B C

(a) Atomic (b) Factored (b) Structured

B C

•  Graph-Based Search: State is black box, no internal
structure, atomic.
•  Factored Representation: State is list or vector of facts.
•  CSP: a fact is of the form “Variable = value”.

A model is a
structured
representation of
the world.

Constraint satisfaction problems (CSPs)

  CSP:
  state is defined by variables Xi with values from domain Di

  goal test is a set of constraints specifying allowable
combinations of values for subsets of variables.

  Allows useful general-purpose algorithms with more
power than standard search algorithms.

  Power close to simulating Turing Machines.

Example: Map-Coloring

CSPs (continued)

  An assignment is complete when every variable is mentioned.

  A solution to a CSP is a complete assignment that satisfies all
constraints.

  Some CSPs require a solution that maximizes an objective function.
  Constraints with continuous variables are common.

  Linear Constraints linear programming.

  Examples of Applications:

  Airline schedules
  Final Exam Scheduling.

  Cryptography

  Sudoku, cross-words.

Example: Map-Coloring contd.

Varieties of constraints

  Unary constraints involve a single variable,
  e.g., SA 6= green

  Binary constraints involve pairs of variables,
  e.g., SA <> WA

  Higher-order constraints involve 3 or more variables

  Preferences (soft constraints), e.g., red is better than
green

 often representable by a cost for each variable
assignment

➔ constrained optimization problems

Constraint graph

  Binary CSP: each constraint relates at most two
variables

  Constraint graph: nodes are variables, arcs show
constraints

  General-purpose CSP algorithms use the graph
structure

  to speed up search. E.g., Tasmania is an independent
subproblem!

Graphs and Factored Representations

  UBC AI Space CSP

  Graphs for variables (concepts, facts) capture local
dependencies between variables (concepts, facts).

  Absence of edges = independence.

  AI systems try to reason locally as much as possible.

  Potential Solution to the Relevance Problem:
  How does the brain retrieve relevant facts in a given situation, out of

the million facts that it knows?

  Answer: Direct links represent direct relevance.

  Computation in general is a local process operating on a
factored state. (What is the state of a program run?)

c a

d

e

b

Consider the constraint graph on the right.

The domain for every variable is [1,2,3,4].

There are 2 unary constraints:
- variable “a” cannot take values 3 and 4.
-  variable “b” cannot take value 4.

There are 8 binary constraints stating that variables
connected by an edge cannot have the same value.

Problem

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

5 Queen's Problem

Standard search formulation (incremental)

  Let’s formulate a state graph problem, then take
advantage of special structure later.

  States are defined by the values assigned so far
  Initial state: the empty assignment, { }
  Successor function: assign a value to an unassigned variable

that does not conflict with current assignment.
⇒ fail if no legal assignments (not fixable!)

  Goal test: the current assignment is complete

  This is the same for all CSPs!

Standard search formulation (incremental)

  Can we use breadth first search?
  Branching factor at top level?

 nd any of the d values can be assigned to any variable

  Next level?
  (n-1)d

  We generate n!.dn leaves even though there are dn complete
assignments. Why?

  Commutatively
  If the order of applications on any given set of actions has no

effect on the outcome.

Backtracking search

  Variable assignments are commutative, i.e.,
  [WA=red then NT =green] same as [NT =green thenWA=red]

  Only need to consider assignments to a single variable at
each node
➩  b=d and there are dn leaves

  Depth-first search for CSPs with single-variable
assignments is called backtracking search

  Is this uninformed or informed?
  Backtracking search is the basic uninformed algorithm for CSPs

Improving backtracking efficiency

4 Feb 2004 CS 3243 - Constraint Satisfaction

18

  General-purpose methods can give huge gains in speed:

  Which variable should be assigned next?

  In what order should its values be tried?

  Can we detect inevitable failure early?

  Constraint Learning: Can we keep track of what search has learned?

  Can we take advantage of problem structure?

Backtracking example

4 Feb 2004 CS 3243 - Constraint Satisfaction

19

Backtracking example

4 Feb 2004 CS 3243 - Constraint Satisfaction

20

Backtracking example

4 Feb 2004 CS 3243 - Constraint Satisfaction

21

Backtracking example

4 Feb 2004 CS 3243 - Constraint Satisfaction

22

Most constrained variable

4 Feb 2004 CS 3243 - Constraint Satisfaction

23

 Most constrained variable:
choose the variable with the fewest legal values

a.k.a. minimum remaining values (MRV) heuristic

Only picks a variable (Not a value)
Demo for MRV

Most constraining variable

4 Feb 2004 CS 3243 - Constraint Satisfaction

24

 How to choose between the variable with the fewest
legal values?

