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Environment Type Discussed In this Lecture 

  Turn-taking: Semi-dynamic 

  Deterministic and non-deterministic 
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Adversarial Search 

 Examine the problems that arise when we try to 
plan ahead in a world where other agents are 
planning against us. 

 A good example is in board games. 

 Adversarial games, while much studied in AI, are a 
small part of game theory in economics. 



Typical AI assumptions 

  Two agents whose actions alternate 

  Utility values for each agent are the opposite of the 
other 
  creates the adversarial situation 

  Fully observable environments 

  In game theory terms: Zero-sum games of perfect 
information. 

  We’ll relax these assumptions later. 



Search versus Games 

  Search – no adversary 
  Solution is (heuristic) method for finding goal 

  Heuristic techniques can find optimal solution 

  Evaluation function: estimate of cost from start to goal through given node 

  Examples: path planning, scheduling activities 

  Games – adversary 
  Solution is strategy (strategy specifies move for every possible opponent 

reply). 

  Optimality depends on opponent. Why? 

  Time limits force an approximate solution 

  Evaluation function: evaluate “goodness” of  game position 

  Examples: chess, checkers, Othello, backgammon  



Types of Games 

deterministic Chance moves 

Perfect 
information 

Chess, checkers, 
go, othello 

Backgammon, 
monopoly 

Imperfect 
information 
(Initial Chance 
Moves) 

Bridge, Skat Poker, scrabble, 
blackjack 

•  Theorem of Nobel Laureate Harsanyi: Every game with 
chance moves during the game has an equivalent representation 
with initial chance moves only. 
•  A deep result, but computationally it is more tractable to 
consider chance moves as the game goes along.  
•  This is basically the same as the issue of full observability + 
nondeterminism vs. partial observability + determinism. 

•  on-line 
backgam
mon 
•  on-line 
chess 
•  
tic-tac-
toe 



Game Setup 

  Two players: MAX and MIN 

  MAX moves first and they take turns until the game is over 
  Winner gets award, loser gets penalty. 

  Games as search: 
  Initial state: e.g. board configuration of chess 

  Successor function: list of (move,state) pairs specifying legal moves. 

  Terminal test: Is the game finished? 

  Utility function: Gives numerical value of terminal states. E.g. win (+1), lose 
(-1) and draw (0) in tic-tac-toe  or chess 

  MAX uses  search tree to determine next move. 



Size of search trees 

  b = branching factor 

  d = number of moves by both players 

  Search tree is O(bd) 

  Chess 
  b ~ 35 
  D ~100 
      -   search tree is ~ 10 154   (!!) 
      -   completely impractical to search this 

  Game-playing emphasizes being able to make optimal decisions in a finite amount of time 
  Somewhat realistic as a model of a real-world agent 
  Even if games themselves are artificial 



Partial Game Tree for Tic-Tac-Toe 



Game tree (2-player, deterministic, turns) 

How do we search this tree to find the optimal move? 



Minimax strategy: Look ahead and reason backwards 

  Find the optimal strategy for MAX assuming an 
infallible MIN opponent 
  Need to compute this all the down the tree 
  Game Tree Search Demo 

  Assumption: Both players play optimally! 
 Given a game tree, the optimal strategy can be 

determined by using the minimax value of each 
node. 

  Zermelo 1912. 



Two-Ply Game Tree 



Two-Ply Game Tree 



Two-Ply Game Tree 



Two-Ply Game Tree 

The minimax decision 

Minimax maximizes the utility for the worst-case outcome for max 



Pseudocode for Minimax Algorithm 

function MINIMAX-DECISION(state) returns an action 
   inputs: state, current state in game 
   v←MAX-VALUE(state) 
   return the action in SUCCESSORS(state) with value v 

function MIN-VALUE(state) returns a utility value 
   if TERMINAL-TEST(state) then return UTILITY(state) 
   v ← ! 
   for a,s in SUCCESSORS(state) do 
      v ← MIN(v,MAX-VALUE(s)) 
   return v 

function MAX-VALUE(state) returns a utility value 
   if TERMINAL-TEST(state) then return UTILITY(state) 
   v ← -! 
   for a,s in SUCCESSORS(state) do 
      v ← MAX(v,MIN-VALUE(s)) 
   return v 



Example of Algorithm Execution 

MAX to move 



Minimax Algorithm 

  Complete depth-first exploration of the game tree 

  Assumptions: 
  Max depth = d, b legal moves at each point 

  E.g., Chess: d ~ 100, b ~35 
Criterion Minimax 

Time O(bd) 

Space O(bd)  

 



Practical problem with minimax search 

  Number of game states is exponential in the number of 
moves. 

