
Exercise 1. Show that if for every cut of a graph there is a unique light edge crossing the cut,
then the graph has a unique minimum spanning tree. Show that the converse is not true by giving
a counterexample.
Remark: Do not assume that all weight edges are distinct.

Solution. Assume for a contradiction that the graph has two distinct minimum spanning trees T
and T ′. Let (u, v) be an edge in T which is not in T ′. Removing edge (u, v) cuts the tree T
into two components (trees). Let Tu and Tv be the vertices in the component containing u and v,
respectively. Consider the cut (Tu, Tv) and let (x, y) be the unique light edge crossing the cut. If
(x, y) 6= (u, v) then w(x, y) < w(u, v) and the spanning tree T −{(u, v)}∪{(x, y)} has a better cost
than T , a contradiction.

Hence, assume that (x, y) = (u, v), i.e., the unique light edge (u, v) crossing the cut (Tu, Tv)
doesn’t belong to T ′. Consider the path p from u to v in T ′. Path starts in Tu and ends in Tv,
hence there must be an edge e on it crossing the cut (Tu, Tv) (there might be several of them, but
take one). As (u, v) is the unique light edge crossing this cut, w(u, v) < w(e). If we add (u, v) to
T ′ we get a cycle composed of (u, v) and p. By removing any edge from the cycle we get again a
spanning tree. Hence T ′ ∪ {(u, v)} − {e} is a spanning tree and by above it has a better cost than
T ′, again a contradiction.

Counterexample for the converse. Consider a graph with 3 vertices a, b, c and weights

w(a, b) = w(a, c) = 1 and w(b, c) = 2 .

The graph has a unique minimal spanning tree (containing edges (a, b) and (a, c)), however cut
({a}, {b, c}) doesn’t have a unique light edge crossing the cut.

Exercise 2. Show that for each minimum spanning tree T of G, there is a way to sort the edges
of G in Kruskal’s algorithm so that the algorithm returns T .
Remark: Do not assume that all weight edges are distinct.

Solution. Sort the edges of G in Kruskal’s algorithm so that for every edge in T , it appears earlier
in the sorted list than any other edge not in T with the same weight.

Consider a following loop invariant:

• prior to each iteration A ⊆ E(T ).

Initialization and termination are straightforward. What about maintance? Assume that A is
contained in E(T ) prior to a certain iteration. Let (u, v) be the edge added to A during this
iteration. If (u, v) ∈ E(T ), we are done as A ∪ {(u, v)} ⊆ E(T ). Hence, assume for contrary that
(u, v) /∈ T . Let e be an edge in E(T ) − A with the smallest weight. Obviously, w(e) ≥ w(u, v),
otherwise the algorithm would add e to A in some step before as it crosses two components of current
configuration. If w(u, v) = w(e), e would appear before (u, v) in the list, since (u, v) /∈ E(T ) and
e ∈ E(T ). But then again, algorithm would add e to A before processing edge (u, v). Hence, we
can assume that w(u, v) < w(e).

Take a path p connecting u and v in T . Since, u and v are contained in different components at
the current iteration, there is an edge f in p not yet contained in A. The edge must be somewhere
in the remaining portion of the ordered list, hence w(f) ≥ w(e) > w(u, v). Now, removing f from
and adding (u, v) to T gives a spanning tree with a better cost than the cost of T , a contradiction
with optimality of T .

1


