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Universal hashing

Overcomes problem of bad inputs by usingrandomization

Mentioned: ifadversary chooses keys to be hashed byfixed hash

function, he can choosen keys thatall hash into same slot

All fixed hash functions have this problem

Universal hashing:� designclassof parametrized hash functionsH� pick random h 2 H at beginning of execution (select at random

parameters)
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SFU CMPT-307 2008-2 3 Lecture: Week 8

LetH be a finite collection of hash functions that map given universeU

into f0; 1; : : : ;m� 1gH is said to beuniversal if for each pairk; ` 2 U of keys, the number of

hash functionsh 2 H with h(k) = h(`) is at mostjHj=m, i.e., the chance

of a collision is at most jHj=mjHj = 1m
In other words:with h randomly chosen fromH, the chance of collision

between arbitrary distinct keysk and` is just the same (1=m) as a chance

of collision if h(k) andh(`) were randomly and independently chosen

from f0; : : : ;m� 1g
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SFU CMPT-307 2008-2 4 Lecture: Week 8

Properties: average-case

LetH be a universal collection of hash functions

Theorem. Chooseh 2 H randomly to hashn keys (setK) into tableT of

sizem, using chaining to resolve collisions.

1. If key k is not in the table, then expected lengthE[nh(k)℄ of list thatk

hashes to is at most�.

2. If key k is in the table, then expected lengthE[nh(k)℄ of list

containingk is at most1 + �.

Proof. Important: expectations over the choice of a hash function, do not

depend on assumptions regarding distribution of keys!

For each pair of distinct keysk; ` define a random variableXk` withXk` = 1 iff h(k) = h(`), i.e, collision

By definition,P (Xk` = 1) � 1=m, and thusE[Xk`℄ � 1=m
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Now define for each keyk a random variableYk =X`2K` 6=kXk`;
i.e. the number of keys other thank that hash to same slot ask. Clearly,

E[Yk℄ = E 264X`2K` 6=kXk`375 =X`2K` 6=kE[Xkl℄ �X`2K` 6=k 1m = jf` : ` 2 K^` 6= kgj=m
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It remains to count the number of` 2 K with ` 6= k

Case 1:If k 62 K, thennh(k) = Yk andjf` : ` 2 K ^ ` 6= kgj = n

ThusE[nh(k)℄ = E[Yk℄ � n=m = �
Case 2:If k 2 K, keyk appears inT [h(k)℄. Also, countYk does not

includek itself. Thusnh(k) = Yk + 1 andjf` : ` 2 K ^ ` 6= kgj = n� 1
ThusE[nh(k)℄ = E[Yk℄ + 1 � (n� 1)=m+ 1 = 1 + �� 1=m < 1 + �
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Universal hashing: sequence of operations

Corollary. Using the universal hashing and chaining in a table withm

slots, it takes expected time�(k) to handle any sequence ofk Insert,

Search, and Delete operations, containingO(m) Insert operations.

Proof.� the number of Insertions isO(m)� thus the number of elements in the hash table at any time isn = O(m)

and� = O(1).� Insert and Delete take constant time, Search takes expectedconstant

time (due to� = O(1)),� by linearity of expectation, expected time for sequence ofk operations

isO(k).
Notice: Impossible for adversary to pick sequence of operations that

forces the worst-case time

This is nowwithout the assumption ofsimple uniform hashing
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Construction of a universal class of hash functions

Simple solution.take all functions mappingU into f0; 1; : : : ;m� 1g

disadvantages:

size of the collection:mjU j
number of random bits needed to pick a random function:jU j logm — a

lot of preprocessing needed

how to encode functions?

we have to store the chosen function — space needed:jU j logm
we need a much smaller collection of hash functions
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Assignment Problem 8.1.(deadline: July 8, 5:30pm)

Prove that the class of all functions fromU to f0; 1; : : : ;m� 1g is

universal.
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Number-theoretical solution.

Let p be a prime number and letZp = f0; 1; : : : ; p� 1gZ�p = f1; 2; : : : ; p� 1g

Lemma. For anya 2 Z�p, b;  2 Zp, the equationax+ b �  mod p
has a unique solutionx 2 Zp .