  Solution: Do not examine every node  

 => pruning 

 Remove branches that do not influence final decision 

  Revisit example … 



Alpha-Beta Example 

[-!, +!] 

[-!,+!] 

Range of possible values	


Do DF-search until first leaf 



Alpha-Beta Example (continued) 

[-!,3] 

[-!,+!] 



Alpha-Beta Example (continued) 

[-!,3] 

[-!,+!] 



Alpha-Beta Example (continued) 

[3,+!] 

[3,3] 



Alpha-Beta Example (continued) 

[-!,2] 

[3,+!] 

[3,3] 

This node is worse 	

for MAX 



Alpha-Beta Example (continued) 

[-!,2] 

[3,14] 

[3,3] [-!,14] 

, 



Alpha-Beta Example (continued) 

["!,2] 

[3,5] 

[3,3] [-!,5] 

, 



Alpha-Beta Example (continued) 

[2,2] ["!,2] 

[3,3] 

[3,3] 



Alpha-Beta Example (continued) 

[2,2] [-!,2] 

[3,3] 

[3,3] 



Alpha-beta Algorithm 

  Depth first search – only considers nodes along a single 
path at any time 

 α =  highest-value choice that we can guarantee for MAX 
so far in the current subtree. 

 β = lowest-value choice that we can guarantee for MIN so 
far in the current subtree. 

   update values of α and β during search and prunes 
remaining branches as soon as the value is known to be 
worse than the current α or β value for MAX or MIN. 

  Alpha-beta Demo. 



Effectiveness of Alpha-Beta Search 

  Worst-Case 
  branches are ordered so that no pruning takes place. In this case alpha-beta 

gives no improvement over exhaustive search 

  Best-Case 
  each player’s best move is the left-most alternative (i.e., evaluated first) 

  in practice, performance is closer to best rather than worst-case 

  In practice often get O(b(d/2)) rather than O(bd)  
  this is the same as having a branching factor of sqrt(b),  

  since (sqrt(b))d =  b(d/2) 

  i.e., we have effectively gone from b to square root of b 

  e.g., in chess go from b ~ 35  to  b ~ 6 
  this permits much deeper search in the same amount of time 

  Typically twice as deep. 



Example 

3 4 1 2 7 8 5 6 

-which nodes can be pruned? 
MAX 

MIN 

MAX 



Final Comments about Alpha-Beta Pruning 

  Pruning does not affect final results 

  Entire subtrees can be pruned. 

 Good move ordering improves effectiveness of 
pruning 

 Repeated states are again possible. 
  Store them in memory = transposition table 



Practical Implementation 

How do we make these ideas practical in real game trees? 

Standard approach: 

  cutoff test: (where do we stop descending the tree)  
  depth limit  

  better: iterative deepening 

  cutoff only when no big changes are expected to occur next (quiescence search). 

  evaluation function  
  When the search is cut off, we evaluate the current state 

    by estimating its utility using an evaluation function. 



Static (Heuristic) Evaluation Functions 

  An Evaluation Function: 
  estimates how good the current board configuration is for a player. 

  Typically, one figures how good it is for the player, and how good it is for the 
opponent, and subtracts the opponents score from the players 

  Othello: Number of white pieces - Number of black pieces 

  Chess:  Value of all white pieces - Value of all black pieces 

  Typical values from -infinity (loss) to +infinity (win) or [-1, +1]. 

  If the board evaluation  is X for a player, it’s -X for the opponent. 

  Many clever ideas about how to use the evaluation function. 
  e.g. null move heuristic: let opponent move twice. 

  Example:  
  Evaluating chess boards,  

  Checkers 

  Tic-tac-toe 





Iterative (Progressive) Deepening 

  In real games, there is usually a time limit T on making a 
move 

  How do we take this into account?  
  using alpha-beta we cannot use “partial” results with any confidence 

unless the full breadth of the tree has been searched 

   So, we could be conservative and set a conservative depth-limit 
which guarantees that we will find a move in time < T 
  disadvantage is that we may finish early, could do more search 

  In practice, iterative deepening search (IDS) is used 
  IDS runs depth-first search with an increasing depth-limit 
  when the clock runs out we use the solution found at the previous 

depth limit  



The State of Play 

  Checkers:  
  Chinook ended 40-year-reign of human world champion 

Marion Tinsley in 1994.  

  Chess:  
  Deep Blue defeated human world champion Garry Kasparov in 

a six-game match in 1997.  

 Othello:  
  human champions refuse to compete against computers: they 

are too good. 

 Go:  
  human champions refuse to compete against computers: they 

are too bad b > 300 (!) 

