SFU CMPT-307 2008-2 1 Lecture: Week 6

SFU CMPT-307 2008-2 Lecture: Week 6

Jan Manuch

E-mail: jmanuch@sfu.ca

Lecture on June 10, 2008, 5.30pm-8.20pm

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 2 Lecture: Week 6

Exercise 6.1. Consider the following modification of the above
algorithm:

Permute-Without-Fixed-Point(A[1 ... n|)

1: for: < 1ton —1do
2: swapAli| <+ A[Random(i + 1,n)]
3: end for
4: returnA

What kind distributions of permutations does it produce?

Hypothesis: The procedure produces a uniform random permutation
without “fixed points”.

A fixed point of a permutation is an element which stays at the same
position after permuting.

Example. Consider all permutations of the array;, 2, 3): (1, 2, 3),
(1,3,2),(2,1,3),(2,3,1), (3,1,2) and(3, 2, 1).

Only two of them are without any fixed poing2, 3, 1) and(3, 1, 2).

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 3 Lecture: Week 6

Exercise 6.2(continued) Study performance of the algorithm far= 3
andn = 4.

Which outputs (permutations) does it produce?
What are the probabilities of outputs?
Is the above hypothesis correct?

Exercise 6.3(continues) Using the loop invariant technigue show that
the algorithm generates only permutations without fixechpoi

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 4 Lecture: Week 6

Assignment Problem 6.1.(deadline: June 17, 5:30pm)

Suppose that instead of swapping eleméfit with a random element
from the subarrayl|: . . . n], we swapped it with a random element from
anywhere in the array:

Permute-With-All (A[1...n])

1: for 1 < 1ton do
2: swapAl[i] < A[Random(1,n)]
3: end for
4: returnA

Show that this code doesn’t produce a uniform random petrouatéor all
sizes of inputs. That is, find an integerfor which the above algorithm
doesn’t produce a uniform random permutation. Justify yamswer.

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 5 Lecture: Week 6

QuickSort — Average case

Therandomized QuickSort which uses the first approach (randomly
permutes the input before sorting) has expected running ¢igual to the
average running time of (non-randomizé&glyickSort.

We have seen some intuition that this timé&ig: logn). Let's try to
calculate this average running time exactly.

We will count only the number of comparisons. l(étn) be the average
number of comparison duickSort assuming that every order of
elements is equally likely to appear as the input (uniforstrdiution),
l.e.,

Cn) =1 3 Cas(m

" wEeS,

whereCgs () is the number of comparisons performed@yickSort on
the input (ordered byy.

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 6 Lecture: Week 6

Recall, S,, isthe set of all permutations on n elements.

CalculatingCqs (), for everyr € S,, would be extremely difficult. So,
let’s try to perform only one step @uickSort to get the recurrent
formula forC'(n).

Question: What happens in the first step QuickSort on the inputr?

The array is partitioned to two parts usingn) as the pivot. The first part
will have (n) — 1 elements and the second- 7 (n).

Let’s divide the inputs ta sets depending omn(n). For every

i €{1,...,n}, letS’ be the set of all permutationsc S,, such that
m(n) = i. Note that eacl$’ has the same number of permutations
(namely,(n — 1)!).

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 7 Lecture: Week 6

For everyr € S*, runPartititon algorithm. The first partition will be a
permutation fromS;_; and the second partition is a permutation of the set
1+ 1,...,n.

One can show that the set of the first partitions contains paghutation

In S;_; the same number of times and the set of the second partitions
contains each permutation o+ 1, . .., n the same number of times (see
theextra problem on the next slide).

Hence, the average running time in the recursive call on thedartition
will be C(+ — 1) and on the second partitiaii(n — ¢). Therefore,

1
Cn)=n—-1+->» (C(i—1)+C(n—1)) (1)
~ 2nlnn ~ 1.39nlogn

Note: Next, we will show that any comparison-based sorting atgori
has the average number of comparison at Ieastlog n, i.e., on average
QuickSort is only 39% worse than the best possible compaytissed

sorting algorithm.
Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 8 Lecture: Week 6

Extra Assignment Problem. (3% added to the overall performance if
solved completely)

Deadline: The last lecture(Note: You get extra points only if your solution is
completely correct. You can submit the solution severagsinif it's not correct, |
will point out the problem(s) in your solution and you canagain.)

Part 1. Fixi € {1,...,n}. Consider all permutations € S and run
Partition algorithm for each such permutation. Show that the set of the
first partitions generated by the algorithm (permutatioinS;a;) have the
same number of occurrences of each permutation. Show #natthof
second partitions generated by the algorithm (permutatodelements

++ 1,...,n) have the same number of occurrences of each permutation.

Part 2. Show that the solution to the recurrence (1) is very close to
2n Inn. It's not enough to show that it ®(2n1nn), you need to show
that it does not differ fron2n In n by more than linear term, i.e., that
C(n) =2nlnn+ O(n).

