
SFU CMPT-307 2008-2 1 Lecture: Week 7

SFU CMPT-307 2008-2 Lecture: Week 7

Ján Maňuch

E-mail: jmanuch@sfu.ca

Lecture on June 17, 2008, 5.30pm-8.20pm

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 2 Lecture: Week 7

Selection problem

Sorting yields acomplete information on order of the input elements

But what if we don’t reallyneedall this information, but only want to

know the value of thek-th smallest element?

Sorting clearly solves this problem, but it might take�(n log n) time. Is

there any faster way? Can we do it in linear time?

Simple for the smallest, the 2nd smallest, thek-th smallest element,

wherek is a constant

But what aboutn=2-th smallest (also called median)?

pn-th smallest?

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 3 Lecture: Week 7

We will assume for convenience that all elements are distinct numbers.

But everything should work also without this assumption.

Exact formulation of theselection problem:

Input: SetA of n (distinct) numbers and a numberi 2 f1; : : : ; ng

Output: x 2 A that is larger than exactlyi� 1 other elements ofA

Terminology:� element larger than exactlyi� 1 other elements = thei-th smallest

element = thei-th order statistics
minimum = 1-st order statistics

maximum =n-th order statistics� dn=2e-th smallest element is called themedian (sometimes also the

lower median)

whenn is odd, the median is element exactly in the middle of sorted

array

whenn is even, there are 2 elements in the middle, the lower and

upper medians

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 4 Lecture: Week 7

Minimum and maximum

classic algorithm:

Minimum (A)
1: min A[1℄
2: for i 2 to length(A) do
3: if min > A[i℄ then
4: min A[i℄
5: end if
6: end for

let n be the number of elements ofA
how many comparisons? obviously,n� 1

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 5 Lecture: Week 7

Question: is this the best?

yes:

– an algorithm that determined the minimum can be viewed as a

competition among the elements consisting of matches = comparisons..

– winner of a match is the smaller element

– now every element, except the minimum, has to lose at least one match

– hence, at leastn� 1 comparisons

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 6 Lecture: Week 7

Simultaneous minimum and maximum

– in many applications one has to find the minimum and the maximum at

the same time

we could use the above algorithm, to determine separately the minimum

and separately the maximum — requires2n� 2 comparisons

Question: is this the best?bn=2
+ 2(dn=2e � 1) = d3n=2e � 2 comparisons are sufficient:

– maintain the minimum and the maximum elements seen so far

– in each step take a pair of unexplored elements

– compare them with each other

– the smaller one cannot be the maximum, hence it’s enough to compare

it with the current minimum

– similarly, it’s enough to compare the bigger element of thepair with the

current maximum

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 7 Lecture: Week 7

Assignment Problem 7.1.(deadline: June 24, 5:30pm)

Write the algorithm for finding the minimum and maximum elements of

the array simultaneously. Verify that the number of comparisons it needs

is d3n=2e � 2.

Extra Assignment Problem 2.(1.5% added to the overall performance if

solved completely)

Deadline: The last lecture.(Note: You get extra points only if your solution is

completely correct. You can submit the solution several times. If it’s not correct, I

will point out the problem(s) in your solution and you can tryagain.)

Show thatd3n=2e � 2 comparisons are necessary in the worst case to find

both the maximum and minimum ofn numbers.

Hint: Consider how many numbers are potentially either the maximum or

minimum, and investigate how a (different type of) comparison affects

these counts.

Exercise 7.1.Show that the second smallest ofn elements can be found

with n+ dlog ne � 2 comparisons.

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 8 Lecture: Week 7

The i-th element

We have seen that we can find the minimum and maximum elemets in

linear time. Can we find thei-th smallest element in linear time?

For linear time in average case, we could use the QuickSort idea:

Basic idea:

– perform Quicksort, but solve recursively only one of 2 subproblems.

Problem: Might be that we partition in a bad way and in each step of

recursion follow a large sub-problem:
(n2)
Question. Can we modify the algorithm so that it works in linear time

also in the worst case?� We need to make splits more balanced, which would result in�(n)

running time. We will use more complicated algorithm to find a

suitable pivot.