(see Chapter 31.4 for a proof)
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Let p be a prime, large enough such that every possible keyk is in0; : : : ; p� 1, inclusive.

for all a 2 Z�p andb 2 Zp define hash functionsha;b :ha;b(k) = ((ak + b) mod p) mod m

(linear transformation followed by reductions modulop and then modulom)

Note:p > m since by the assumption, the size of universe of keysU is
greater than the number of slots
the functionha;b mapsU � Zp into Zm
Consider the universal class of hash functions:Hp;m = fha;b : a 2 Z�p ; b 2 Zpg
Note: size of class:p(p� 1)p can be chosen such thatp < 2jU j (Bertrand’s postulate)
picking randomly fromHp;m means picking randoma; b
number of bits needed to pick a function fromHp;m: O(log jU j)
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Theorem. ClassHp;m of hash functions is universal.

Proof. Take two distinct keysk and`.
How many functions are there inHp;m mappingk and` to the same slot?

Considerha;b 2 Hp;m. Letr = (ak + b) mod ps = (a`+ b) mod p
Is it possible thatr = s?
By Lemma: “No”.

If r = s thenk and` are solutions to equationax+ b � r mod p
and by uniqueness of solution,k = `.
“no collisions at modulop level”

Last modified: Wednesday 25th June, 2008, 00:27 2008 J́an Mǎnuch
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There arep(p� 1) functions inHp;m

and there arep(p� 1) possible pairs(r; s) such thatr 6= s. Is there a

one-to-one correspondence?

“Yes” — Valuesr ands determine the functionha;b (rememberk and`

are still fixed): r � s � a(k � `) + 0 mod p

by Lemma (unknowna), a is uniquer � 1:b+ ak mod p
by Lemma (unknownb), b is unique

impliesha;b uniquely determined byr ands
Conclusion: If we pick ha;b 2 Hp;m uniformly at random, the resulting

pair (r; s) is equally likely to be any pair of distinct values fromZp.
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When acollision betweenk and` happens?k and` collide whenr � s mod m

Hence, probability thatk and` collide is equal to probability thatr � smod m whenr ands are randomly chosen as distinct values fromZp .

Note: doesn’t depend onk and` anymore

pick anyr, there are at mostdp=me choices ofs such thatr � s mod m,
one of them iss = r
hence, there are at mostdp=me � 1 choices fors such thats 6= r andr � s mod m

hence, probability thatr � s mod m andr 6= s is at mostdp=me � 1p� 1 � (p+m� 1)=m� 1p� 1= (p� 1)=mp� 1 = 1=m
Final conclusion:Hp;m is universal.
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Open addressing

the second method for dealing with collisions — recall, the first method

was “chaining”� elements are stored directly in hash table (not in linked lists)� hence: theload � is always at most1 (but the table can overflow)� for every key we have a sequence of slots, called theprobe sequence

– when inserting we try (probe) the first slot, if used, the second

slot, etc., until we find an empty slot

– when searching we go over slots in sequence until we either find

the searched element or empty slot� no pointers used — we can use more memory for the hash table

instead, which results in fewer collisions, and so, faster searching
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Hash functions have now two parameters:� the keyk 2 U� the probe numberi 2 f0; 1; : : : ;m� 1g

Furthermore, the hash functionh : U � f0; 1; : : : ;m� 1g ! f0; 1; : : : ;m� 1g

must satisfy that for every keyk, theprobe sequencehh(k; 0); h(k; 1); : : : ; h(k;m� 1)i
is a permutation ofh0; 1; : : : ;m� 1i
Now: every position is eventually considered as a slot for a new key

(the algorithm fails with “overflow” only when there is no place in the

entire table to insert a key)
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Assume that an empty slot contains the value NIL

Hash-Insert(T; k)
1: i 0
2: repeat
3: j  h(k; i)
4: if T [j℄ = NIL then
5: T [j℄ k
6: return j
7: else
8: i i+ 1

9: end if
10: until i = m

11: error “hash table overflow”

Idea: probing the probe sequence ofk until we find an empty slot
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Hash-Search(T; k) probes the same sequence, therefore the search can

be terminated when an empty slot is found

assuming that we didn’t delete anything from the table

Hash-Search(T; k)
1: i 0
2: repeat
3: j  h(k; i)
4: if T [j℄ = k then
5: return j
6: else
7: i i+ 1

