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Universal hashing

Overcomes problem of bad inputs by usnagdomization

Mentioned: ifadversary chooses keys to be hashedfixed hash
function, he can choosekeys thatall hash into same slot

All fixed hash functions have this problem
Universal hashing:

e designclassof parametrized hash functiofs

e pickrandom h € H at beginning of execution (select at random
parameters)
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Let H be a finite collection of hash functions that map given ursgér
into {0,1,...,m —1}

‘H is said to bauniversal if for each pairk, ¢ € U of keys, the number of
hash functiong € H with h(k) = h(¢) is at mos{H|/m, i.e., the chance

of a collision is at most
H|/m 1
CH m
In other words:with A randomly chosen fror, the chance of collision
between arbitrary distinct keysand/ is just the samel(/m) as a chance
of collision if h(k) andh(¢) were randomly and independently chosen

from{0,...,m — 1}
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Properties: average-case

Let H be a universal collection of hash functions

Theorem. Chooseh € ‘H randomly to hash keys (setK) into tableT" of
sizem, using chaining to resolve collisions.

1. Ifkey k is notin the table, then expected lendthn, )] of list thatk
hashes to is at most.

2. Ifkey k is in the table, then expected lengdilin,, )] of list
containingk is at mostl + «.

Proof. Important: expectations over the choice of a hash function, do not
depend on assumptions regarding distribution of keys!

For each pair of distinct keys, ¢ define a random variabl&;,, with
Xre = 1iff h(k) = h(¥), i.e, collision

By definition, P(Xy, = 1) < 1/m, and thusE | X, < 1/m
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Now define for each ke} a random variable

Ye =) X,

le K

O£k

l.e. the number of keys other tharthat hash to same slot &s Clearly,

B = B |3 Xue| =Y BXu] <Y = |{£: £ € KAL# kY| /m

|0k i 0k 0k
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It remains to count the number 6fc K with ¢ £ k

Case L:lf k € K, thenny, ;) = Y; and
{l: e KANL#EK} =n

ThUSE[nh(k)] = E[Yk] < n/m =

Case 2:If k € K, keyk appears i'|h(k)]. Also, countY;, does not
includek itself. Thusny,) = Y% + 1 and

{0 LeKANL£E) =n—1

Thus
Enpg] =EY)+1<(n-1)/m+1=14+a-1/m<1l+a O
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Universal hashing: sequence of operations

Corollary. Using the universal hashing and chaining in a table with
slots, it takes expected tint&(k) to handle any sequence binsert,
Search, and Delete operations, contairih@n) Insert operations.

Proof.
e the number of Insertions 8(m)
e thusthe number of elements in the hash table at any time-4D (m)
anda = O(1).
e Insert and Delete take constant time, Search takes expectstant
time (due tooe = O(1)),
e by linearity of expectation, expected time for sequendeaberations
ISO(k).
Notice: Impossible for adversary to pick sequence of operatiorts tha
forces the worst-case time

This is nowwithout the assumption afimple uniform hashing
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Construction of a universal class of hash functions

Simple solutiontake all functions mapping into{0,1,...,m — 1}

disadvantages:

size of the collectionm !V

number of random bits needed to pick a random functjibiilog m — a
lot of preprocessing needed

how to encode functions?

we have to store the chosen function — space neddgdog m

we need a much smaller collection of hash functions
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Assignment Problem 8.1.(deadline: July 8, 5:30pm)
Prove that the class of all functions frarhto {0,1,...,m — 1} is
universal.
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Number-theoretical solution.

Let p be a prime number and let

Z, = {0,1,...,p—1}
7: = {1,2,...,p—1}

Lemma. For anya € Z7, b, c € Z,, the equation
ar+b=c modp

has a unique solution € Z,,.

