Adversarial Search and Game-Playing

CHAPTER 5 CMPT 310: Summer 2011 Oliver Schulte

Adversarial Search

- Examine the problems that arise when we try to plan ahead in a world where other agents are planning against us.
- A good example is in board games.
- Adversarial games, while much studied in AI, are a small part of game theory in economics.

Typical AI assumptions

- Two agents whose actions alternate
- Utility values for each agent are the opposite of the other
 - o creates the adversarial situation
- Fully observable environments
- In game theory terms: Zero-sum games of perfect information.
- We'll relax these assumptions later.

Search versus Games

• Search – no adversary

- Solution is (heuristic) method for finding goal
- Heuristic techniques can find *optimal* solution
- Evaluation function: estimate of cost from start to goal through given node
- Examples: path planning, scheduling activities

• Games – adversary

- Solution is **strategy** (strategy specifies move for every possible opponent reply).
- **Optimality depends on opponent.** Why?
- Time limits force an *approximate* solution
- Evaluation function: evaluate "goodness" of game position
- o Examples: chess, checkers, Othello, backgammon

Types of Games

• on-line

backgam

• on-line

chess

tic-tac-

toe

mon

	deterministic	Chance moves
Perfect information	Chess, checkers, go, othello	Backgammon, monopoly
Imperfect information (Initial Chance Moves)	Bridge, Skat	Poker, scrabble, blackjack

• **Theorem of Nobel Laureate Harsanyi:** Every game with chance moves during the game has an equivalent representation with initial chance moves only.

- A deep result, but computationally it is more tractable to consider chance moves as the game goes along.
- This is basically the same as the issue of full observability + nondeterminism vs. partial observability + determinism.

Game Setup

- Two players: MAX and MIN
- MAX moves first and they take turns until the game is over
 - Winner gets award, loser gets penalty.

• Games as search:

- Initial state: e.g. board configuration of chess
- Successor function: list of (move,state) pairs specifying legal moves.
- Terminal test: Is the game finished?
- Utility function: Gives numerical value of terminal states. E.g. win (+1), lose
 (-1) and draw (0) in tic-tac-toe or chess
- MAX uses search tree to determine next move.

Size of search trees

- b = branching factor
- d = number of moves by both players
- Search tree is O(b^d)
- Chess
 - **o** b ~ 35
 - D ~100
 - search tree is ~ 10 154 (!!)
 - completely impractical to search this
- Game-playing emphasizes being able to make optimal decisions in a finite amount of time
 - Somewhat realistic as a model of a real-world agent
 - Even if games themselves are artificial

How do we search this tree to find the optimal move?

Minimax strategy: Look ahead and reason backwards

- Find the optimal *strategy* for MAX assuming an infallible MIN opponent
 - Need to compute this all the down the tree
 - o <u>Game Tree Search Demo</u>
- Assumption: Both players play optimally!
- Given a game tree, the optimal strategy can be determined by using the minimax value of each node.
- Zermelo 1912.

Pseudocode for Minimax Algorithm			
function MINIMAX-DECISION(state) returns an action			
inputs: state, current state in game			
v←MAX-VALUE(<i>state</i>)			
return the <i>action</i> in SUCCESSORS(<i>state</i>) with value <i>v</i>			
function MAX-VALUE(state) returns a utility value			
if TERMINAL-TEST(state) then return UTILITY(state)			
$v \leftarrow -\infty$			
for a s in SUCCESSORS(state) do			
$v \leftarrow MAX(v, MIN-VALUE(s))$			
return v			
function MIN-VALUE(state) returns a utility value			
if TERMINAL-TEST(state) then return UTILITY(state)			
$v \leftarrow \infty$			
for a,s in SUCCESSORS(state) do			
$v \leftarrow MIN(v, MAX-VALUE(s))$			
return v			

Minimax Algorithm

• Complete depth-first exploration of the game tree

• Assumptions:

• Max depth = d, b legal moves at each point

• E.g., Chess: d ~ 100, b ~35

Criterion	Minimax
Time 😕	O(b ^d)
Space 😁	O(bd)

Practical problem with minimax search

- Number of game states is exponential in the number of moves.
 - Solution: Do not examine every node
 - => pruning
 - × Remove branches that do not influence final decision
- Revisit example ...