  See (e.g.) http://www.cs.ualberta.ca/~games/ for more information 





Deep Blue 

  1957: Herbert Simon 
  “within 10 years a computer will beat the world chess champion” 

  1997: Deep Blue beats Kasparov 

  Parallel machine with 30 processors for “software” and 480 
VLSI processors for “hardware search” 

  Searched 126 million nodes per second on average 
  Generated up to 30 billion positions per move 

  Reached depth 14 routinely 

  Uses iterative-deepening alpha-beta search with 
transpositioning 
  Can explore beyond depth-limit for interesting moves 



Summary 

  Game playing can be effectively modeled as a search problem 

  Game trees represent alternate computer/opponent moves 

  Evaluation functions estimate the quality of a given board 
configuration for the Max player.  

  Minimax is a procedure which chooses moves by assuming that 
the opponent will always choose the move which is best for them 

  Alpha-Beta is a procedure which can prune large parts of the 
search tree and allow search to go deeper  

  For many well-known games, computer algorithms based on 
heuristic search match or out-perform human world experts. 



AI Games vs. Economics Game Theory 

  Seminal Work on Game Theory: 
Theory of Games and Economic Behavior, 1944, by 
von Neumann and Morgenstern. 

  Agents can be in cooperation as well as in 
conflict. 

  Agents may move simultaneously/independently. 



Example: The Prisoner’s Dilemma 

Other Famous Matrix Games: 
•  Chicken 
•  Battle of The Sexes 
•  Coordination 



Solving Zero-Sum Games 

•  Perfect Information: Use Minimax Tree Search. 
•  Imperfect Information: Extend Minimax Idea 
with probabilistic actions. 
➩  von Neumann’s Minimax Theorem: there 
exists an essentially unique optimal probability 
distribution for randomizing an agent’s 
behaviour. 



Matching Pennies 

Heads Tails 

Heads 1,-1 -1,1 

Tails -1,1 1,-1 

•  Why should the players randomize? 
•  What are the best probabilities to use in their actions? 



Nonzero Sum Game Trees 

  The idea of “look ahead, reason backward” works for 
any game tree with perfect information.  
  I.e., also in cooperative games. 

  In AI, this is called retrograde analysis.  
  In game theory, it is called backward induction or 

subgame perfect equilibrium. 

  Can be extended to many games with imperfect 
information (sequential equilibrium). 



Backward Induction Example: Hume’s Farmer Problem 

1 

2 2 

2 
2 

0 
3 

3 
0 

1 
1 

H Not H 

H1 
notH
1 H2 

Not 
H2 



Summary: Solving Games 

Zero-sum Non zero-sum 

Perfect Information Minimax, alpha-beta Backward induction, 
retrograde analysis 

Imperfect Information Probabilistic minimax Nash equilibrium 

Nash equilibrium is beyond the scope of this course. 



Single Agent vs. 2-Players 

  Every single agent problem can be considered as a 
special case of a 2-player game. How? 
1.  Make one of the players the Environment, with a constant 

utility function (e.g., always 0). 
1.  The Environment acts but does not care. 

2.  An adversarial Environment, with utility function the 
negative of agent’s utility. 

1.  In minimization, Environment’s utility is player’s costs. 

2.  Worst-Case Analysis. 
3.  E.g., program correctness: no matter what input user gives, 

program gives correct answer. 

  So agent design is a subfield of game theory. 



Single Agent Design = Game Theory 

Von Neumann-Morgenstern Games 

Decision Theory = 2-player game, 1st player the 
“agent”, 2nd player “environment/nature”  
(with constant or adversarial utility function) 

Markov Decision Processes 

Planning Problems 

From  
General 
To  
Special 
Case 



Example: And-Or Trees 

  If an agent’s actions have nondeterministic effects, 
we can model worst-case analysis as a zero-sum 
game where the environment chooses the effects of 
an agent’s actions. 

 Minimax Search ≈ And-Or Search. 
  Example: The Erratic Vacuum Cleaner. 

  When applied to dirty square, vacuum cleans it and sometimes 
adjacent square too. 

  When applied to clean square, sometimes vacuum makes it 
dirty. 

  Reflex agent: same action for same location, dirt status. 



And-Or Tree for the Erratic Vacuum 

LeftSuck

RightSuck

RightSuck

6 

GOAL
8 

GOAL
7 

1 

2 5 

1 

LOOP
5 

LOOP

5 

LOOP

Left Suck

1 

LOOP GOAL
8 4 

•  The agent 
“moves” at labelled 
OR nodes. 
•  The environment 
“moves” at 
unlabelled AND 
nodes. 
• The agent wins if it 
reaches a goal 
state. 
•  The environment 
“wins” if the agent 
goes into a loop. 



Summary 

 Game Theory is a very general, highly developed 
framework for multi-agent interactions. 

 Deep results about equivalences of various 
environment types. 

  See Chapter 17 for more details. 


