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  CSP examples 

  Backtracking search for CSPs 

  Problem structure and problem decomposition 

  Local search for CSPs 
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Agent Architecture Discussed In this Lecture 

B C

(a) Atomic (b) Factored (b) Structured

B C

•  Graph-Based Search: State is black box, no internal 
structure, atomic. 
•  Factored Representation: State is list or vector of facts. 
•  CSP: a fact is of the form “Variable = value”.  

A model is a 
structured 
representation of 
the world. 



Constraint satisfaction problems (CSPs) 

  CSP: 
  state is defined by variables Xi with values from domain Di 

  goal test is a set of constraints specifying allowable 
combinations of values for subsets of variables. 

  Allows useful general-purpose algorithms with more 
power than standard search algorithms. 

  Power close to simulating Turing Machines. 



Example: Map-Coloring 



CSPs (continued) 

  An assignment is complete when every variable is mentioned.  

  A solution to a CSP is a complete assignment that satisfies all 
constraints. 

  Some CSPs require a solution that maximizes an objective function. 
  Constraints with continuous variables are common. 

  Linear Constraints  linear programming.  

  Examples of Applications:  

  Airline schedules  
  Final Exam Scheduling. 

  Cryptography 

  Sudoku, cross-words. 



Example: Map-Coloring contd. 



Varieties of constraints 

  Unary constraints involve a single variable, 
  e.g., SA 6= green 

  Binary constraints involve pairs of variables, 
  e.g., SA <> WA 

  Higher-order constraints involve 3 or more variables 

  Preferences (soft constraints), e.g., red is better than 
green 

 often representable by a cost for each variable 
assignment 

➔ constrained optimization problems 



Constraint graph 

  Binary CSP: each constraint relates at most two 
variables 

  Constraint graph: nodes are variables, arcs show 
constraints 

  General-purpose CSP algorithms use the graph 
structure 

  to speed up search. E.g., Tasmania is an independent 
subproblem! 



Graphs and Factored Representations 

  UBC AI Space CSP 

  Graphs for variables (concepts, facts) capture local 
dependencies between variables (concepts, facts). 

  Absence of edges = independence. 

  AI systems try to reason locally as much as possible. 

  Potential Solution to the Relevance Problem: 
  How does the brain retrieve relevant facts in a given situation, out of 

the million facts that it knows? 

  Answer: Direct links represent direct relevance. 

  Computation in general is a local process operating on a 
factored state. (What is the state of a program run?) 



c a 

d 

e 

b 

Consider the constraint graph on the right. 

The domain for every variable is [1,2,3,4]. 

There are 2 unary constraints: 
- variable “a” cannot take values 3 and 4. 
-  variable “b” cannot take value 4. 

There are 8 binary constraints stating that variables  
connected by an edge cannot have the same value. 

Problem 



Example: 4-Queens Problem 
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Standard search formulation (incremental) 

  Let’s formulate a state graph problem, then take 
advantage of special structure later. 

  States are defined by the values assigned so far 
  Initial state: the empty assignment, { } 
  Successor function: assign a value to an unassigned variable 

that does not conflict with current assignment. 
⇒ fail if no legal assignments (not fixable!) 

  Goal test: the current assignment is complete 

   This is the same for all CSPs! 



Standard search formulation (incremental) 

  Can we use breadth first search? 
  Branching factor at top level?  

 nd any of the d values can be assigned to any variable 

  Next level? 
  (n-1)d 

  We generate n!.dn leaves even though there are dn complete 
assignments. Why? 

  Commutatively 
  If the order of applications  on any given set of actions has no 

effect on the outcome. 



Backtracking search 

  Variable assignments are commutative, i.e., 
  [WA=red then NT =green] same as [NT =green thenWA=red] 

  Only need to consider assignments to a single variable at 
each node   
➩  b=d and there are dn leaves 

  Depth-first search for CSPs with single-variable 
assignments is called backtracking search 

  Is this uninformed or informed?  
  Backtracking search is the basic uninformed algorithm for CSPs 





Improving backtracking efficiency 
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  General-purpose methods can give huge gains in speed: 

  Which variable should be assigned next? 

  In what order should its values be tried? 

  Can we detect inevitable failure early? 

  Constraint Learning: Can we keep track of what search has learned? 

  Can we take advantage of problem structure? 



