Constraint Satisfaction Problems **CHAPTER 6 OLIVER SCHULTE** SUMMER2011

Outline

- CSP examples
- Backtracking search for CSPs
- Problem structure and problem decomposition
- Local search for CSPs

- Graph-Based Search: State is **black box**, no internal structure, atomic.
- Factored Representation: State is list or vector of **facts**.
- CSP: a fact is of the form "Variable = value".

Constraint satisfaction problems (CSPs)

• CSP:

- o state is defined by variables X_i with values from domain D_i
- goal test is a set of constraints specifying allowable combinations of values for subsets of variables.
- Allows useful general-purpose algorithms with more power than standard search algorithms.
- Power close to simulating Turing Machines.

CSPs (continued)

• An assignment is *complete* when every variable is mentioned.

- A *solution* to a CSP is a complete assignment that satisfies all constraints.
- Some CSPs require a solution that maximizes an *objective function*.
- Constraints with continuous variables are common.
 - Linear Constraints → linear programming.
- Examples of Applications:
 - Airline schedules
 - Final Exam Scheduling.
 - Cryptography
 - Sudoku, cross-words.

Varieties of constraints

- Unary constraints involve a single variable,
 e.g., SA 6= green
- Binary constraints involve pairs of variables,
 e.g., SA <> WA
- Higher-order constraints involve 3 or more variables
- Preferences (soft constraints), e.g., red is better than green
 often representable by a cost for each variable
 assignment
- →constrained optimization problems

Constraint graph

- Binary CSP: each constraint relates at most two variables
- Constraint graph: nodes are variables, arcs show constraints

- General-purpose CSP algorithms use the graph structure
- to speed up search. E.g., Tasmania is an independent subproblem!

Graphs and Factored Representations

- <u>UBC AI Space CSP</u>
- Graphs for variables (concepts, facts) capture local dependencies between variables (concepts, facts).
- Absence of edges = independence.
- AI systems try to reason locally as much as possible.
- Potential Solution to the Relevance Problem:
 - How does the brain retrieve relevant facts in a given situation, out of the million facts that it knows?
 - Answer: Direct links represent direct relevance.
- Computation in general is a local process operating on a factored state. (What is the state of a program run?)

tea by an eage cannot have the barne va

5 Queen's Problem

Standard search formulation (incremental)

- Let's formulate a state graph problem, then take advantage of special structure later.
- States are defined by the values assigned so far
 - o Initial state: the empty assignment, { }
 - Successor function: assign a value to an unassigned variable that does not conflict with current assignment.
 - \Rightarrow fail if no legal assignments (not fixable!)
 - Goal test: the current assignment is complete
- This is the same for all CSPs!

Standard search formulation (incremental)

- Can we use breadth first search?
 - Branching factor at top level?
 - × *nd* any of the d values can be assigned to any variable
 - Next level?
 - × (n-1)d
 - We generate n!.dⁿ leaves even though there are dⁿ complete assignments. Why?
 - Commutatively
 - If the order of applications on any given set of actions has no effect on the outcome.

Backtracking search

- Variable assignments are commutative, i.e.,
 [WA=red then NT =green] same as [NT =green thenWA=red]
- Only need to consider assignments to a single variable at each node
 b=d and there are dⁿ leaves
- Depth-first search for CSPs with single-variable assignments is called **backtracking search**
- Is this uninformed or informed?
 - Backtracking search is the basic uninformed algorithm for CSPs

Improving backtracking efficiency

- General-purpose methods can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
 - Constraint Learning: Can we keep track of what search has learned?
 - Can we take advantage of problem structure?

CS 3243 - Constraint Satisfaction

4 Feb 2004

Most constrained variable

23

• Most constrained variable:

choose the variable with the fewest legal values a.k.a. minimum remaining values (MRV) heuristic

Only picks a variable (Not a value) <u>Demo for MRV</u>

Most constraining variable

• How to choose between the variable with the fewest legal values?

- Tie-breaker among most constrained variables
 - Degree heuristic: choose the variable with the **most constraints** on remaining variables

Least constraining value

- Given a variable, choose the least constraining value:
- the one that rules out the fewest values in the remaining variables.
- Intuition: choose "most likely" solution.