(see Chapter 31.4 for a proof)
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Let p be a prime, large enough such that every possiblgskeyn
0,...,p— 1, inclusive.

forall a € Z;, andb € Z, define hash functions, ;, :

hav(k) = ((ak 4+ b) mod p) mod m

(linear transformation followed by reductions modpland then modulo

m)

Note:p > m since by the assumption, the size of universe of Keéys
greater than the number of slots
the functionh, , mapsU C Z, into Z,,

Consider the universal class of hash functions:

Hpm ={hap: a €L, b€ Ly}

Note: size of classp(p — 1)

p can be chosen such thak 2|U| (Bertrand’s postulate)
picking randomly fron,, ,,, means picking random, b
number of bits needed to pick a function frd), ,,,: O(log |U])
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Theorem. Class¥,, ,,, of hash functions is universal.

Proof. Take two distinct key& and/.

How many functions are there ¥, ,,, mappingk and/ to the same slot?
Considerhg, , € Hpm.- Let

r = (ak + b) mod p
s = (af 4+ b) mod p

Is it possible that = s?

By Lemma: “No”.
If r = s thenk and/ are solutions to equation

ar+b=r modp

and by uniqueness of solutiokh = /.

“no collisions at modul® level”
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There arep(p — 1) functions inH,, ,,
and there ar@(p — 1) possible pairgr, s) such that # s. Is there a
one-to-one correspondence?

“Yes” — Valuesr ands determine the function, ; (remembei and/
are still fixed):

r—s=a(lk—¢)+0 mod p

by Lemma (unknowna), a IS unique
r=1.b+ak modp

by Lemma (unknownb), b is unique
impliesh,_, uniquely determined by ands

Conclusion: If we pick h, » € Hp.m Uniformly at random, the resulting
pair (r, s) is equally likely to be any pair of distinct values frdfy .
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When acollision betweent and/ happens?
k and/ collide whenr = s mod m

Hence, probability that and/ collide is equal to probability that = s
mod m whenr ands are randomly chosen as distinct values frém

Note: doesn’t depend ok and/ anymore

pick anyr, there are at mosip/m| choices ofs such that = s mod m,
one of them iy = r

hence, there are at mgst/m| — 1 choices fors such thats # r and

r=s modm

hence, probability that = s mod m andr # s is at most

Final conclusion:H,, ., Is universal.
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Open addressing

the second method for dealing with collisions — recall, thet method
was “chaining”

e elements are stored directly in hash table (not in linked)lis

e hence: thdoad « is always at most (but the table can overflow)

e for every key we have a sequence of slots, calledbtibbe sequence

— when inserting we trydrobe) the first slot, if used, the second
slot, etc., until we find an empty slot

— when searching we go over slots in sequence until we either fin
the searched element or empty slot

e NO pointers used — we can use more memory for the hash table
Instead, which results in fewer collisions, and so, fastarching
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Hash functions have now two parameters:

o the keyk € U
e the probe numbere {0,1,...,m — 1}

Furthermore, the hash function
h:Ux{0,1,....m—1} —-{0,1,...,m — 1}
must satisfy that for every ke, theprobe sequence
(h(k,0),h(k,1),...,h(k,m —1))

IS a permutation of0,1,...,m — 1)

Now: every position is eventually considered as a slot for a new ke
(the algorithm fails with “overflow” only when there is no p&in the
entire table to insert a key)
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Assume that an empty slot contains the value NIL

Hash-Insert(7', k)

1: 2+ 0

2: repeat

3 j<« h(k,q)

4. if T'[j] = NIL then
5: T[] < k

6: return j

7. else

8: 14— 1+ 1

9 endif

10: until 2 = m
11: error “hash table overflow”

|dea: probing the probe sequencelotintil we find an empty slot
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Hash-Searci{T k) probes the same sequence, therefore the search can
be terminated when an empty slot is found

assuming that we didn’t delete anything from the table

Hash-SearchT, k)

1: 2+ 0

2: repeat

3 j< h(k,1)

