
SFU CMPT-307 2008-2 1 Lecture: Week 9

SFU CMPT-307 2008-2 Lecture: Week 9

Ján Maňuch

E-mail: jmanuch@sfu.ca

Lecture on July 8, 2008, 5.30pm-8.20pm

Last modified: Wednesday 16th July, 2008, 00:50 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 2 Lecture: Week 9

Binary search trees

Support many dynamic-set operations, e.g.� Search� Minimum� Maximum� Insert� Delete� . . .

Can be used as dictionary, priority queue. . .

Running time depends onheight of tree:� if complete, then�(log n) in the worst case� if just one chain, then�(n) in the worst case� if random, then�(log n) expected

Last modified: Wednesday 16th July, 2008, 00:50 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 3 Lecture: Week 9

First of all,what is a binary search tree?� it’s a binary tree� represented using linked data structure� nodes are objects� objects store
– key

– data

– pointers to left child, right child, and parent

(NULL if one is missing)

root is only node with parent=NULL

Binary-search-tree propertyx node in binary search tree� nodesy in left subtree ofx have key[y℄ � key[x℄� nodesy in right subtree ofx have key[y℄ � key[x℄
Note: heaps are different!

Last modified: Wednesday 16th July, 2008, 00:50 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 4 Lecture: Week 9

Definition: inorder walkof binary tree:

for each nodex
1. visit left subtree (recursively)

2. print key ofx
3. visit right subtree (recursively)

Inorder-Tree-Walk (x)
1: if x 6= NULL then
2: Inorder-Tree-Walk(left(x))
3: print key(x)

4: Inorder-Tree-Walk(right(x))
5: end if

Interesting property of BSTs:

In-order walkof BST prints all keys insorted order

Last modified: Wednesday 16th July, 2008, 00:50 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 5 Lecture: Week 9

Example for inorder walk:

12

4

3

6

10

8

5

2

Result is2 – 3 – 4 – 5 – 6 – 8 – 10 – 12

Last modified: Wednesday 16th July, 2008, 00:50 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 6 Lecture: Week 9

Assignment Problem 9.1.(deadline: July 15, 5:30pm)

Give a nonrecursive algorithm that performs an inorder treewalk using

only a constant memory. Your algorithm can test two pointersfor equality.

Last modified: Wednesday 16th July, 2008, 00:50 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 7 Lecture: Week 9

Theorem. If x is root ofn-node (sub)tree, then Inorder-Tree-Walk(x)

takes�(n) time.

Proof. T (n) time if procedure called onn-node (sub)tree

ClearlyT (0) = for some constant
(testx 6= NULL)

Otherwise, suppose left subtree hask nodes, right subtree hasn� k � 1

nodes. Then forn > 0T (n) = T (k) + T (n� k � 1) + d
with d constant

Last modified: Wednesday 16th July, 2008, 00:50 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 8 Lecture: Week 9

T (n) = T (k) + T (n� k � 1) + d

We will use substitution method to showT (n) = (+ d)n+

Forn = 0 we have(+ d)n+ = = T (0), OK

Induction hypothesis:For everym < n, T (m) = (+ d)m+ .
We will show that is true also forn:T (n) = T (k) + T (n� k � 1) + d= [(+ d)k + ℄ + [(+ d)(n� k � 1) + ℄ + d= (+ d)k + + (+ d)n� (+ d)k ��(+ d) + + d= (+ d)n+ � (+ d) + + d= (+ d)n+

Last modified: Wednesday 16th July, 2008, 00:50 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 9 Lecture: Week 9

Searching

Want to search for a node with given keyk

Return pointer to node if exists, otherwise NULL� begin search at root� follow path downward

for nodex on path, compare key[x℄ with k
– if equal, done

– if k < key[x℄, continue in left subtree

(left subtree contains keys� key[x℄)
– if k > key[x℄, continue in right subtree

(right subtree contains keys� key[x℄)
Last modified: Wednesday 16th July, 2008, 00:50 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 10 Lecture: Week 9

Tree-Search(x; k)
1: if x = NULL or k = key[x℄ then
2: returnx
3: else ifk < key[x℄ then
4: return Tree-Search(left[x℄; k)
5: else
6: return Tree-Search(right[x℄; k)
7: end if

Last modified: Wednesday 16th July, 2008, 00:50 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 11 Lecture: Week 9

9

6 18

3 7 17 20

2 4 13

15

Running time isO(h), h height of tree

Last modified: Wednesday 16th July, 2008, 00:50 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 12 Lecture: Week 9

Minimum/maximum

Minimum of the tree rooted inx can be found by followingleft pointers
as long as possible (not necessarily to a leaf!)

Tree-Minimum (x)
1: while left[x℄ 6= NULL do
2: x left[x℄
3: end while
4: returnx

Maximum of the tree rooted inx can be found by followingright
pointers as long as possible (not necessarily to a leaf!)