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 9 Lecture: Week 6

Average running time of comparison sorts — a lower
bound

Consider aecision treewith / leaves corresponding to a comparison sort
onn elements.

Remove all unreachable branches from the tree.

e NOW every output (= permutation of input elements) appeeaastey
once in the decision tree.
— appears at least once, since for each permutation thagorti
algorithm has to output the correct result
— appears at most once, if the input is permuted in a certayntivan
all decisions in the decision tree will be the same for eadhoftthe
algorithm, so we always end-up in the same leaf. Hence, albther
leaves with the same output are unreachable (and we remiosed t
already).

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2

10

Lecture: Week 6

Decision tree for Selection-Sorton 3-element inputs

1,2,3

3,1,2

]

1,2,3

1,3,2

3,1,2

2,3,1

Note: every inner node has 1 or 2 children

Last modified: Tuesday {0June, 2008, 22:07

2008 &n Maiuch

SFU CMPT-307 2008-2 11 Lecture: Week 6

Hence: number of leaves

¢ = # of permutations of, elements= n!

what’s the average running time?

e the running time depends on the number of comparisons, soilve w
only count the number of comparisons

e assume that each permutation appears equally likely

e for each permutation € S, of the input, the running time is the
depth depth(m) of the leaf containing the permutatianin the
decision tree = the number of edges (comparisons) from thte ro
down tor

Hence, theaverage number of comparisonss

S~ depth(n)

TES,

Caveragén) =

nl

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 12 Lecture: Week 6

For any tre€l’, let

D(T) = Z depth(x)

x IS a leaf of T’

Let D(£) be theminimum of D(T') over allbinary trees T' (not necessary
complete) with/ leaves, i.e.D(T') > D(¥) for all T' with ¢ leaves.

So we have:

D(n!)

nl

Caveragén) >

We need a lower bound fdp (/).
Guess:D(¢) > Llog/
Proof: (by induction ory)

Base case: ¢ = 1. Obviously, the minimal value ab(1) is0 =1 - log 1.

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 13 Lecture: Week 6

Inductive step: Consider a tree witld leaves with the minimal value of
D (/). The root of the tree has 1 or 2 children.

e 1 child — by removing a root we get again a tree witleaves, but
with value of D(¢) smaller by/, a contradiction withminimality

e 2 children:

T1 T2

11 12

If the left subtree hag; > 0 leaves and the right subtree has> 0
leaves, wheré; + (o = /¢

then

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 14 Lecture: Week 6

we don’t know what is the minimal division of leaves, but weda
recursive lower bound:

D(¢) > 1§?11£_1D(€1) + Dl —41)+ 4

(similar to Assignment Problem 4.2)
by induction hypothesis we have

D(¢) > 1§gﬂ§%—1€1 logly + (£ —4£y) -log(l —£y) + ¢

minimum for¢; = £ = ¢ — 4,

D)=>2-£/2-log(l/2) + ¢
=/ (logl —1)+ ¢ ="/Llog/

Hence:

D(4) > Llog¥

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 15 Lecture: Week 6

back to decision tree
now,/ = n!, and so

D(n!) S n!log(n!)

— n' = log(n!) = ©(nlogn)

Caveragén) >

Note: Bases on the analysis bfg(n!), we know that that
nlogn > log(n!) > cnlogn, for anyc < 1, hencdog(n!) ~ nlogn

An easy way, how to show thaig(n!) = Q(nlogn):
log(n!) =log(1-2---n) =logl+1log2+---+logn

n n
Zlog§—|—---—|—log—

\ . 2/
7172
= 1fn,log e Q(nlogn)
2 2

Hence, thaaverage running timefor any comparison sortis

Caveragén) > log(n!) = Q(nlogn)

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 16 Lecture: Week 6

Sorting in linear time

We have seen a lower bound of ord&m log n) for worst and average
running time of comparison-based sorting algorithms.

Some algorithms achiev@(n) average running time, given certain
assumptions about the input.

Examples:

e bucket sort: assumes that the input elements are drawn from a
uniform distribution;

e counting sort: assumes that the input elements are integers in range
0 to k, wherek = O(n);

e radix sort: assumes that the input elements hdwkgits, each digit
IS an integer in range to k, whered is a constant and = O(n).

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 17 Lecture: Week 6

Bucket-Sort

Assumption: input numbers to be sorted are drawn from intefoal)
with uniform distribution .

In this caseexpectedrunning time of bucket sort i©(n). Algorithm
maintains “buckets” (linked lists).

