
C H A P T E R 5

C M P T 3 1 0 : S u m m e r 2 0 1 1

O l i v e r S c h u l t e

Adversarial Search and Game-
Playing

Environment Type Discussed In this Lecture

  Turn-taking: Semi-dynamic

  Deterministic and non-deterministic

CMPT 310 - Blind Search

2

Fully
Observable

Multi-agent

Sequential

yes

yes

Discrete
Discrete

yes

Game
Tree
Search

yes

no

Continuous Action Games Game Matrices

no

yes

Adversarial Search

 Examine the problems that arise when we try to
plan ahead in a world where other agents are
planning against us.

 A good example is in board games.

 Adversarial games, while much studied in AI, are a
small part of game theory in economics.

Typical AI assumptions

  Two agents whose actions alternate

  Utility values for each agent are the opposite of the
other
  creates the adversarial situation

  Fully observable environments

  In game theory terms: Zero-sum games of perfect
information.

  We’ll relax these assumptions later.

Search versus Games

  Search – no adversary
  Solution is (heuristic) method for finding goal

  Heuristic techniques can find optimal solution

  Evaluation function: estimate of cost from start to goal through given node

  Examples: path planning, scheduling activities

  Games – adversary
  Solution is strategy (strategy specifies move for every possible opponent

reply).

  Optimality depends on opponent. Why?

  Time limits force an approximate solution

  Evaluation function: evaluate “goodness” of game position

  Examples: chess, checkers, Othello, backgammon

Types of Games

deterministic Chance moves

Perfect
information

Chess, checkers,
go, othello

Backgammon,
monopoly

Imperfect
information
(Initial Chance
Moves)

Bridge, Skat Poker, scrabble,
blackjack

•  Theorem of Nobel Laureate Harsanyi: Every game with
chance moves during the game has an equivalent representation
with initial chance moves only.
•  A deep result, but computationally it is more tractable to
consider chance moves as the game goes along.
•  This is basically the same as the issue of full observability +
nondeterminism vs. partial observability + determinism.

•  on-line
backgam
mon
•  on-line
chess
• 
tic-tac-
toe

Game Setup

  Two players: MAX and MIN

  MAX moves first and they take turns until the game is over
  Winner gets award, loser gets penalty.

  Games as search:
  Initial state: e.g. board configuration of chess

  Successor function: list of (move,state) pairs specifying legal moves.

  Terminal test: Is the game finished?

  Utility function: Gives numerical value of terminal states. E.g. win (+1), lose
(-1) and draw (0) in tic-tac-toe or chess

  MAX uses search tree to determine next move.

Size of search trees

  b = branching factor

  d = number of moves by both players

  Search tree is O(bd)

  Chess
  b ~ 35
  D ~100
 - search tree is ~ 10 154 (!!)
 - completely impractical to search this

  Game-playing emphasizes being able to make optimal decisions in a finite amount of time
  Somewhat realistic as a model of a real-world agent
  Even if games themselves are artificial

Partial Game Tree for Tic-Tac-Toe

Game tree (2-player, deterministic, turns)

How do we search this tree to find the optimal move?

Minimax strategy: Look ahead and reason backwards

  Find the optimal strategy for MAX assuming an
infallible MIN opponent
  Need to compute this all the down the tree
  Game Tree Search Demo

  Assumption: Both players play optimally!
 Given a game tree, the optimal strategy can be

determined by using the minimax value of each
node.

  Zermelo 1912.

Two-Ply Game Tree

Two-Ply Game Tree

Two-Ply Game Tree

Two-Ply Game Tree

The minimax decision

Minimax maximizes the utility for the worst-case outcome for max

Pseudocode for Minimax Algorithm

function MINIMAX-DECISION(state) returns an action
 inputs: state, current state in game
 v←MAX-VALUE(state)
 return the action in SUCCESSORS(state) with value v

function MIN-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v ← !
 for a,s in SUCCESSORS(state) do
 v ← MIN(v,MAX-VALUE(s))
 return v

function MAX-VALUE(state) returns a utility value
 if TERMINAL-TEST(state) then return UTILITY(state)
 v ← -!
 for a,s in SUCCESSORS(state) do
 v ← MAX(v,MIN-VALUE(s))
 return v

Example of Algorithm Execution

MAX to move

Minimax Algorithm

  Complete depth-first exploration of the game tree

  Assumptions:
  Max depth = d, b legal moves at each point

  E.g., Chess: d ~ 100, b ~35
Criterion Minimax

Time O(bd)

Space O(bd)

Practical problem with minimax search

  Number of game states is exponential in the number of
moves.

