Lemma 1. $\log(n!) \in \Theta(n \log n)$

Proof. Obviously, $\log(n!) \in O(n \log n)$. We need to show that $\log(n!) \in \Omega(n \log n)$, i.e., that there are constant c > 0 and n_0 such that $\log(n!) \ge cn \log n$ for every $n \ge n_0$.

Induction hypothesis: $\log((n-1)!) \ge c(n-1)\log(n-1)$. We have:

$$\log(n!) = \log(n.(n-1)!) = \log n + \log((n-1)!)$$

$$\geq \log n + c(n-1)\log(n-1)$$
(1)

Now, we need to show that $\log(n-1) \ge \log n - \epsilon$ for a very small epsilon. A constant ϵ is not enough, as we would not get the claim, we need something of order 1/n. For this we will use the Taylor expansion of the exponential function e^x :

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Hence, for any x > 0, we have $e^x > 1 + x$. Substituting 1/(n-1) for x, we have $e^{1/(n-1)} > 1 + \frac{1}{n-1} = \frac{n}{n-1}$. The logarithm on both sides, we get

$$1/(n-1) \log e > \log(n/(n-1)) = \log n - \log(n-1)$$
, and hence,
 $\log(n-1) > \log n - \log e/(n-1)$,

which is what we wanted. Now, let's plug it back to (1):

$$\log(n!) \ge \log n + c(n-1)\log(n-1) > \log n + c(n-1)(\log n - \log e/(n-1)) = \log n + c(n-1)\log n - c\log e = cn\log n + (1-c)\log n - c\log e$$

Now, it is enough to show that $(1-c)\log n - c\log e \ge 0$. Let's set c = 1/2. Then it's enough to show that $\log n \ge \log e$, i.e., $n \ge e$. This is true, for all $n \ge 3$. Hence, for c = 1/2 and $n \ge 3$, it follows that

$$\log(n!) \ge cn \log n \,,$$

which finishes the induction step.

It is easy to check the base case, which we can set in this case to n = 2 (since, induction step can be done for any $n \ge 3$). For n = 2, we have $\log(2!) = 1 \ge 1/2.2 \log 2 = 1$, and hence $\log(n!) \ge cn \log n$ is true in the base case as well.

To summarize we have $\log(n!) \ge 1/2n \log n$, for every $n \ge n_0 = 2$. Done!