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 9 Lecture: Week 7

Select(A; i)
1. Dividen elements intobn=5
 groups of5 elements each, and at most

one group containing the remaining:n mod 5 < 5 elements

2. Find the median of each of thedn=5e groups by sorting each one, and

then picking median from sorted group elements

3. CallSelectrecursively on set ofK = dn=5emedians found above

with i = dK=2e, giving median-of-mediansx (a pivot)

4. Partition input aroundx. Let k be the number of elements on low

side plus one, so thatx is thek-th smallest element and there aren� k elements on high side of partition

5. If i = k, returnx. Otherwise useSelectrecursively to find thei-th
smallest element of low side ifi < k, or the(i� k)-th smallest on

high side ifi > k

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 10 Lecture: Week 7

Observations:

x

� n = 5 � 5 + 3 = 28 elements are circles� groups are columns� white circles are medians of groups� x is median of medians� arrows from greater to smaller elements:
three out of every full group to right ofx are greater thanx, and three
out of every group to left ofx are smaller thanx (simply because the
corresponding medians are greater/smaller thanx).� elements on shaded background are guaranteed to be greater thanx

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 11 Lecture: Week 7

We want to lower-bound the number of elements greater (resp. smaller)

than x.

Note: approx. half of medians found in step2 are greater thanx

More precisely, sincex is dK=2e-th element of theK medians, there areK � dK=2e = bK=2
medians larger thanx. Each except the last one
contributes3 elements greater thanx. The last one contributes at least one
such element and we have 2 elements in the same group asx larger thanx.

Hence, we have at least3(bK=2
 � 1) + 2 + 1 = 3�12 ln5 m� � 3 �n5 �� 12 ! � 3n10 � 32

Same is true for the number of elements smaller thanx
Thus, in the worst case,Selectis called recursively on at mostn� 1��3n10 � 32� = 7n10 + 12
elements (in step 5)

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 12 Lecture: Week 7

Steps 1, 2, and 4 takeO(n) time each (step 2:O(n) calls to insertion sort

on sets of sizeO(1))
Step 3: timeT (dn=5e)
Step 5: time at mostT (7n=10 + 1=2)
Altogether:

T (n) � 8<: �(1) n � 5T (dn=5e) + T (7n=10 + 1=2) +O(n) n > 5

Guess: T (n) = O(n)

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 13 Lecture: Week 7

Want to show thatT (n) �
n for some constant

AssumeT (n) �
n for
 large enough andn < 14 (no problem, since all

are constants)

Also, pick constanta such that theO(n) term is at mostan (the

non-recursive component)

Let n � 14.

Induction hypothesis: for everym < n, we haveT (m) �
m.

Substituting induction hypothesis we get:T (n) �
dn=5e+
(7n=10 + 1=2) + an�
n+ 45 +
(7n=10 + 1=2) + an=
n=5 + 4
=5 + 7
n=10 +
=2 + an= 9
n=10 + 13
=10 + an=
n+ (�
n=10 + 13
=10 + an)
Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 14 Lecture: Week 7

Now T (n) �
n if and only if�
n=10 + 13
=10 + an � 0

equivalent to
 � 10a nn� 13
whenn � 14.

Since, whenn � 14,

nn� 13 � 14, it’s enough to select
 � 140a.

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 15 Lecture: Week 7

Assignment Problem 7.2.(deadline: June 24, 5:30pm)
In the algorithmSelect, the input elements are divided into groups of5.
Will the algorithm work in linear time if they are divided into groups of

(a) 7?

(b) 3?

In both cases find the worst-case partitioning, and build therecurrence for
the worst-case running time (as we did on the lecture). Show in case (a),T (n) can be upperbounded by
n, and in case (b),T (n) can be
lowerbounded bydn log n, for suitable constants
 andd.

Assignment Problem 7.3.(deadline: June 24, 5:30pm)
LetX[1 : : : n℄ andY [1 : : : n℄ be two arrays, each containingn numbers
already in sorted order. Assume for convenience, that all2n numbers are
distinct. Give anO(log n) algorithm to find to find thei-th smallest
element of all2n elements in arraysX andY .

Hint 1: binary search
Hint 2: there are2i possibilities where thei-the smallest element can
occur inX andY .