  Solution: Do not examine every node

 => pruning

 Remove branches that do not influence final decision

  Revisit example …

Alpha-Beta Example

[-!, +!]

[-!,+!]

Range of possible values	

Do DF-search until first leaf

Alpha-Beta Example (continued)

[-!,3]

[-!,+!]

Alpha-Beta Example (continued)

[-!,3]

[-!,+!]

Alpha-Beta Example (continued)

[3,+!]

[3,3]

Alpha-Beta Example (continued)

[-!,2]

[3,+!]

[3,3]

This node is worse 	

for MAX

Alpha-Beta Example (continued)

[-!,2]

[3,14]

[3,3] [-!,14]

,

Alpha-Beta Example (continued)

["!,2]

[3,5]

[3,3] [-!,5]

,

Alpha-Beta Example (continued)

[2,2] ["!,2]

[3,3]

[3,3]

Alpha-Beta Example (continued)

[2,2] [-!,2]

[3,3]

[3,3]

Alpha-beta Algorithm

  Depth first search – only considers nodes along a single
path at any time

 α = highest-value choice that we can guarantee for MAX
so far in the current subtree.

 β = lowest-value choice that we can guarantee for MIN so
far in the current subtree.

  update values of α and β during search and prunes
remaining branches as soon as the value is known to be
worse than the current α or β value for MAX or MIN.

  Alpha-beta Demo.

Effectiveness of Alpha-Beta Search

  Worst-Case
  branches are ordered so that no pruning takes place. In this case alpha-beta

gives no improvement over exhaustive search

  Best-Case
  each player’s best move is the left-most alternative (i.e., evaluated first)

  in practice, performance is closer to best rather than worst-case

  In practice often get O(b(d/2)) rather than O(bd)
  this is the same as having a branching factor of sqrt(b),

  since (sqrt(b))d = b(d/2)

  i.e., we have effectively gone from b to square root of b

  e.g., in chess go from b ~ 35 to b ~ 6
  this permits much deeper search in the same amount of time

  Typically twice as deep.

Example

3 4 1 2 7 8 5 6

-which nodes can be pruned?
MAX

MIN

MAX

Final Comments about Alpha-Beta Pruning

  Pruning does not affect final results

  Entire subtrees can be pruned.

 Good move ordering improves effectiveness of
pruning

 Repeated states are again possible.
  Store them in memory = transposition table

Practical Implementation

How do we make these ideas practical in real game trees?

Standard approach:

  cutoff test: (where do we stop descending the tree)
  depth limit

  better: iterative deepening

  cutoff only when no big changes are expected to occur next (quiescence search).

  evaluation function
  When the search is cut off, we evaluate the current state

 by estimating its utility using an evaluation function.

Static (Heuristic) Evaluation Functions

  An Evaluation Function:
  estimates how good the current board configuration is for a player.

  Typically, one figures how good it is for the player, and how good it is for the
opponent, and subtracts the opponents score from the players

  Othello: Number of white pieces - Number of black pieces

  Chess: Value of all white pieces - Value of all black pieces

  Typical values from -infinity (loss) to +infinity (win) or [-1, +1].

  If the board evaluation is X for a player, it’s -X for the opponent.

  Many clever ideas about how to use the evaluation function.
  e.g. null move heuristic: let opponent move twice.

  Example:
  Evaluating chess boards,

  Checkers

  Tic-tac-toe

Iterative (Progressive) Deepening

  In real games, there is usually a time limit T on making a
move

  How do we take this into account?
  using alpha-beta we cannot use “partial” results with any confidence

unless the full breadth of the tree has been searched

  So, we could be conservative and set a conservative depth-limit
which guarantees that we will find a move in time < T
  disadvantage is that we may finish early, could do more search

  In practice, iterative deepening search (IDS) is used
  IDS runs depth-first search with an increasing depth-limit
  when the clock runs out we use the solution found at the previous

depth limit

The State of Play

  Checkers:
  Chinook ended 40-year-reign of human world champion

Marion Tinsley in 1994.

  Chess:
  Deep Blue defeated human world champion Garry Kasparov in

a six-game match in 1997.

 Othello:
  human champions refuse to compete against computers: they

are too good.

 Go:
  human champions refuse to compete against computers: they

are too bad b > 300 (!)