Backtracking example 
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Backtracking example 
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Most constrained variable 
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 Most constrained variable: 
choose the variable with the fewest legal values  

a.k.a. minimum remaining values (MRV) heuristic  

Only picks a variable (Not a value) 
Demo for MRV 



Most constraining variable 
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 How to choose between the variable with the fewest 
legal values?  

  Tie-breaker among most constrained variables 
  Degree heuristic: choose the variable with the most 

constraints on remaining variables 



Least constraining value 
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 Given a variable, choose the least constraining value: 

  the one that rules out the fewest values in the 
remaining variables. 

  Intuition: choose “most likely” solution. 

  Combining these heuristics makes 1000 queens 
feasible 



Forward checking 
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  Idea:  
  Keep track of remaining legal values for unassigned variables 

  Terminate search when any variable has no legal values 



Forward checking 
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  Idea:  
  Keep track of remaining legal values for unassigned variables 

  Terminate search when any variable has no legal values 
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  Idea:  
  Keep track of remaining legal values for unassigned variables 

  Terminate search when any variable has no legal values 



Constraint propagation 
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  Forward checking propagates information from assigned to 
unassigned variables, but doesn't provide early detection for all 
failures: 

  NT and SA cannot both be blue! 
  Constraint propagation repeatedly enforces constraints locally. 

Has to be faster than searching 
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Constraint propagation 

  Techniques like CP and FC are in effect eliminating 
parts of the search space 
  Inference complements search (= simulation). 

  Constraint propagation goes further than FC by 
repeatedly enforcing constraints locally. 

  Arc-consistency (AC) is a systematic procedure for 
Constraint propagation (Macworth 1977 UBC). 



Arc consistency 

  An Arc X → Y is consistent if 

  for every value x of X there is some value y consistent with x 

     (note that this is a directed property) 

  Consider state of search after WA and Q are assigned: 

    SA → NSW is consistent if 

  SA=blue and NSW=red 



Arc consistency 

  X → Y is consistent if 
  for every value x of X there is some value y consistent with x 

  NSW → SA is consistent if 
  NSW=red and SA=blue 
  NSW=blue and SA=??? 



Arc consistency 

  Can enforce arc-consistency: 
  Arc can be made consistent by removing blue from NSW 

  Continue to propagate constraints…. 

  Check V → NSW 
  Not consistent for V = red  
  Remove red from V 



Arc consistency 

  Continue to propagate constraints…. 

  SA → NT is not consistent 

  and cannot be made consistent 

  Arc consistency detects failure earlier than FC 



Arc consistency checking 

  Can be run as a preprocessor or after each assignment   
  Or as preprocessing before search starts 

  AC must be run repeatedly until no inconsistency remains 

  Trade-off 
  Requires some overhead to do, but generally more effective than direct 

search 
  In effect it can eliminate large (inconsistent) parts of the state space 

more effectively than search can 

  Need a systematic method for arc-checking  
  If X loses a value, neighbors of X need to be rechecked. 

       



Arc consistency checking 



Back-tracking or back-jumping? 

  {Q=red , NSW= green, V= blue, T=red} 

red 

green 

blue 

red 

? 

blue 
green 



Local search for CSPs 

  Use complete-state representation 

  Initial state = all variables assigned values 

  Successor states = change 1 (or more) values 

  For CSPs 

  allow states with unsatisfied constraints (unlike backtracking) 

  operators reassign variable values 

  hill-climbing with n-queens is an example 

  Variable selection: randomly select any conflicted variable. 
  Local Stochastic Search Demo 

  Value selection: min-conflicts heuristic 

  Select new value that results in a minimum number of conflicts with the 
other variables 



Local search for CSP 

function MIN-CONFLICTS(csp, max_steps) return solution or failure 

 inputs: csp, a constraint satisfaction problem 

  max_steps, the number of steps allowed before giving up   

 current ←   an initial complete assignment for csp 

 for i = 1 to max_steps do 

  if current is a solution for csp then return current 

  var ←  a randomly chosen, conflicted variable from VARIABLES[csp] 

  value  ←  the value v for var that minimize CONFLICTS
(var,v,current,csp) 

  set var = value in current 
 return failure 



Min-conflicts example 1 

Use of min-conflicts heuristic in hill-climbing. 

h=5 h=3 h=1 



Min-conflicts example 2 

  A two-step solution for an 8-queens problem using min-conflicts heuristic 

  At each stage a queen is chosen for reassignment in its column 

  The algorithm moves the queen to the min-conflict square breaking ties 
randomly. 