8: end if
9: until T [j℄ = NIL or i = m

10: return NIL

returnsj where slotj contains the keyk, or NIL, if k is not in the table
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Hash-Delete(T; k) — difficult operation:� when we delete a key from the table, we cannot just mark the slot

containing the key by NIL (empty)[we could disconnect a sequence of occupied elements leadingto the

key℄
Solution.mark the place with the special value DELETED (instead of

NIL)� modify Hash-Insert(T; k) so that it treats slot containing DELETED

as empty� Hash-Search(T; k) will treat such a slot as occupied, which we

want, so no modification is needed

Problem.the search time doesn’t depend on load� = #elements
#slots , but rather

on #elements+#DELETED
#slots , which can be quite bad

Conclusion.whenDeleteoperation is allowed, prefer to use hashing by

chaining
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Assignment Problem 8.2.(deadline: July 8, 5:30pm)

Write a pseudo-code for the modifiedHash-Insert able to handle also the

special value DELETED, and for the procedureHash-Delete.
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Uniform hashing

– generalization ofsimple uniform hashing

– very strong conditions, in practice just some approximations are used
– useful for analysis

assumption:

each key is equally likely to have any ofm! permutations ofh0; 1; : : : ;m� 1i as its probe sequence

requires that allm! possible permutations (probe sequence) could be
generated

Common techniques used are much worse:� linear probing (onlym distinct probe sequences)� quadratic probing (onlym distinct probe sequences)� double hashing (m2 distinct probe sequences)
the best results
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Linear probing

needs an ordinary hash functionh0 : U ! f0; 1; : : : ;m� 1g, called an

auxiliary hash function

hash function: h(k; i) = (h0(k) + i) mod m

hence, for a keyk, the probe sequence ishh0(k); h0(k) + 1; : : : ; n� 1; 0; : : : ; h0(k)� 1i

– we start at the slot given by auxiliary hash function, and then probe

consecutive slots

– first probe determines the entire sequence=) onlym distinct probe

sequences
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Problem.primary clustering
– long clusters (sequences) of occupied slots – increasing average search

time

– why?� consider a cluster withi occupied slots, if the consecutive slot is

empty, then it has a probability(i+ 1)=m that it will be filled during

next Insert operation
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Quadratic probing

hash function: h(k; i) = (h0(k) + 1i+ 2i2) mod m

whereh0 is again an auxiliary hash function,2 6= 0

Problems:� doesn’t work for all values of1; 2 andm� still: a probe sequence for one key is shifted version of the probe

sequence for another key=) onlym distinct probe sequences� secondary clustering– milder form of clustering (the keys mapped

to the same slot will form a cluster)
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Assignment Problem 8.3.(deadline: July 8, 5:30pm)

Consider a quadratic probing scheme with constantsm = 2t for some

integert (i.e.,m is a power of2) and1 = 2 = 1=2. Prove that the

function h(k; i) = (h0(k) + 1i+ 2i2) mod m

is indeed a hash function, i.e., prove that all probe sequences are

permutations ofh0; 1; : : : ;m� 1i.
Hint: Congruencea=2 � b mod 2t makes sense only ifa is even, and is

equivalent to congruencea � 2b mod 2t+1.
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Double hashing

hash function: h(k; i) = (h1(k) + ih2(k)) mod m

whereh1 andh2 are auxiliary hash functions

– first probe doesn’t determine the entire sequence, dependsalso on the

value of the second hash function (assuming we don’t useh2 = h1)
– approximates behavior of “uniform hashing”, generated permutations

have some characteristics of randomly chosen permutation
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Requires.The values ofh2(k) have to be relatively prime (coprime) to the

size of hash tablem
two easy ways:

1. m is power of2, andh2 produce only odd numbers

2. m is a prime, andh2 returns positive values smaller thanm

each pair(h1(k); h2(k)) yields a distinct probe sequence, hence�(m2)

probing sequences are used
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Analysis of open-address hashing

� assume that we use “uniform hashing”:a new key has a probe

sequence chosen uniformly at random from all possible permutations� when we are looking for a key which is already in the table, we

assume that every key is equally likely to be searched for� we will express the expected number of probes in terms of theload� = n=m � 1
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Unsuccessful search

Theorem. Given an open-address hash table with load� = n=m < 1, the

expected number of probes in an unsuccessful search is at most1=(1� �), assuming uniform hashing.