  Tie-breaker among most constrained variables
  Degree heuristic: choose the variable with the most

constraints on remaining variables

Least constraining value

4 Feb 2004 CS 3243 - Constraint Satisfaction

25

 Given a variable, choose the least constraining value:

  the one that rules out the fewest values in the
remaining variables.

  Intuition: choose “most likely” solution.

  Combining these heuristics makes 1000 queens
feasible

Forward checking

4 Feb 2004 CS 3243 - Constraint Satisfaction

26

  Idea:
  Keep track of remaining legal values for unassigned variables

  Terminate search when any variable has no legal values

Forward checking

4 Feb 2004 CS 3243 - Constraint Satisfaction

27

  Idea:
  Keep track of remaining legal values for unassigned variables

  Terminate search when any variable has no legal values

Forward checking

4 Feb 2004 CS 3243 - Constraint Satisfaction

28

  Idea:
  Keep track of remaining legal values for unassigned variables

  Terminate search when any variable has no legal values

Forward checking

4 Feb 2004 CS 3243 - Constraint Satisfaction

29

  Idea:
  Keep track of remaining legal values for unassigned variables

  Terminate search when any variable has no legal values

Constraint propagation

4 Feb 2004 CS 3243 - Constraint Satisfaction

30

  Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection for all
failures:

  NT and SA cannot both be blue!
  Constraint propagation repeatedly enforces constraints locally.

Has to be faster than searching

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , ,3,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ , , , }

X4
{ , ,3, }

X2
{ , ,3,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , , ,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, ,4}

X4
{ ,2,3, }

X2
{ , , ,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , ,3, }

X2
{ , , ,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , ,3, }

X2
{ , , ,4}

Example: 4-Queens Problem

1

3

2

4

3 2 4 1

X1
{1,2,3,4}

X3
{ ,2, , }

X4
{ , , , }

X2
{ , ,3,4}

Constraint propagation

  Techniques like CP and FC are in effect eliminating
parts of the search space
  Inference complements search (= simulation).

  Constraint propagation goes further than FC by
repeatedly enforcing constraints locally.

  Arc-consistency (AC) is a systematic procedure for
Constraint propagation (Macworth 1977 UBC).

Arc consistency

  An Arc X → Y is consistent if

 for every value x of X there is some value y consistent with x

 (note that this is a directed property)

  Consider state of search after WA and Q are assigned:

 SA → NSW is consistent if

 SA=blue and NSW=red

Arc consistency

  X → Y is consistent if
 for every value x of X there is some value y consistent with x

  NSW → SA is consistent if
 NSW=red and SA=blue
 NSW=blue and SA=???

Arc consistency

  Can enforce arc-consistency:
 Arc can be made consistent by removing blue from NSW

  Continue to propagate constraints….

  Check V → NSW
  Not consistent for V = red
  Remove red from V

Arc consistency

  Continue to propagate constraints….

  SA → NT is not consistent

  and cannot be made consistent

  Arc consistency detects failure earlier than FC

Arc consistency checking

  Can be run as a preprocessor or after each assignment
  Or as preprocessing before search starts

  AC must be run repeatedly until no inconsistency remains

  Trade-off
  Requires some overhead to do, but generally more effective than direct

search
  In effect it can eliminate large (inconsistent) parts of the state space

more effectively than search can

  Need a systematic method for arc-checking
  If X loses a value, neighbors of X need to be rechecked.

Arc consistency checking

Back-tracking or back-jumping?

  {Q=red , NSW= green, V= blue, T=red}

red

green

blue

red

?

blue
green

Local search for CSPs

  Use complete-state representation

  Initial state = all variables assigned values

  Successor states = change 1 (or more) values

  For CSPs

  allow states with unsatisfied constraints (unlike backtracking)

  operators reassign variable values

  hill-climbing with n-queens is an example

  Variable selection: randomly select any conflicted variable.
  Local Stochastic Search Demo

  Value selection: min-conflicts heuristic

  Select new value that results in a minimum number of conflicts with the
other variables

Local search for CSP

function MIN-CONFLICTS(csp, max_steps) return solution or failure

 inputs: csp, a constraint satisfaction problem

 max_steps, the number of steps allowed before giving up

 current ← an initial complete assignment for csp

 for i = 1 to max_steps do

 if current is a solution for csp then return current

 var ← a randomly chosen, conflicted variable from VARIABLES[csp]

 value ← the value v for var that minimize CONFLICTS
(var,v,current,csp)

 set var = value in current
 return failure

Min-conflicts example 1

Use of min-conflicts heuristic in hill-climbing.

h=5 h=3 h=1

Min-conflicts example 2

  A two-step solution for an 8-queens problem using min-conflicts heuristic

  At each stage a queen is chosen for reassignment in its column

  The algorithm moves the queen to the min-conflict square breaking ties
randomly.