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 16 Lecture: Week 7

Dynamic sets
� mathematical sets are unchanging� sets in a program (algorithm) can grown and shrink over time,hence

they are calleddynamic� dictionary is a dynamic set that supports operationsinsert, delete

and test membership of an element

elementsof a dynamic set are� objects; each object contains akey andsatellite dataas object fields� thekey identifies the object, so we assume that keys are all different

we can think of the dynamic set as being a set of key values� satellite data– other object fields, unused by set implementation, but

carried around

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 17 Lecture: Week 7

Operations on dynamic sets

modifying operations:� Insert(S; x) — adds the element pointed to byx to the setS� Delete(S; x) — given a pointerx to an element in the setS, removesx from S
queries:� Search(S; k) — returns a pointer to an element inS with the key

equal tok, or NIL if no such element belongs toS
other queries:� Minimum (S) — returns a pointer to the element ofS with the

smallest key� Maximum(S) — returns a pointer to the element ofS with the

largest key

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 18 Lecture: Week 7

� Successor(S; x) (resp.Predecessor(S; x)) — given a pointerx to an

element in the setS, returns a pointer to the element inS with the

next larger (resp. smaller) value of key (or NIL, ifx points to the

maximum element)

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 19 Lecture: Week 7

Important: we want to maintaindynamic set(insertions and deletions)

and we want to search for elements (all as fast as possible)

We can assume that the keys are from auniverse(set)U , whereU = f0; : : : ; u� 1g for some (typically large)u

Simple approaches:� unsorted array� sorted array

Simple fast approach:

Direct addressing: element with keyk is stored in slotk

Array of sizejU j, operations are straightforward

But what ifK, set of keysactually stored, is much much smaller thanU?

Waste of memory

Time-efficient, but waste of memory

Let’s see something more clever. . .

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 20 Lecture: Week 7

Hash tables

Direct addressing(each key has its own slot) performs very well

(constant worst-case time for all operations), but requires a lot of memory

What we want is to reduce size of table

Hashing: an element with keyk is stored in sloth(k): we use a hash

functionh to compute slot

When only operationsInsert, SearchandDeleteas dictionary operations

are needed,hash tablescan be quite good:

we can still perform operations inO(1) time in average;

however the worst-case time is bigger

There are many variations of hash tables (or rather the hash functions

implementing them), from not-so-fast but simple to extremely fast but

complicated

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 21 Lecture: Week 7

universeof keysU = f0; : : : ; u� 1g

We want to reduce size of table tom,

wherem << jU j
We will use ahash functionh : U ! f0; : : : ;m� 1g

We say element with keyk hashesinto sloth(k), and thath(k) is hash
value of k

Problem: two or more keys may hash to same slot (collisions)

We need some strategy to deal with this problem

Ideal solution: avoid collisions altogether

However: by assumptionjU j > m, so theremust be at least two keys

with same hash value, thus complete avoidanceimpossible

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 22 Lecture: Week 7

Another solution: make itrandom so that the number of collisions is at

least “minimized”

but still, the hash function has to bedeterministic: given an input keyk it

should always produce the same outputh(k)
Even with a random hash function, there will be collisions anyway:

How to resolve collisions?

Simplest solution: chaining
(another solution later:open addressing)

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 23 Lecture: Week 7

Collision resolution by chaining

The simplest of all collision-resolution protocols� eachslot is a linked list (“chain”)� slot j contains a pointer to the head of the list of all elements that
hash toj� if there are no such elements, slotj contains NIL� when elements collide, just insert the new element into the list

Let T be a hash table andh a hash function.
Implementation of dictionary operations:
Chained-Hash-Insert(T,x)

insertx at the head of listT [h(key[x℄)℄
Chained-Hash-Search(T,k)

search for an element with keyk in list T [h(k)℄
Chained-Hash-Delete(T,x)

deletex from the listT [h(key[x℄)℄

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 24 Lecture: Week 7

What about the worst-case running times?� for each operations we have to computeh(k), in addition:� Insert: clearlyO(1) under assumption that element is not yet in

table; otherwise first perform a search� Search: proportional to the length of the list; we will analyze this

later. . .� Delete:
Assume: argument to procedure is a pointerx to an element, not its

keyk

– if the list is a doubly-linked list, then we need a constant timeO(1)

– if the argument were a key, then a search is necessary

– similarly, if the lists are singly-linked, we need to find

predecessor ofx, the same running time as for search

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 25 Lecture: Week 7

Hence: it’s important to determine how long it take to search for an

element when a key is given

Consider a hash tableT with m slots that storesn elements

Defineload factor � = n=m (average list size)

Analysis in terms of� (not necessarily greater than one!)