Tree-Maximum(x)

1: while right[x℄ 6= NULL do
2: x right[x℄

3: end while
4: returnx

Both have running timeO(h), h height of tree

Last modified: Wednesday 16th July, 2008, 00:50 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 13 Lecture: Week 9

Successor/predecessor

Definition: successor/predecessor insorted order given by inorder walk

For instance, if valuesx1 < x2 < � � � < xn are stored in a tree, then the successor

of xi is xi+1.
12

4

3

6

10

8

5

2

Idea of an algorithm for finding successor:� If right subtree of x is nonempty, then successor ofx is leftmost node in

right subtree (“the smallest among the larger”)

Found by calling Tree-Minimum on right subtree� Otherwise (right subtreeis empty andx hasa successor), then this is the

lowest ancestorof x whoseleft child is alsoancestor ofx
(A node is ancestor of itself)

Last modified: Wednesday 16th July, 2008, 00:50 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 14 Lecture: Week 9

Tree-Successor(x)
1: if right[x℄ 6= NULL then
2: return Tree-Minimum(right[x℄)

3: end if
4: y parent[x℄
5: while y 6= NULL and x = right[y℄ do
6: x y
7: y parent[y℄
8: end while
9: returny

Running time clearlyO(h), h height of tree

Tree-Predecessor symmetric

Theorem. Operations Search, Minimum, Maximum, Successor,

Predecessor run in timeO(h) in BST of heighth
Last modified: Wednesday 16th July, 2008, 00:50 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 15 Lecture: Week 9

Assignment Problem 9.2.(deadline: July 15, 5:30pm)

Consider a binary treeT whose keys are distinct. Show that if the right

subtree of a nodex in T is empty andx has a successory, theny is the

lowest ancestor ofx whose left child is also an ancestor ofx. (Recall that

every node is its own ancestor.)

Last modified: Wednesday 16th July, 2008, 00:50 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 16 Lecture: Week 9

Insertion

Now we’re talking aboutdynamic sets

Insertion of new element easy. From root, walk down tree according to

value of new key and open new leaf

17

5 18

2 9 15 19

13

12

Running time againO(h)

Last modified: Wednesday 16th July, 2008, 00:50 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 17 Lecture: Week 9

Want to insert new valuev

Given nodez with key[z℄ = v, left[z℄ = right[z℄ = NULL

Tree-Insert(T; z)
1: y NULL
2: x root[T ℄
3: while x 6= NULL do
4: y x

5: if key[z℄ < key[x℄ then
6: x left[x℄

7: else
8: x right[x℄

9: end if

10: end while

11: parent[z℄ y

12: if y = NULL then
13: root[T ℄ z /* T was

empty */

14: else ifkey[z℄ < key[y℄ then
15: left[y℄ z
16: else
17: right[y℄ z
18: end if

Last modified: Wednesday 16th July, 2008, 00:50 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 18 Lecture: Week 9

Deletion

Given pointer to some nodez. Three cases.

1. z has no children

At z’s parent parent[z℄, just replace link toz with NULL

2. z has one child

splice outz, make new link between its parent and its child

3. z has two children

splice outz’s successory (which has no left child, as seen from

Homework 9.3), and replacez’s key and data withy’s key and data

Last modified: Wednesday 16th July, 2008, 00:50 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 19 Lecture: Week 9

Assignment Problem 9.3.(deadline: July 15, 5:30pm)

Show that if a node in a binary search tree has two children, then its

successor has no left child and its predecessor has no right child.

Last modified: Wednesday 16th July, 2008, 00:50 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 20 Lecture: Week 9

no children

z

7

15

5 16

3 12 20

10 13 18 23

6

7

15

5 16

3 12 20

10 18 23

6

Last modified: Wednesday 16th July, 2008, 00:50 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 21 Lecture: Week 9

one child

z

23

15

5 16

3 12 20

10 13 18 23

6

7

15

5

3 12

10 13

6

7

20

18

Last modified: Wednesday 16th July, 2008, 00:50 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 22 Lecture: Week 9

two children

z

y

y

z

3 20

10 13 18 23

165

7

15

6

15

7

16

6

6

3 12 20

10 13 18 23

7

123

23181310

20

15

5 16

12

Last modified: Wednesday 16th July, 2008, 00:50 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 23 Lecture: Week 9

Tree-Delete(T; z)
1: if left[z℄ = NULL or

right[z℄ = NULL then
2: y z
3: else
4: y Tree-Successor(z)
5: end if

6: if left[y℄ 6= NULL then
7: x left[y℄

8: else
9: x right[y℄

10: end if

11: if x 6= NULL then

12: parent[x℄ parent[y℄

13: end if

14: if parent[y℄ = NULL then
15: root[T ℄ x

16: else ify = left[parent[y℄℄ then
17: left[parent[y℄℄ x

18: else
19: right[parent[y℄℄ x

20: end if

21: if y 6= z then
22: key[z℄ key[y℄

23: copyy’s data intoz
24: end if
25: returny

Last modified: Wednesday 16th July, 2008, 00:50 2008 J́an Mǎnuch

	Binary search trees
	Searching
	Minimum/maximum
	Successor/predecessor
	Insertion
	Deletion