Alpha-beta Algorithm

- Depth first search only considers nodes along a single path at any time
- α = highest-value choice that we can guarantee for MAX so far in the current subtree.
- β = lowest-value choice that we can guarantee for MIN so far in the current subtree.
- update values of α and β during search and prunes remaining branches as soon as the value is known to be worse than the current α or β value for MAX or MIN.
- <u>Alpha-beta Demo</u>.

Effectiveness of Alpha-Beta Search

• Worst-Case

• branches are ordered so that no pruning takes place. In this case alpha-beta gives no improvement over exhaustive search

Best-Case

- each player's best move is the left-most alternative (i.e., evaluated first)
- o in practice, performance is closer to best rather than worst-case
- In practice often get O(b^(d/2)) rather than O(b^d)
 - this is the same as having a branching factor of sqrt(b),
 - \times since (sqrt(b))^d = b^(d/2)
 - × i.e., we have effectively gone from b to square root of b
 - e.g., in chess go from $b \sim 35$ to $b \sim 6$
 - × this permits much deeper search in the same amount of time
 - × Typically twice as deep.

Final Comments about Alpha-Beta Pruning

- Pruning does not affect final results
- Entire subtrees can be pruned.
- Good move *ordering* improves effectiveness of pruning
- Repeated states are again possible.
 - Store them in memory = transposition table

Practical Implementation

How do we make these ideas practical in real game trees?

Standard approach:

- cutoff test: (where do we stop descending the tree)
 - depth limit
 - o better: iterative deepening
 - o cutoff only when no big changes are expected to occur next (quiescence search)

• evaluation function

• When the search is cut off, we evaluate the current state by estimating its utility using **an evaluation function**.

Static (Heuristic) Evaluation Functions

• An Evaluation Function:

- estimates how good the current board configuration is for a player.
- Typically, one figures how good it is for the player, and how good it is for the opponent, and subtracts the opponents score from the players
- Othello: Number of white pieces Number of black pieces
- Chess: Value of all white pieces Value of all black pieces
- Typical values from -infinity (loss) to +infinity (win) or [-1, +1].
- If the board evaluation is X for a player, it's -X for the opponent.
- Many clever ideas about how to use the evaluation function.
 - e.g. null move heuristic: let opponent move twice.
- Example:
 - Evaluating chess boards,
 - Checkers
 - Tic-tac-toe

Evaluation functions

Black to move

White slightly better

Black winning

For chess, typically *linear* weighted sum of features

 $Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$

e.g., $w_1 = 9$ with $f_1(s) =$ (number of white queens) – (number of black queens), etc.

Chapter 5, Sections 1–5 14

Iterative (Progressive) Deepening

In real games, there is usually a time limit T on making a move

• How do we take this into account?

- using alpha-beta we cannot use "partial" results with any confidence unless the full breadth of the tree has been searched
- So, we could be conservative and set a conservative depth-limit which guarantees that we will find a move in time < T
 - × disadvantage is that we may finish early, could do more search
- In practice, iterative deepening search (IDS) is used
 - IDS runs depth-first search with an increasing depth-limit
 - when the clock runs out we use the solution found at the previous depth limit
The State of Play

• Checkers:

• Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994.

• Chess:

• Deep Blue defeated human world champion Garry Kasparov in a six-game match in 1997.

• Othello:

• human champions refuse to compete against computers: they are too good.

