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Selection problem

Sorting yields acomplete information on order of the input elements

But what if we don’t reallyneedall this information, but only want to
know the value of thé&-th smallest element?

Sorting clearly solves this problem, but it might ta®én log n) time. Is
there any faster way? Can we do it in linear time?

Simple for the smallest, the 2nd smallest, ikl smallest element,
wherek is a constant

But what about:/2-th smallest (also called median)?:-th smallest?
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We will assume for convenience that all elements are distiambers.
But everything should work also without this assumption.

Exact formulation of theelection problem
Input: SetA of n (distinct) numbers and a numbee {1,...,n}
Output: z € A thatis larger than exactly— 1 other elements ofl

Terminology:

e element larger than exactly— 1 other elements = theth smallest
element = the-th order statistics
minimum = 1-st order statistics
maximum =n-th order statistics

e [n/2|-th smallest element is called theedian (sometimes also the
lower median)
whenn is odd, the median is element exactly in the middle of sorted
array
whenn is even, there are 2 elements in the middle, the lower and
upper medians
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Minimum and maximum

classic algorithm:

Minimum (A)
1: min < A[1]
2: for ¢ < 2to lengthlA) do
3:  if min> Al[:] then
4: min < Ali]
5. endif
6: end for

let n be the number of elements df
how many comparisons? obviousty;— 1
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Question: is this the best?

yes:
— an algorithm that determined the minimum can be viewed as a
competition among the elements consisting of matches = agsgms..
— winner of a match is the smaller element

— now every element, except the minimum, has to lose at |egshttch

— hence, at least — 1 comparisons
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Simultaneous minimum and maximum

— In many applications one has to find the minimum and the mamrat
the same time

we could use the above algorithm, to determine separatelgnthimum
and separately the maximum — requiges— 2 comparisons

Question: is this the best?

In/2] +2([n/2] — 1) = [3n/2] — 2 comparisons are sufficient:

— maintain the minimum and the maximum elements seen so far
—in each step take a pair of unexplored elements

— compare them with each other

— the smaller one cannot be the maximum, hence it's enougbnpare
It with the current minimum

— similarly, it's enough to compare the bigger element ofghg with the
current maximum
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Assignment Problem 7.1.(deadline: June 24, 5:30pm)
Write the algorithm for finding the minimum and maximum elerseof

the array simultaneously. Verify that the number of congaars it needs
IS [3n/2] — 2.

Extra Assignment Problem 2.(1.5% added to the overall performance if
solved completely)

Deadline: The last lecture(Note: You get extra points only if your solution is
completely correct. You can submit the solution severagfinif it's not correct, |
will point out the problem(s) in your solution and you can again.)

Show that|3n /2] — 2 comparisons are necessary in the worst case to find
both the maximum and minimum afnumbers.

Hint: Consider how many numbers are potentially either the maxirou
minimum, and investigate how a (different type of) compamiaffects
these counts.

Exercise 7.1.Show that the second smallestroélements can be found
with n 4 [logn| — 2 comparisons.
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The I-th element

We have seen that we can find the minimum and maximum elemets in
linear time. Can we find théth smallest element in linear time?

For linear time in average case, we could use the QuickSort idea:

Basic idea:
— perform Quicksort, but solve recursively only one of 2 suimems.

Problem: Might be that we partition in a bad way and in each step of
recursion follow a large sub-problerf(n?)