4. if T|j] = k then
5: return j

6: else

7 14—1+1

8: endif

o: until T'[j] =NILori=m
10: return NIL

returns; where slot; contains the ke, or NIL, if £ is not in the table
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Hash-Deleté T, k) — difficult operation:

e when we delete a key from the table, we cannot just mark the slo
containing the key by NIL (empty)
\we could disconnect a sequence of occupied elements letling
key]

Solution.mark the place with the special value DELETED (instead of
NIL)
e modify Hash-Insert(T', k) so that it treats slot containing DELETED
as empty
e Hash-SearchT k) will treat such a slot as occupied, which we
want, so no modification is needed

Problem.the search time doesn’t depend on leag #e€ments pt rather

#slots ?
on #elements #DELETED '\yhich can be quite bad

ConclusionwhenDeleteoperation is allowed, prefer to use hashing by
chaining
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Assignment Problem 8.2.(deadline: July 8, 5:30pm)
Write a pseudo-code for the modifiethsh-Insert able to handle also the
special value DELETED, and for the proceditash-Delete
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Uniform hashing

— generalization ofimple uniform hashing
— very strong conditions, in practice just some approxioregiare used
— useful for analysis

assumption:

each key is equally likely to have any of! permutations of
(0,1,...,m — 1) as its probe sequence

requires that allm! possible permutations (probe sequence) could be
generated

Common techniques used are much worse:

e linear probing (onlym distinct probe sequences)
e quadratic probing (onlyn distinct probe sequences)

e double hashingrfi? distinct probe sequences)
the best results
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Linear probing

needs an ordinary hash functibh: U — {0,1,...,m — 1}, called an
auxiliary hash function

hash function:
h(k,7) = (h'(k) + i) mod m

hence, for a key;, the probe sequence is

(B (k) ' (k) +1,...,n—1,0,... k' (k) — 1)

— we start at the slot given by auxiliary hash function, arehtprobe
consecutive slots

— first probe determines the entire sequeree only m distinct probe
seguences
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Problem.primary clustering

— long clusters (sequences) of occupied slots — increasemq@e search
time

— why?

e consider a cluster withoccupied slots, if the consecutive slot is
empty, then it has a probability + 1) /m that it will be filled during
nextinsert operation
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Quadratic probing

hash function:

h(k,i) = (h'(k) + c1i + c2i®) mod m
whereh' is again an auxiliary hash functioe, # 0
Problems:

e doesn’t work for all values of;, co andm

e still: a probe sequence for one key is shifted version of tiob@
sequence for another key=- only m distinct probe sequences

e secondary clustering— milder form of clustering (the keys mapped
to the same slot will form a cluster)
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Assignment Problem 8.3.(deadline: July 8, 5:30pm)
Consider a quadratic probing scheme with constants 2 for some
integert (i.e.,m is a power of2) andc; = ¢, = 1/2. Prove that the
function

h(k,i) = (b (k) + c1i + c2i*) mod m

IS Indeed a hash function, i.e., prove that all probe semseae
permutations of0,1,...,m — 1).

Hint: Congruence:/2 = b mod 2° makes sense only if is even, and is
equivalent to congruenee= 2b mod 2!,
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Double hashing

hash function:
h(k,t7) = (h1(k) + iho(k)) mod m

whereh; andh, are auxiliary hash functions

— first probe doesn’t determine the entire sequence, de@dsaisn the
value of the second hash function (assuming we don'tudse h;)

— approximates behavior of “uniform hashing”, generatetnsations
have some characteristics of randomly chosen permutation
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Requires.The values oh (k) have to be relatively prime (coprime) to the
size of hash table:

two easy ways:

1. m Is power of2, andh, produce only odd numbers
2. m IS a prime, andh, returns positive values smaller than

each pairhy(k), ho(k)) yields a distinct probe sequence, heten?)
probing sequences are used
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Analysis of open-address hashing

e assume that we use “uniform hashing’new key has a probe
sequence chosen uniformly at random from all possible p&rtnons

e when we are looking for a key which is already in the table, we
assume that every key is equally likely to be searched for

e we will express the expected number of probes in terms oot
a=n/m <1
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Unsuccessful search

Theorem. Given an open-address hash table with loagd n/m < 1, the
expected number of probes in an unsuccessful search is at mos
1/(1 — «), assuming uniform hashing.

