Lemma 1. log(n!) € O(nlogn)

Proof. Obviously, log(n!) € O(nlogn). We need to show that log(n!) €
Q(nlogn), i.e., that there are constant ¢ > 0 and ng such that log(n!) >
cn logn for every n > ng.

Induction hypothesis: log((n — 1)!) > ¢(n — 1) log(n — 1).

We have:

log(n!) = log(n.(n — 1)!) = logn + log((n — 1)!)
>logn+c(n —1)log(n — 1) (1)

Now, we need to show that log(n —1) > logn — € for a very small epsilon. A
constant € is not enough, as we would not get the claim, we need something
of order 1/n. For this we will use the Taylor expansion of the exponential

function e*:
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Hence, for any = > 0, we have ¢* > 1 + x. Substituting 1/(n — 1) for x, we

have /(=1 > 1 4 ﬁ = 5. The logarithm on both sides, we get

1/(n—1).loge > log(n/(n —1)) =logn —log(n — 1), and hence,
log(n — 1) > logn —loge/(n —1),

which is what we wanted. Now, let’s plug it back to (1):

log(n!) > logn + ¢(n — 1) log(n — 1)
>logn + ¢(n —1)(logn —loge/(n — 1)) =logn + c¢(n — 1)logn — cloge
=cnlogn+ (1 —c)logn — cloge

Now, it is enough to show that (1 — ¢)logn — cloge > 0. Let’s set ¢ = 1/2.
Then it’s enough to show that logn > loge, i.e., n > e. This is true, for all
n > 3. Hence, for ¢ = 1/2 and n > 3, it follows that

log(n!) > cnlogn,

which finishes the induction step.

It is easy to check the base case, which we can set in this case to n = 2
(since, induction step can be done for any n > 3). For n = 2, we have
log(2!) =1 > 1/2.2log2 = 1, and hence log(n!) > cnlogn is true in the
base case as well.

To summarize we have log(n!) > 1/2nlogn, for every n > ng = 2.
Done! O