Question. Can we modify the algorithm so that it works in linear time
also in the worst case?

e We need to make splits more balanced, which would resux(im)

running time. We will use more complicated algorithm to find a
suitable pivot.
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Select A, )

1. Dividen elements intdn /5| groups of5 elements each, and at most
one group containing the remaining:mod 5 < 5 elements

2. Find the median of each of the /5| groups by sorting each one, and
then picking median from sorted group elements

3. CallSelectrecursively on set o = [n/5] medians found above
with ¢ = [ K /2], giving median-of-medians (a pivot)
4. Partition input arouna. Let k£ be the number of elements on low

side plus one, so thatis thek-th smallest element and there are
n — k elements on high side of partition

5. If ¢« = k, returnz. Otherwise us&electrecursively to find the-th
smallest element of low sideif< k, or the(: — k)-th smallest on
high side ifi > k

Last modified: Tuesday 7June, 2008, 22:01 2008 &n Maiuch



SFU CMPT-307 2008-2 10 Lecture: Week 7

Observations:
[ [ [ [ [

=

n =>5-54+ 3 = 28 elements are circles
groups are columns

white circles are medians of groups

x 1S median of medians

arrows from greater to smaller elements:

three out of every full group to right of are greater tham, and three
out of every group to left o are smaller thar (simply because the

corresponding medians are greater/smaller than
e elements on shaded background are guaranteed to be gheater t
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We want to lower-bound the number of elements greater (resp. smaller)
than z.

Note: approx. half of medians found in st@mre greater tham

More precisely, since is | K/2]|-th element of thél medians, there are
K — |K /2| = | K/2] medians larger tham. Each except the last one
contributes3 elements greater than The last one contributes at least one
such element and we have 2 elements in the same groufaeger than.

Hence, we have at least

3(LK/2J—1)+2+1:SE [%H 23(#) >3_"’_%

Same is true for the number of elements smaller than

Thus, in the worst cas&electis called recursively on at most

3n 3 ™m 1
n—1—|——=|=—+4+ —
10 2 10 2

elements (in step 5)
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Steps 1, 2, and 4 tak@(n) time each (step 20 (n) calls to insertion sort
on sets of siz&)(1))

Step 3: timel'([n/5])
Step 5: time at most'(7n/10 + 1/2)
Altogether:

©(1) n <95

T'(n) <
T([n/5])+T(Tn/104+1/2)+0O(n) n>35

Guess. T'(n) = O(n)
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Want to show thaf'(n) < c¢n for some constant

AssumeéeTl’(n) < cn for ¢ large enough and < 14 (no problem, since alll
are constants)

Also, pick constant such that the)(n) term is at mostn (the
non-recursive component)

Letn > 14.
Induction hypothesis: for everym < n, we havel'(m) < cm.

Substituting induction hypothesis we get:

T(n) < e¢/n/5]+¢(Mm/10+1/2) 4+ an
< cn_5|_4—|—c(7n/10—|—1/2)—|—an

cn/5 4+ 4c/5+ Ten/10 + ¢/2 + an
9en /10 4+ 13¢/10 4 an
= cn+ (—cen/10 4+ 13¢/10 + an)
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Now T'(n) < cn if and only if

—cn/104+13¢/10 +an < 0

equivalent to
n

n—13

c > 10a

whenn > 14.

Since, whem > 14, > 14, it's enough to seleat > 140a.

n_
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Assignment Problem 7.2.(deadline: June 24, 5:30pm)
In the algorithmSelect the input elements are divided into groupsof
Will the algorithm work in linear time if they are divided mgroups of

(a) 7?
(b) 37?

In both cases find the worst-case partitioning, and buildelearrence for
the worst-case running time (as we did on the lecture). Shaase (a),
T'(n) can be upperbounded oy, and in case (b)'(n) can be
lowerbounded byin log n, for suitable constantsandd.

Assignment Problem 7.3.(deadline: June 24, 5:30pm)

Let X[1...n]andY[1...n]| be two arrays, each containimghumbers
already in sorted order. Assume for convenience, th&rallumbers are
distinct. Give an0(log n) algorithm to find to find the-th smallest
element of alkn elements in arrayX andY .