Example.

If o =1/2 (50% of table occupied) then the expected number of probes
for unsuccessful search will Hg/(1 — 1/2) = 2

if « = 0.9 (90% of table occupied), theh/(1 —9/10) = 10
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Proof.

e let X be a random variable denoting the number of probes made in
an unsuccessful search

o fori=1,...,m,let A; be the event that theth probeh(k,7 — 1) is
to an occupied slot

o {X =i}iffeventsA,,..., A;_1 happened and evenrt; didn’t

e event{X > i} is equivalenttoeventl; N Ao N---N A;_1, hence

P(X>i)=P(A1NAsN---NA1)

we are looking forE | X |
why do we need’(X > 1)?

answer:Assignment Problem 8.4
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Assignment Problem 8.4.(deadline: July 8, 5:30pm)
Consider a random variablg having only positive integer values (i.e.,

It's mapping the probability space to the set of natural nerap Prove
that

EX]=P(X>1)+P(X >2)+ ZPX>Z

Hint: events{ X = 1},{X =2}, {X = 3}, ..., are mutually exclusive
(disjoint), hence
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We will use the formula from Assignment Problem 5.2 again:

P(AlﬂAgm“'ﬂAi_l) =
P(A)) - P(Ag|A1) -+ P(A;_1]| Ao NN Ay N Ay)

Hence, to find ouP (X > i) it's enough to evaluate conditional
probabilitiesP(A;|A;_1 N ---N Ay).
casej = 1: P(A;) =n/m

(m slots,n are occupied, uniform hashing, the first probe can be to any of
m slots)
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case; > 1:

—assumed,, ..., A;_; occurred
— hence, firsj — 1 probes were to occupied slots
— j-th probe cannot be to any of these slots (the probe sequeace |

permutation)
— hence, we have: — (j — 1) slots to choose from, and— (5 — 1) of

them are occupied
conclusion:probability P(A,;|A;_1 N---N Ay)is

(n=j+1/(m—j+1)
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We can now calculat®& (X > i):

n n-—1 n—1+ 2
m m—1 m— 1+ 2

P(X > i)

VAN
Q.
S[s
N
|

e if o is constant, them/(1 — «) is also constant, and so an
unsuccessful search runs in tig1)
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Insert

Corollary. Inserting an element into an open-address hash table vaith o
« requires at most/(1 — «) probes on average, assuming uniform
hashing.

Proof.

e there must be space in the tahleg 1

e Inserting a key is equivalent to unsuccessful search, whienasert
the key to the final (empty) slot of unsuccessful search

e the same expected number of probe&1 — «)
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Successful search

Theorem. Given an open-address hash table with lead 1, the
expected number of probes of successful search is at most

l-<1n ! +0<1)>

Q0 1l -«

assuming uniform hashing and assuming that each key inbheita
equally likely to be searched for.

Example.

50% table full: expected number of probes in successfutheat most
1.387
90% table full:2.559
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Proof.

e when looking for a key:, we have to repeat the same probe sequence
as when inserting into the table

e assume that keys were inserted to the table in the drdés, . .., k,

e hence, if we are looking for the k&y;, the number of probe is the
same as the number of probes we needed when inséfttoghe
table

e at that time, table contained- 1 elements, and the load factor was
a=(i—1)/m
e search foik; requires at most

1 1 m

l—a 1-(G-1)/m m—i+tl1

probes on average
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as it can be any of keys in the table with the same probability, we have
to take the average of those expected numbers of probes:

m
—1+1

n—1

n 4~ m-—1
1=0

1

— : Hm_Hm—n
L |

usingH =Ink + O(1)

1 n
E\# < —
#probes < n;m

- (Inm — In(m —n) + O(1))

.(m e +0(1))

| <1n Ti:+ 0(1))
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