Advantages of local search

  Local search can be particularly useful in an online setting

  Airline schedule example

 E.g., mechanical problems require than 1 plane is taken out of
service

 Can locally search for another “close” solution in state-space

 Much better (and faster) in practice than finding an entirely new
schedule.

  The runtime of min-conflicts is roughly independent of problem size.

  Can solve the millions-queen problem in roughly 50 steps.

  Why?
 n-queens is easy for local search because of the relatively high

density of solutions in state-space.

Graph structure and problem complexity

  Divide-and-conquer: Solving
disconnected subproblems.
  Suppose each subproblem has c

variables out of a total of n.

  Worst case solution cost is O(n/c dc),
i.e. linear in n
  Instead of O(d n), exponential in n

  E.g. n= 80, c= 20, d=2
  280 = 4 billion years at 1 million nodes/

sec.
  4 * 220= .4 second at 1 million nodes/

sec

Tree-structured CSPs

  Theorem:

  if a constraint graph has no loops then the CSP can be solved in
O(nd 2) time

  linear in the number of variables!

  Compare difference with general CSP, where worst case is O(d n)

Algorithm for Solving Tree-structured CSPs

  Choose some variable as root, order variables from root to leaves such that
every node’s parent precedes it in the ordering.
  Label variables from X1 to Xn.
  Every variable now has 1 parent

  Backward Pass

  For j from n down to 2, apply arc consistency to arc [Parent(Xj), Xj)]
  Remove values from Parent(Xj) if needed to make graph directed arc

consistent.

  Forward Pass
  For j from 1 to n assign Xj consistently with Parent(Xj)

Tree CSP Example

G B

Tree CSP Example

B
R
G

B
G

B
R
G R G B

Backward Pass
(constraint
propagation)

Tree CSP Example

B
R
G

B
G

B
R
G R G B

B G R G B R Forward Pass
(assignment)

Backward Pass
(constraint
propagation)

Tree CSP complexity

  Backward pass
  n arc checks
  Each has complexity d2 at worst

  Forward pass
  n variable assignments, O(nd)

⇒  Overall complexity is O(nd 2)

Algorithm works because if the backward pass succeeds, then every variable
by definition has a legal assignment in the forward pass

What about non-tree CSPs?

  General idea is to convert the graph to a tree

2 general approaches

1. Assign values to specific variables (Cycle Cutset method).

1.  Tries to exploit context-specific independence.

2. Construct a tree-decomposition of the graph

- Connected subproblems (subgraphs) becomes nodes in a
tree structure.

Tree Decompositions

Red, green, blue
Red, blue, green,
blue, red, green
…

Red, green, blue
Red, blue, green,
blue, red, green
…

Rules for a Tree Decomposition

  Every variable appears in at least one of the
subproblems.

  If two variables are connected in the original
problem, they must appear together (with the
constraint) in at least one subproblem.

  If a variable appears in two subproblems, it must
appear in each node on the path between them.

Tree Decomposition Algorithm

  View each subproblem as a “super-variable”
  Domain = set of solutions for the subproblem
  Obtained by running a CSP on each subproblem.
  Maximum-size of subproblem = treewidth of constraint graph.

  E.g., 6 solutions for 3 fully connected variables in map problem

  Now use the tree CSP algorithm to solve the constraints
connecting the subproblems
  Declare a subproblem a root node, create tree
  Backward and forward passes

  Example of “divide and conquer” strategy

Tree Decomposition

  Every graph has a tree decomposition, not just
constraint graphs.

  Tree decomposition shows optimal divide-and-
conquer strategy.
  For CSPs, optimization, search, inference.

  Typical result: if treewidth of a problem graph is
constant, then the search/optimization/inference
problem is solvable by divide and conquer.

Summary

  CSPs
  special kind of problem: states defined by values of a fixed set of variables, goal test

defined by constraints on variable values: factored representation.

  Backtracking=depth-first search with one variable assigned per node

  Heuristics
  Variable ordering and value selection heuristics help significantly

  Constraint propagation does additional work to constrain values and detect
inconsistencies
  Works effectively when combined with heuristics

  Iterative min-conflicts is often effective in practice.

  Graph structure of CSPs determines problem complexity
  e.g., tree structured CSPs can be solved in linear time.