Hint 1: binary search
Hint 2: there are: possibilities where théthe smallest element can

occur inX andY'.
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Dynamic sets

e mathematical sets are unchanging

e sets in a program (algorithm) can grown and shrink over timeace
they are calledlynamic

e dictionary is a dynamic set that supports operatiomsrt, delete
and test membership of an element

elementsof a dynamic set are

e Objects; each object containkay andsatellite dataas object fields

o thekey identifies the object, so we assume that keys are all difteren
we can think of the dynamic set as being a set of key values

o satellite data— other object fields, unused by set implementation, but
carried around
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Operations on dynamic sets

modifying operations:

e Insert(S, x) — adds the element pointed to byto the setS

e Deletq S, x) — given a pointer: to an element in the sét, removes
x from S

gueries:

e Search S, k) — returns a pointer to an element$hwith the key
equal tok, or NIL if no such element belongs 1

other queries:
e Minimum (S) — returns a pointer to the element $fwith the

smallest key

e Maximum (S) — returns a pointer to the element 8fwith the
largest key
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e SuccessaoS, x) (resp.PredecessarS, x)) — given a pointer: to an
element in the sef, returns a pointer to the element$nwith the
next larger (resp. smaller) value of key (or NIL zfpoints to the
maximum element)
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Important. we want to maintairdynamic set(insertions and deletions)
and we want to search for elements (all as fast as possible)

We can assume that the keys are froomaverse(set)U, where
U=10,...,u— 1} for some (typically large)

S mple approaches:
e unsorted array
e sorted array

Smple fast approach:
Direct addressing element with ke is stored in slok

Array of size|U |, operations are straightforward

But what if K, set of keysactually stored, is much much smaller thaii?
Waste of memory
Time-efficient, but waste of memory

Let’s see something more clever. ..
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Hash tables

Direct addressing(each key has its own slot) performs very well
(constant worst-case time for all operations), but reguaréot of memory

What we want is to reduce size of table

Hashing: an element with key: is stored in slot.(k): we use a hash
function h to compute slot

When only operationBisert, SearchandDeleteas dictionary operations
are neededjash tablescan be quite good:

we can still perform operations if1(1) time in average;

however the worst-case time is bigger

There are many variations of hash tables (or rather the hemtidns
Implementing them), from not-so-fast but simple to extrgnfi@ést but
complicated
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universeof keysU = {0,...,u — 1}

We want to reduce size of table to,
wherem << |U|

We will use ahash function

h:U—{0,...,m—1}

We say element with key hashesnto sloth(k), and thath(k) is hash
value of &

Problem: two or more keys may hash to same slail{isions)
We need some strategy to deal with this problem
|deal solution: avoid collisions altogether

However: by assumptiojt/| > m, so theremust be at least two keys
with same hash value, thus complete avoidangaossible
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Another solution: make itrandom so that the number of collisions is at
least “minimized”

but still, the hash function has to bleterministic: given an input ke it
should always produce the same outp(f#)

Even with a random hash function, there will be collisiongvaay:
How to resolve collisions?

Smplest solution: chaining
(another solution lateropen addressing
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Collision resolution by chaining

The simplest of all collision-resolution protocols

e eachslotis alinked list (“chain™)

e slot; contains a pointer to the head of the list of all elements that
hash toj

e If there are no such elements, sjatontains NIL
e When elements collide, just insert the new element intoidte |

Let 7" be a hash table arfgla hash function.
Implementation of dictionary operations:
Chained-Hash-Insert(T,x)

insertz at the head of list'|h(key|z])]
Chained-Hash-Search(T,k)

search for an element with keyin list T'|h (k)]
Chained-Hash-Delete(T,x)

deletex from the listT'|h(key|x])]
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What about the worst-case running times?

e for each operations we have to comphtté), in addition:

e Insert: clearlyO(1) under assumption that element is not yet in
table; otherwise first perform a search

e Search: proportional to the length of the list; we will analyze this
later. . .

e Delete:
Assume argument to procedure is a pointeto an element, not its
key k
— If the list is a doubly-linked list, then we need a constamii
O(1)
— If the argument were a key, then a search is necessary

— similarly, if the lists are singly-linked, we need to find
predecessor of, the same running time as for search
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Hence: it's important to determine how long it take to search for an
element when a key is given

Consider a hash tablE with m slots that stores elements
Defineload factor = n/m (average list size)
Analysis in terms oty (not necessarily greater than one!)