Clear: the worst-case performance is very bad: if alln keys hash to the

same slot, then all elements will be stored in one linked list=) time�(n) — we might as well have used just one linked list for all elements

Average performancedepends on how well hash functionh (that we still

don’t know) distributes keys, on average

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 26 Lecture: Week 7

Assignment Problem 7.4.(deadline: June 24, 5:30pm)

Show that ifjU j > nm, there is a subset ofU of sizen consisting of keys

that all hash to the same slot, so that the worst-case searching time for

hashing with chaining is�(n). Recall thatm is the size of the hash table,

i.e., there arem slots.

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 27 Lecture: Week 7

We will try to construct a good hash function later, but for now we shall

assume that:� Any given element isequally likely to hash into any of them slots,

independently of where other elements hash to.

This assumption is calledsimple uniform hashing

For j 2 f0; : : : ;m� 1g let nj = length(T [j℄)
Clearly,n0 + n1 + � � �+ nm�1 = n
Also, average value ofnj isE[nj ℄ = � = n=m
(recall: “equally likely. . . ”)

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 28 Lecture: Week 7

Another assumption (not necessarily true): the value hash functionh(k)

for a keyk can be computed inO(1) time

Thus, the time required to search for some element with keyk depends

linearly on lengthnh(k) of list T [h(k)℄
Consider the expected number of elements inT [h(k)℄ that are examined

to see if their keys are equal tok
— this equal to the expected time for the search for an elementwith keyk

We shall consider 2 cases:

unsuccessful(no element in the table has keyk), and

successfulsearches.

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 29 Lecture: Week 7

Unsuccessful searches

Theorem. Under assumption of simple uniform hashing, if using
collision resolution by chaining then an unsuccessful search takes
expected time�(1 + �).
Recall:� = n=m = #elements=#slots.

Proof.� any keyk not already in table (recall: unsuccessful) is equally likely
hashed to any of them slots (simple uniform hashing)� expected time to search unsuccessfully fork is the expected time to
search to end ofT [h(k)℄� T [h(k)℄ has expected lengthE[nh(k)℄ = �� thus the expected number of examined elements is�� add1 for computation ofh(k)

Recall:� could be very small, thus�(1 + �) cannot be reduced to�(�).
Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 30 Lecture: Week 7

Successful searches

Difference: not all lists equally likely to be searched

Why? Simple, probability that a list is searched isproportional to the
number of elements it contains(we assume that the element being

searched is equally likely any of then elements stored in the table).

111 22222 44 5555 66666666666 7

Theorem. Under assumption of simple uniform hashing, if using

collision resolution by chaining then a successful search takes expected

time�(1 + �) with � = n=m.

Proof.� the number of elements examined is1 plus the number of elements in

thex’s list beforex� these were insertedafter x itself (new elements are placed at front)

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 31 Lecture: Week 7

� to find the expected number of elements examined, take the average

of 1 plus the expected number of elements added to thex’s list afterx

was added, over then elementsx in table

For1 � i � n, letxi be thei-th element inserted into the table, and letki = key(xi)
For keyski; kj , define Bernoulli random variablesXij = 1 ifh(ki) = h(kj)
question: how many elements do we examine until we findxi?� all elements in the same list asxi appearing before, that is, all

elementsxj such thatj > i andXij = 1� elementxi

answer:mi = 1 + nPj=i+1Xij

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 32 Lecture: Week 7

Under assumption of simple uniform hashing,P (Xij = 1) = 1=m

Indeed: for anyz 2 f1; : : : ;mg, we haveP (h(ki) = z) = P (h(kj) = z) = 1=m, thusP (Xij = 1) = mXz=1P (h(ki) = z) � P (h(kj) = z)

= mXz=1(1=m)2 = 1=m
ThusE[Xij ℄ = P (Xij = 1) = 1=m.

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 33 Lecture: Week 7

we don’t know which element we are looking for

each of them has same probability1=n, hence expected number of
examined elements in a successful search is the average:

E " 1n nXi=1mi# = E 24 1n nXi=1
0�1 + nXj=i+1Xij1A35

(LOE)= 1n nXi=1
0�1 + nXj=i+1E[Xij ℄1A

= 1n nXi=1
0�1 + nXj=i+1 1m1A

= 1n nXi=1 1!+0� 1n nXi=1 nXj=i+1 1m1A

= 1 + 1nm nXi=1 nXj=i+1 1
Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 34 Lecture: Week 7

= 1 + 1nm nXi=1(n� i)

= 1 + 1nm nXi=1 n� nXi=1 i!= 1 + 1nm �n2 � n(n+ 1)2 �

= 1 + nm � n+ 12m = 1 + �� n+ 12n �= 1 + ��1� n+ 12n � = �(1 + �)
Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 35 Lecture: Week 7

Adding�(1) for computation ofh(k), we end up with�(2 + �) = �(1 + �)

Consequence: if m (# slots) is at least proportional ton (# elements), thenn = O(m) and� = n=m = O(1), thus searching takesconstant timeon

average!