• Go:

- o human champions refuse to compete against computers: they are too bad b > 300 (!)
- See (e.g.) <u>http://www.cs.ualberta.ca/~games/</u> for more information

Done

Deep Blue

- 1957: Herbert Simon
 - o "within 10 years a computer will beat the world chess champion"
- 1997: Deep Blue beats Kasparov
- Parallel machine with 30 processors for "software" and 480 VLSI processors for "hardware search"
- Searched 126 million nodes per second on average
 - Generated up to 30 billion positions per move
 - Reached depth 14 routinely
- Uses iterative-deepening alpha-beta search with transpositioning
 - Can explore beyond depth-limit for interesting moves

Summary

- Game playing can be effectively modeled as a search problem
- Game trees represent alternate computer/opponent moves
- Evaluation functions estimate the quality of a given board configuration for the Max player.
- Minimax is a procedure which chooses moves by assuming that the opponent will always choose the move which is best for them
- Alpha-Beta is a procedure which can prune large parts of the search tree and allow search to go deeper
- For many well-known games, computer algorithms based on heuristic search match or out-perform human world experts.

AI Games vs. Economics Game Theory

- Seminal Work on Game Theory: <u>Theory of Games and Economic Behavior</u>, 1944, by von Neumann and Morgenstern.
- Agents can be in **cooperation as well as in conflict.**
- Agents may move simultaneously/independently.

Example: The Prisoner's Dilemma

	Column Player	
Row Player	С	D
С	2, 2	0, 3
D	3,0	1, 1

Other Famous Matrix Games:

- Chicken
- Battle of The Sexes
- Coordination

Solving Zero-Sum Games

Perfect Information: Use Minimax Tree Search.
Imperfect Information: Extend Minimax Idea with probabilistic actions.

⇒ von Neumann's Minimax Theorem: there exists an essentially unique optimal probability distribution for randomizing an agent's behaviour.

Matching Pennies

- Why should the players randomize?
- What are the best probabilities to use in their actions?

	Heads	Tails
Heads	1,-1	-1,1
Tails	-1,1	1,-1

Nonzero Sum Game Trees

- The idea of "look ahead, reason backward" works for any game tree with perfect information.
 I.e., also in cooperative games.
- In AI, this is called **retrograde analysis**.
- In game theory, it is called backward induction or subgame perfect equilibrium.
- Can be extended to many games with imperfect information (sequential equilibrium).

Summary: Solving Games

	Zero-sum	Non zero-sum
Perfect Information	Minimax, alpha-beta	Backward induction, retrograde analysis
Imperfect Information	Probabilistic minimax	Nash equilibrium

Nash equilibrium is beyond the scope of this course.

Single Agent vs. 2-Players

- Every single agent problem can be considered as a special case of a 2-player game. How?
 - 1. Make one of the players the Environment, with a constant utility function (e.g., always 0).
 - 1. The Environment acts but does not care.
 - 2. An adversarial Environment, with utility function the negative of agent's utility.
 - 1. In minimization, Environment's utility is player's costs.
 - 2. Worst-Case Analysis.
 - E.g., program correctness: no matter what input user gives, program gives correct answer.
- So agent design is a subfield of game theory.

Markov Decision Processes

Planning Problems

Example: And-Or Trees

- If an agent's actions have nondeterministic effects, we can model worst-case analysis as a zero-sum game where the environment chooses the effects of an agent's actions.
- Minimax Search ≈ And-Or Search.
- Example: The Erratic Vacuum Cleaner.
 - When applied to dirty square, vacuum cleans it and sometimes adjacent square too.
 - When applied to clean square, sometimes vacuum makes it dirty.
 - Reflex agent: same action for same location, dirt status.

And-Or Tree for the Erratic Vacuum

- The agent
 "moves" at labelled
 OR nodes.
- The environment "moves" at unlabelled AND nodes.
- •The agent wins if it reaches a goal state.
- The environment "wins" if the agent goes into a loop.

Summary

- Game Theory is a very general, highly developed framework for multi-agent interactions.
- Deep results about equivalences of various environment types.
- See Chapter 17 for more details.