Clear: the worst-case performance is very bad: ifrakeys hash to the
same slot, then all elements will be stored in one linked#st time
©(n) — we might as well have used just one linked list for all eletsen

Average performancedepends on how well hash functian(that we still
don’t know) distributes keys, on average
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Assignment Problem 7.4.(deadline: June 24, 5:30pm)
Show that if|U'| > nm, there is a subset &f of sizen consisting of keys
that all hash to the same slot, so that the worst-case segrtthne for

hashing with chaining i®(n). Recall thatn is the size of the hash table,
l.e., there aren slots.
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We will try to construct a good hash function later, but fomnwee shall
assume that:

e Any given element igqually likely to hash into any of the: slots,
Independently of where other elements hash to.

This assumption is callegimple uniform hashing

Forj € {0,...,m — 1} letn; = length(T"|;])
Clearly,ng + n1+ -+ npm_1=n

Also, average value of; is En;| = a =n/m
(recall: “equally likely...™)
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Another assumption (not necessarily true): the value haisttionh (k)
for a keyk can be computed i®(1) time

Thus, the time required to search for some element withtkegpends
linearly on lengthny, i) of list T'[h(k)]

Consider the expected number of element§ (k)| that are examined
to see if their keys are equal ko
— this equal to the expected time for the search for an elemigntey £

We shall consider 2 cases:
unsuccessfulno element in the table has k&Y, and
successfukearches.
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Unsuccessful searches

Theorem. Under assumption of simple uniform hashing, if using
collision resolution by chaining then an unsuccessfuldetakes
expected tim& (1 + «).

Recall:« = n/m = #elementg+#slots.

Proof.

any keyk not already in table (recall: unsuccessful) is equallylVike
hashed to any of the: slots & mple uniform hashing)

expected time to search unsuccessfullyfas the expected time to
search to end df'|h (k)]

T'[h(k)] has expected lengthi|ny, )] = «
thus the expected number of examined elemends is
add1 for computation o (k)

Recall: o could be very small, thu®(1 + «) cannot be reduced ©(«).
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Successful searches

Difference: not all lists equally likely to be searched

Why? Simple, probability that a list is searchegbrsportional to the
number of elements it containgwe assume that the element being
searched is equally likely any of theelements stored in the table).

111 | 22222 | 44 | 5555 | 66666666666 7

Theorem. Under assumption of simple uniform hashing, if using
collision resolution by chaining then a successful seaakbg expected

timeO(1 + a) with a = n/m.
Proof.

e the number of elements examined iplus the number of elements in
thex’s list beforex

e these were insertedgfter x itself (new elements are placed at front)
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e to find the expected number of elements examined, take thagee
of 1 plus the expected number of elements added tathkst afterax
was added, over the elementse in table

Forl < i < n, letz; be the:-th element inserted into the table, and let
ki = key(z;)

For keysk;, k;, define Bernoulli random variables;; = 1 if
h(ki) = h(k;)
guestion: how many elements do we examine until we fin@

e all elements in the same list as appearing before, that is, all
elementse; such thay > 7 and.X;; =1

e elementy;

n
answer:m; =1+ > X
j=i+1
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Under assumption of simple uniform hashidtf.X;; = 1) = 1/m

Indeed: for any: € {1,...,m}, we have
P(h(k;) = z) = P(h(k;) = z) = 1/m, thus

P(Xy=1) = 3 P(h(k)=2)- Plhlk)) =2)
= Z 1/m)? =1/m
ThusE|X;;] =P(X;; =1)=1/m
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we don’t know which element we are looking for

each of them has same probabilltyn, hence expected number of
examined elements in a successful search is the average:

1 & 1
nz;m] - E E.Z 1+'Z X,

E
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= 14— _
*m 25
= 1—|—L in—iz
nm-\i= i=1
— 1_|_i(n2_n(n+1))
nm 2
1 1
_ non+ 1 a_n—l— N
m 2m 2n
n—+1
—I—a< 2n) (14 «)
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Adding ©(1) for computation of.(k), we end up with

02 +a)=06(1+a)

Consequence: if m (# slots) is at least proportional to(# elements), then
n = O(m) anda = n/m = O(1), thus searching take®nstant timeon
average!