  See (e.g.) http://www.cs.ualberta.ca/~games/ for more information

Deep Blue

  1957: Herbert Simon
  “within 10 years a computer will beat the world chess champion”

  1997: Deep Blue beats Kasparov

  Parallel machine with 30 processors for “software” and 480
VLSI processors for “hardware search”

  Searched 126 million nodes per second on average
  Generated up to 30 billion positions per move

  Reached depth 14 routinely

  Uses iterative-deepening alpha-beta search with
transpositioning
  Can explore beyond depth-limit for interesting moves

Summary

  Game playing can be effectively modeled as a search problem

  Game trees represent alternate computer/opponent moves

  Evaluation functions estimate the quality of a given board
configuration for the Max player.

  Minimax is a procedure which chooses moves by assuming that
the opponent will always choose the move which is best for them

  Alpha-Beta is a procedure which can prune large parts of the
search tree and allow search to go deeper

  For many well-known games, computer algorithms based on
heuristic search match or out-perform human world experts.

AI Games vs. Economics Game Theory

  Seminal Work on Game Theory:
Theory of Games and Economic Behavior, 1944, by
von Neumann and Morgenstern.

  Agents can be in cooperation as well as in
conflict.

  Agents may move simultaneously/independently.

Example: The Prisoner’s Dilemma

Other Famous Matrix Games:
•  Chicken
•  Battle of The Sexes
•  Coordination

Solving Zero-Sum Games

•  Perfect Information: Use Minimax Tree Search.
•  Imperfect Information: Extend Minimax Idea
with probabilistic actions.
➩  von Neumann’s Minimax Theorem: there
exists an essentially unique optimal probability
distribution for randomizing an agent’s
behaviour.

Matching Pennies

Heads Tails

Heads 1,-1 -1,1

Tails -1,1 1,-1

•  Why should the players randomize?
•  What are the best probabilities to use in their actions?

Nonzero Sum Game Trees

  The idea of “look ahead, reason backward” works for
any game tree with perfect information.
  I.e., also in cooperative games.

  In AI, this is called retrograde analysis.
  In game theory, it is called backward induction or

subgame perfect equilibrium.

  Can be extended to many games with imperfect
information (sequential equilibrium).

Backward Induction Example: Hume’s Farmer Problem

1

2 2

2
2

0
3

3
0

1
1

H Not H

H1
notH
1 H2

Not
H2

Summary: Solving Games

Zero-sum Non zero-sum

Perfect Information Minimax, alpha-beta Backward induction,
retrograde analysis

Imperfect Information Probabilistic minimax Nash equilibrium

Nash equilibrium is beyond the scope of this course.

Single Agent vs. 2-Players

  Every single agent problem can be considered as a
special case of a 2-player game. How?
1.  Make one of the players the Environment, with a constant

utility function (e.g., always 0).
1.  The Environment acts but does not care.

2.  An adversarial Environment, with utility function the
negative of agent’s utility.

1.  In minimization, Environment’s utility is player’s costs.

2.  Worst-Case Analysis.
3.  E.g., program correctness: no matter what input user gives,

program gives correct answer.

  So agent design is a subfield of game theory.

Single Agent Design = Game Theory

Von Neumann-Morgenstern Games

Decision Theory = 2-player game, 1st player the
“agent”, 2nd player “environment/nature”
(with constant or adversarial utility function)

Markov Decision Processes

Planning Problems

From
General
To
Special
Case

Example: And-Or Trees

  If an agent’s actions have nondeterministic effects,
we can model worst-case analysis as a zero-sum
game where the environment chooses the effects of
an agent’s actions.

 Minimax Search ≈ And-Or Search.
  Example: The Erratic Vacuum Cleaner.

  When applied to dirty square, vacuum cleans it and sometimes
adjacent square too.

  When applied to clean square, sometimes vacuum makes it
dirty.

  Reflex agent: same action for same location, dirt status.

And-Or Tree for the Erratic Vacuum

LeftSuck

RightSuck

RightSuck

6

GOAL
8

GOAL
7

1

2 5

1

LOOP
5

LOOP

5

LOOP

Left Suck

1

LOOP GOAL
8 4

•  The agent
“moves” at labelled
OR nodes.
•  The environment
“moves” at
unlabelled AND
nodes.
• The agent wins if it
reaches a goal
state.
•  The environment
“wins” if the agent
goes into a loop.

Summary

 Game Theory is a very general, highly developed
framework for multi-agent interactions.

 Deep results about equivalences of various
environment types.

  See Chapter 17 for more details.