• Combining these heuristics makes 1000 queens feasible

26

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

27

- Keep track of remaining legal values for unassigned variables
- o Terminate search when any variable has no legal values

28

- Keep track of remaining legal values for unassigned variables
- Terminate search when any variable has no legal values

29

- Keep track of remaining legal values for unassigned variables
- o Terminate search when any variable has no legal values

Constraint propagation

30

• Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Constraint propagation repeatedly enforces constraints locally. Has to be faster than searching

Constraint propagation

- Techniques like CP and FC are in effect eliminating parts of the search space
 - **Inference** complements search (= simulation).
- Constraint propagation goes further than FC by repeatedly enforcing constraints locally.

• Arc-consistency (AC) is a systematic procedure for Constraint propagation (Macworth 1977 UBC).

- An Arc X → Y is consistent if for every value x of X there is some value y consistent with x (note that this is a directed property)
- Consider state of search after WA and Q are assigned:

 $SA \rightarrow NSW$ is consistent if SA=blue and NSW=red

• $X \rightarrow Y$ is consistent if

for *every* value *x* of *X* there is some value *y* consistent with *x*

• NSW → SA is consistent if NSW=red and SA=blue NSW=blue and SA=???

- Can enforce arc-consistency: Arc can be made consistent by removing *blue* from *NSW*
- Continue to propagate constraints....
 - $\circ \operatorname{Check} V \rightarrow NSW$
 - Not consistent for V = red
 - Remove red from V

- Continue to propagate constraints....
- SA → NT is not consistent
 o and cannot be made consistent
- Arc consistency detects failure earlier than FC

Arc consistency checking

- Can be run as a preprocessor or after each assignment
 Or as preprocessing before search starts
- AC must be run repeatedly until no inconsistency remains

• Trade-off

- Requires some overhead to do, but generally more effective than direct search
- In effect it can eliminate large (inconsistent) parts of the state space more effectively than search can
- Need a systematic method for arc-checking
 If *X* loses a value, neighbors of *X* need to be rechecked.

Arc consistency checking

function AC-3(*csp*) returns the CSP, possibly with reduced domains inputs: *csp*, a binary CSP with variables $\{X_1, X_2, \ldots, X_n\}$ local variables: *queue*, a queue of arcs, initially all the arcs in *csp*

```
while queue is not empty do

(X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)

if REMOVE-INCONSISTENT-VALUES(X_i, X_j) then

for each X_k in NEIGHBORS[X_i] do

add (X_k, X_i) to queue
```

function REMOVE-INCONSISTENT-VALUES (X_i, X_j) returns true iff we remove a value $removed \leftarrow false$ for each x in DOMAIN $[X_i]$ do if no value y in DOMAIN $[X_j]$ allows (x, y) to satisfy the constraint between X_i and X_j then delete x from DOMAIN $[X_i]$; $removed \leftarrow true$ return removed

Local search for CSPs

- Use complete-state representation
 - Initial state = all variables assigned values
 - Successor states = change 1 (or more) values

• For CSPs

- o allow states with unsatisfied constraints (unlike backtracking)
- operators **reassign** variable values
- hill-climbing with n-queens is an example
- Variable selection: randomly select any conflicted variable.
 - Local Stochastic Search Demo

• Value selection: min-conflicts heuristic

• Select new value that results in a minimum number of conflicts with the other variables

Local search for CSP

function MIN-CONFLICTS(csp, max_steps) return solution or failure
inputs: csp, a constraint satisfaction problem
max_steps, the number of steps allowed before giving up

 $current \leftarrow$ an initial complete assignment for csp

```
for i = 1 to max_steps do
```

if *current* is a solution for *csp* then return *current*

 $var \leftarrow$ a randomly chosen, conflicted variable from VARIABLES[*csp*]

 $value \leftarrow$ the value v for var that minimize CONFLICTS (var, v, current, csp)

set var = value in current return failure

Use of min-conflicts heuristic in hill-climbing.