Insertion andDeletion also take constant time (even in the worst-case) if

doubly-linked lists are used, thus

all operations take constant time on average!

(However: we need assumption of single uniform hashing)

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 36 Lecture: Week 7

Assignment Problem 7.5.(deadline: June 24, 5:30pm)

Suppose we use a hash functionh to hashn distinct keys into an arrayT

of lengthm. Assuming simple uniform hashing, what is the expected

number of collisions, that is what is the expected number of elements of

the set ffk; lg : k 6= l andh(k) = h(l)g ?
Hint: use random variablesXij define on the lecture.

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 37 Lecture: Week 7

Hash functions

So far, haven’t seen a single hash function

What makes a good hash function?

Satisfies (more or less) the assumption of single uniform hashing:

Each key is equally likely to hash to any of them slots, independently of

where other keys hash to

However, typicallyimpossible, certainly depending on how keys are

chosen

— usually, we don’t know the probability distribution according to which

the keys are drawn, and the keys may not be drawn independently.

Sometimes weknow the key distribution.

Example: keys are real random numbers ink 2 [0; 1), independently and

uniformly chosen, thenh(k) = bk �m
 satisfies the assumption of

uniform hashing

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 38 Lecture: Week 7

Design:� heuristic (division and multiplication methods)� randomization (universal hashing)

Heuristic:

Example: compiler;

we want to store identifiers in our hash table;

it’s very likely that similar strings occur in the same program

(“minelement”, “minposition”)

we should minimize the chance to hash them to the same slot

in general, we should design a hash function so that it’s independent on

any patterns in the data

another usually good property: map keys which are similar toslots far

apart

(this will be very useful in open addressing method discussed later)

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 39 Lecture: Week 7

Usual assumption:universe of keys isf0; 1; 2; : : :g, i.e., somehow

interpret real keys as natural numbers (“usually” easy enough. . .)

Two very simple hash functions:

1. Division method: h(k) = k mod m

Example: hash table has size25, keyk = 234, thenh(k) = 234 mod 25 = 9
Quite fast, but drawbacks

Want to avoid certain values ofm, e.g. powers of2
Why? Ifm = 2p, thenh(k) = k mod m = k mod 2p, thep lowest-order

bits ofk

Example: m = 25 = 32, k = 168, h(k) = 168 mod 32 = 8 = (1000)2,
andk = 168 = (10101000)2

Better to make hash function depend onall bits of key

Good idea (usually) form: prime not too close to power of two

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 40 Lecture: Week 7

Assignment Problem 7.6.(deadline: June 24, 5:30pm)

Assume that the keys are strings with each character havingp bits.

Assume that we choosem = 2p � 1 in the division method. Show that if

stringx can be derived from stringy by permuting its characters, thenx

andy hash to the same value.

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 41 Lecture: Week 7

2. Multiplication method :h(k) = bm(kA mod 1)

explanation:� A is constant with0 < A < 1� ThuskA is real with0 � kA < k� kA mod 1 is fractional part ofkA, i.e.,kA� bkA

Example: A = 0:23, k = 234, thenkA = 53:82 andkA mod 1 = 0:82� kA mod 1 2 [0; 1)� Thereforem(kA mod 1) 2 [0;m), andbm(kA mod 1)
 2 [0; 1; : : : ;m� 1℄
Advantage: value ofm not critical

Typically power of two (no good with division

method!), since then the implementation is easy,

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 42 Lecture: Week 7

Exercise 7.2.Consider a hash table of sizem = 1000 and a

corresponding hash functionh(k) = bm � (kA mod 1)

for A = (p5� 1)=2. Compute the location to which the keys61; 62; 63; 64 and65 are mapped.

Last modified: Tuesday 17th June, 2008, 22:01 2008 J́an Mǎnuch

	Selection problem
	Minimum and maximum
	Simultaneous minimum and maximum
	The i-th element

	Dynamic sets
	Operations on dynamic sets

	Hash tables
	Collision resolution by chaining
	Unsuccessful searches
	Successful searches

	Hash functions