Example.

if � = 1=2 (50% of table occupied) then the expected number of probes

for unsuccessful search will be1=(1� 1=2) = 2
if � = 0:9 (90% of table occupied), then1=(1� 9=10) = 10
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Proof.� letX be a random variable denoting the number of probes made in

an unsuccessful search� for i = 1; : : : ;m, letAi be the event that thei-th probeh(k; i� 1) is

to an occupied slot� fX = ig iff eventsA1; : : : ; Ai�1 happened and eventAi didn’t� eventfX � ig is equivalent to eventA1 \A2 \ � � � \Ai�1, henceP (X � i) = P (A1 \A2 \ � � � \Ai�1)
we are looking forE[X℄

why do we needP (X � i)?
answer:Assignment Problem 8.4
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Assignment Problem 8.4.(deadline: July 8, 5:30pm)

Consider a random variableX having only positive integer values (i.e.,

it’s mapping the probability space to the set of natural numbers). Prove

that E[X℄ = P (X � 1) + P (X � 2) + � � � = 1Xi=1 P (X � i)

Hint: eventsfX = 1g, fX = 2g, fX = 3g, . . . , are mutually exclusive

(disjoint), hence P (X � i) = 1Xj=i P (X = j)
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We will use the formula from Assignment Problem 5.2 again:P (A1 \A2 \ � � � \Ai�1) =P (A1) � P (A2jA1) � � �P (Ai�1jAi�2 \ � � � \A2 \A1)

Hence, to find outP (X � i) it’s enough to evaluate conditional

probabilitiesP (Aj jAj�1 \ � � � \A1).
casej = 1: P (A1) = n=m
(m slots,n are occupied, uniform hashing, the first probe can be to any ofm slots)
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casej > 1:

– assumeA1; : : : ; Aj�1 occurred

– hence, firstj � 1 probes were to occupied slots

– j-th probe cannot be to any of these slots (the probe sequence is a

permutation)

– hence, we havem� (j � 1) slots to choose from, andn� (j � 1) of

them are occupied

conclusion:probabilityP (Aj jAj�1 \ � � � \A1) is(n� j + 1)=(m� j + 1)
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We can now calculateP (X � i):P (X � i) = nm � n� 1m� 1 � � � n� i+ 2m� i+ 2� � nm�i�1= �i�1
Using Assignment Problem 8.4,E[X℄ = 1Xi=1 P (X � i) � 1Xi=1 �i�1

= 1Xi=0 �i = 11� �� if � is constant, then1=(1� �) is also constant, and so an

unsuccessful search runs in timeO(1)
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Insert

Corollary. Inserting an element into an open-address hash table with load� requires at most1=(1� �) probes on average, assuming uniform

hashing.

Proof.� there must be space in the table,� < 1� inserting a key is equivalent to unsuccessful search, wherewe insert

the key to the final (empty) slot of unsuccessful search� the same expected number of probes:1=(1� �)
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Successful search

Theorem. Given an open-address hash table with load� < 1, the

expected number of probes of successful search is at most1� ��ln 11� � +O(1)�
assuming uniform hashing and assuming that each key in the table is

equally likely to be searched for.

Example.

50% table full: expected number of probes in successful search: at most1:387

90% table full:2:559
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Proof.� when looking for a keyk, we have to repeat the same probe sequence

as when insertingk into the table� assume that keys were inserted to the table in the orderk1; k2; : : : ; kn� hence, if we are looking for the keyki, the number of probe is the

same as the number of probes we needed when insertingki to the

table� at that time, table containedi� 1 elements, and the load factor was� = (i� 1)=m� search forki requires at most11� � = 11� (i� 1)=m = mm� i+ 1
probes on average
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as it can be any ofn keys in the table with the same probability, we have

to take the average of those expected numbers of probes:E[#probes℄ � 1n nXi=1 mm� i+ 1= mn n�1Xi=0 1m� i= 1� � (Hm �Hm�n)
usingHk = ln k +O(1)= 1� � (lnm� ln(m� n) +O(1))= 1� ��ln mm� n +O(1)�= 1� ��ln 11� � +O(1)�
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