Min-conflicts example 2

- A two-step solution for an 8-queens problem using min-conflicts heuristic
- At each stage a queen is chosen for reassignment in its column
- The algorithm moves the queen to the min-conflict square breaking ties randomly.

Advantages of local search

- Local search can be particularly useful in an online setting
 - Airline schedule example
 - × E.g., mechanical problems require than 1 plane is taken out of service
 - × Can locally search for another "close" solution in state-space
 - Much better (and faster) in practice than finding an entirely new schedule.
- The runtime of min-conflicts is roughly independent of problem size.
 - Can solve the millions-queen problem in roughly 50 steps.
 - Why?
 - n-queens is easy for local search because of the relatively high density of solutions in state-space.

Graph structure and problem complexity

- Divide-and-conquer: Solving disconnected subproblems.
 - Suppose each subproblem has *c* variables out of a total of *n*.
 - Worst case solution cost is $O(n/c d^c)$, i.e. linear in *n*

× Instead of $O(d^n)$, exponential in n

- E.g. *n*= 80, *c*= 20, *d*=2
 - 2⁸⁰ = 4 billion years at 1 million nodes/ sec.
 - 4 * 2²⁰= .4 second at 1 million nodes/ sec

Tree-structured CSPs

- Theorem:
 - if a constraint graph has no loops then the CSP can be solved in $O(nd^2)$ time
 - o linear in the number of variables!
- Compare difference with general CSP, where worst case is *O*(*d*^{*n*})

Algorithm for Solving Tree-structured CSPs Choose some variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering. Label variables from X_i to X_n. Every variable now has 1 parent

For *j* from *n* down to 2, apply arc consistency to arc [Parent(X_j), X_j)]
 Remove values from Parent(X_j) if needed to make graph **directed arc** consistent.

(b)

- Forward Pass
 - **•** For *j* from 1 to *n* assign X_j consistently with Parent(X_j)

F

Tree CSP complexity

Backward pass

o n arc checks

• Each has complexity d² at worst

Forward pass

o n variable assignments, O(nd)

 \Rightarrow Overall complexity is $O(nd^2)$

Algorithm works because if the backward pass succeeds, then every variable by definition has a legal assignment in the forward pass

What about non-tree CSPs?

- General idea is to convert the graph to a tree
- 2 general approaches
- Assign values to specific variables (Cycle Cutset method).
 Tries to exploit context-specific independence.

2. Construct a tree-decomposition of the graph

- Connected subproblems (subgraphs) becomes nodes in a tree structure.

Rules for a Tree Decomposition

• Every variable appears in at least one of the subproblems.

- If two variables are connected in the original problem, they must appear together (with the constraint) in at least one subproblem.
- If a variable appears in two subproblems, it must appear in each node on the path between them.

Tree Decomposition Algorithm

- View each subproblem as a "super-variable"
 - Domain = set of solutions for the subproblem
 - Obtained by running a CSP on each subproblem.
 - Maximum-size of subproblem = **treewidth of constraint graph.**
 - o E.g., 6 solutions for 3 fully connected variables in map problem
- Now use the tree CSP algorithm to solve the constraints connecting the subproblems
 - Declare a subproblem a root node, create tree
 - Backward and forward passes

• Example of "divide and conquer" strategy

Tree Decomposition

- *Every* graph has a tree decomposition, not just constraint graphs.
- Tree decomposition shows optimal divide-andconquer strategy.

• For CSPs, optimization, search, inference.

• Typical result: if treewidth of a problem graph is constant, then the search/optimization/inference problem is solvable by divide and conquer.

Summary

- CSPs
 - special kind of problem: states defined by values of a fixed set of variables, goal test defined by constraints on variable values: **factored representation**.
- Backtracking=depth-first search with one variable assigned per node
- Heuristics
 - Variable ordering and value selection heuristics help significantly
- Constraint propagation does additional work to constrain values and detect inconsistencies
 - Works effectively when combined with heuristics
- Iterative min-conflicts is often effective in practice.
- Graph structure of CSPs determines problem complexity
 - e.g., tree structured CSPs can be solved in linear time.