Insertion andDeletion also take constant time (even in the worst-case) if
doubly-linked lists are used, thus

all operations take constant time on average!

(However: we need assumption of single uniform hashing)
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Assignment Problem 7.5.(deadline: June 24, 5:30pm)
Suppose we use a hash functioto hashn distinct keys into an array’
of lengthm. Assuming simple uniform hashing, what is the expected

number of collisions, that is what is the expected numbefarhents of
the set

{k,0}: K #landh(k) = h(1)} ?

Hint: use random variableX;; define on the lecture.
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Hash functions

So far, haven’t seen a single hash function
What makes a good hash function?
Satisfies (more or less) the assumption of single uniforrhings

Each key is equally likely to hash to any of theslots, independently of
where other keys hash to

However, typicallyympossible certainly depending on how keys are
chosen

— usually, we don’t know the probability distribution acdorg to which
the keys are drawn, and the keys may not be drawn indepepdentl

Sometimes w&now the key distribution.

Example: keys are real random numberskire [0, 1), independently and
uniformly chosen, theh(k) = |k - m| satisfies the assumption of
uniform hashing
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Design:

e heuristic (division and multiplication methods)
e randomization (universal hashing)

Heuristic:

Example: compiler;
we want to store identifiers in our hash table;
It’s very likely that similar strings occur in the same pragr

(“minelement”, “minposition”)
we should minimize the chance to hash them to the same slot

In general, we should design a hash function so that it'spaddent on
any patterns in the data

another usually good property: map keys which are similatdts far
apart
(this will be very useful in open addressing method discui$ser)
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Usual assumption:universe of keys i0, 1, 2, .. .}, i.e., somehow
Interpret real keys as natural numbers (“usually” easy ghou)

Two very simple hash functions:
1. Division method h(k) = k mod m

Example: hash table has siZ®, key k = 234, then
h(k) =234 mod 25 =9

Quite fast, but drawbacks
Want to avoid certain values af, e.g. powers o

Why? If m = 2P, thenh(k) = k mod m = k mod 2P, thep lowest-order
bits of k

Example: m = 25 = 32, k = 168, h(k) = 168 mod 32 = 8 = (1000)a,
andk = 168 = (10101000),

Better to make hash function dependashbits of key
Good idea (usually) fom: prime not too close to power of two
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Assignment Problem 7.6.(deadline: June 24, 5:30pm)
Assume that the keys are strings with each character havong.
Assume that we choose = 2P — 1 in the division method. Show that if

stringx can be derived from string by permuting its characters, then
andy hash to the same value.
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2. Multiplication method:

h(k) = |m(kA mod 1) |

explanation:

e Alisconstantwiti) < A < 1
e ThuskA isreal with0 < kA < k

e kA mod 1is fractional part ok A, i.e.,kA — |kA]
Example: A = 0.23, k = 234, thenk A = 53.82 and
kA mod 1 = 0.82

e kAmod1e|0,1)
e Thereforem(kA mod 1) € [0, m), and
|m(kAmod 1)] € [0,1,...,m — 1]
Advantage: value ain not critical
Typically power of two (no good with division
method!), since then the implementation is easy,
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Exercise 7.2.Consider a hash table of size = 1000 and a
corresponding hash function

h(k)=|m (kA mod1)]|

for A = (v/5 — 1)/2. Compute the location to which the keys
61,62, 63,64 and65 are mapped.
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