Advantages of local search 

  Local search can be particularly useful in an online setting 

  Airline schedule example 

 E.g., mechanical problems require than 1 plane is taken out of 
service 

 Can locally search for another “close” solution in state-space 

 Much better (and faster) in practice than finding an entirely new 
schedule. 

  The runtime of min-conflicts is roughly independent of problem size. 

  Can solve the millions-queen problem in roughly 50 steps. 

  Why? 
 n-queens is easy for local search because of the relatively high 

density of solutions in state-space. 



Graph structure and problem complexity 

  Divide-and-conquer: Solving 
disconnected subproblems. 
  Suppose each subproblem has c 

variables out of a total of n. 

  Worst case solution cost is O(n/c dc), 
i.e. linear in n 
  Instead of O(d n), exponential in n 

  E.g. n= 80, c= 20, d=2 
  280 = 4 billion years at 1 million nodes/

sec. 
  4 * 220= .4 second at 1 million nodes/

sec 



Tree-structured CSPs 

  Theorem:  

  if a constraint graph has no loops then the CSP can be solved in 
O(nd 2) time 

  linear in the number of variables! 

  Compare difference with general CSP, where worst case is O(d n) 



Algorithm for Solving Tree-structured CSPs 

  Choose some variable as root, order variables from root to leaves such that 
every node’s parent precedes it in the ordering. 
  Label variables from X1 to Xn. 
  Every variable now has 1 parent 

  Backward Pass 

  For j from n down to 2, apply arc consistency to arc [Parent(Xj), Xj) ]  
  Remove values from Parent(Xj) if needed to make graph directed arc 

consistent. 

  Forward Pass 
  For j from 1 to n assign Xj consistently with Parent(Xj ) 



Tree CSP Example 
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Tree CSP complexity 

  Backward pass 
  n arc checks 
  Each has complexity d2 at worst 

  Forward pass 
  n variable assignments, O(nd) 

⇒  Overall complexity is O(nd 2) 

Algorithm works because if the backward pass succeeds, then every variable 
by definition has a legal assignment in the forward pass  



What about non-tree CSPs? 

  General idea is to convert the graph to a tree 

2 general approaches 

1. Assign values to specific variables (Cycle Cutset method). 

1.  Tries to exploit context-specific independence. 

2. Construct a tree-decomposition of the graph 

- Connected subproblems (subgraphs) becomes nodes in a 
tree structure. 



Tree Decompositions 

Red, green, blue 
Red, blue, green, 
blue, red, green 
… 

Red, green, blue 
Red, blue, green, 
blue, red, green 
… 



Rules for a Tree Decomposition 

  Every variable appears in at least one of the 
subproblems. 

  If two variables are connected in the original 
problem, they must appear together (with the 
constraint) in at least one subproblem. 

  If a variable appears in two subproblems, it must 
appear in each node on the path between them. 



Tree Decomposition Algorithm 

  View each subproblem as a “super-variable” 
  Domain = set of solutions for the subproblem 
  Obtained by running a CSP on each subproblem. 
  Maximum-size of subproblem = treewidth of constraint graph. 

  E.g., 6 solutions for 3 fully connected variables in map problem 

  Now use the tree CSP algorithm to solve the constraints 
connecting the subproblems 
  Declare a subproblem a root node, create tree 
  Backward and forward passes 

  Example of “divide and conquer” strategy 



Tree Decomposition 

  Every graph has a tree decomposition, not just 
constraint graphs. 

  Tree decomposition shows optimal divide-and-
conquer strategy. 
  For CSPs, optimization, search, inference. 

  Typical result: if treewidth of a problem graph is 
constant, then the search/optimization/inference 
problem is solvable by divide and conquer. 



Summary 

  CSPs  
   special kind of problem: states defined by values of a fixed set of variables, goal test 

defined by constraints on variable values: factored representation. 

  Backtracking=depth-first search with one variable assigned per node 

  Heuristics 
  Variable ordering and value selection heuristics help significantly 

  Constraint propagation does additional work to constrain values and detect 
inconsistencies 
  Works effectively when combined with heuristics 

  Iterative min-conflicts is often effective in practice. 

  Graph structure of CSPs determines problem complexity 
  e.g., tree structured CSPs can be solved in linear time. 