Basic idea;

e if you haven input elements, then we neadouckets

e divide [0, 1) evenly inton consecutive sub-interval8, 1/n),
1/n,2/n),...,[(n —1)/n,1) (calledbuckets)

e given an element[:] € [0, 1), throw it into the bucket with index
[- Ald]

e hope that input is distributed evenly among buckets
e sort buckets separately and concatenate results

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 18 Lecture: Week 6

Input A = A[1], ..., An] with A[:] € |0, 1) drawn uniformly at random
Need auxiliary arrayB[0], . .., B|n — 1] of linked lists (buckets)

Bucket-Sort(A)
1: n < lengthlA)
2: for i+ 1tondo
3: insertA[:] into list B[|n - Al7]]]
4: end for
5: fori <~ 0ton —1do
6: sortlist B[i] with insertion sort
7: end for
8: concatenate list®[0], ..., B|n — 1] together in order

Claim: expected running time i©(n)

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 19 Lecture: Week 6

Example

10 inputs elements: 0.32, 0.12, 0.78, 0.55, 0.91, 0.22, 0.49,0.72,
0.02,

buckets:
0,1/10),[1/10,2/10), ...[9/10,1)

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 20 Lecture: Week 6
After sorting buckets:

bucket content
0,1/10) 0.02
1/10,2/10) 0.12
2/10,3/10) 0.22
3/10,4/10) 0.32
4/10,5/10) 0.41
5/10,6/10) 0.55 — 0.59
6/10,7/10) [
7/10,8/10) 0.72 — 0.78
8/10,9/10) /
9/10,1) 0.91

Last modified: Tuesday {0June, 2008, 22:07

2008 &n Maiuch

SFU CMPT-307 2008-2 21 Lecture: Week 6

Analysis of Bucketsort

Correctness obvious

Why expected running timé@(n)?

Certainly depends on sizes of buckets (# of elements indithkés)
Let n, be a random variable denoting the size of ik bucketB,;.

Insertion sort runs in tim&(n?), thus the overall running time is

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 22 Lecture: Week 6

What is the expected value of running time?

E[T(n)] = E

O(n) + i O(n3)
> 0w

O(n) + Y BlO(n?)

= OMn)+E

= o)+ Y. O(F[)

Now, we need to estimatB[n?].

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 23 Lecture: Week 6

Assignment Problem 6.2.(deadline: June 17, 5:30pm)
Roll 3 fair 6-sided dice. Consider random varialeequal to the sum of

outcomes on all dice. (Henc&, has values fron3 to 18.) Calculate
E[X]? andE[X?].

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 24 Lecture: Week 6

Claim: E[n?]=2—1/nforall0<:<n-1

Clearlysame expectationgor all buckets since the input is drawn from
uniform distribution on0, 1): each value igqually likely to fall into any

bucket
Define a random variabl,;, fori =0,...,n—1andj =1,...,nas
follows:
~) 1 Alj]fallsinto bucket
v 0 otherwise
Clearly,

n
ni =Y Xi
j=1

becauseX;; is equal tol for each element that falls inteth bucket

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2

25

Lecture: Week 6

=

3
|
S

—~
*
~

E

n

= > (BIX}1+ > E[XiXi)

j=1

Last modified: Tuesday {0June, 2008, 22:07

> Xi;
j=1

j{:j{:)zﬁ)gﬁ

j=1 k=1

2 X5+ 2. 2l XuXa
j=1

1<j<n 1<k<n

oy

1<k<n

k#j

2008 &n Maiuch

SFU CMPT-307 2008-2 26 Lecture: Week 6

(x) is because

2
mn
j=1

= Xa+Xip+ -+ Xin1)?

= XX+ XaXi+ -+ XaXin—1+
XioXin + XipXig + -+ XioXip1+ -+
Xin—1Xi + Xin1 X+ + X5 o1 X

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 27

Lecture: Week 6

By definition of expectation,

1 1 1
[X;;] = E[Xy5] (n)+ ~ = -

(note that ifX is a 0-1 variable the’[X?] = E[X]| = P[X])
and whenk # j, X;; andX;, are independent, and thus

1 1 1
This gives
Ein2l — <_ _)
;] > T) -

J=1 1<k<n
k#j

1 1

— — _ 1 _

- +n(n —1) -

n n n n

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 28 Lecture: Week 6

and therefore

BIT()] = ©(m)+ Y O(E)
_ @(n)—l—iO(Z—%) — O(n)

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 29 Lecture: Week 6

Note: Bucket sort may have linear running time even when input ts no
drawn from uniform distribution of0, 1):

e we're fine whenever sum of squares of bucket sizes is line&ioin
elements (when using the insertion sort for sorting bugkets

e or if we use a more efficient sorting algorithm for sorting keits,
say, merge sort, then whenever

S nglogng = O(n)

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 30 Lecture: Week 6

Counting sort

Assumption on input: input elements are integers in the rarige k.
Whenk = O(n), then running time®(n).

Basic idea:for each input element, find the number of elements smaller
thanx. Let this number bé. Then we can place directly at position
¢+ 1.

Complications: several elements might have the same value.
— we have to avoid putting them at the same position.

algorithm uses 3 arrays:
e A[l...n]— inputarray

e B[1...n|— output array

e ('|0...k] —temporary array’|p| = number of elements less or
equal thamp

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 31 Lecture: Week 6

Counting-Sort(A)
1: n < length(A4)

for : < 0to k do

Clt] <0
end for
for j < 1tondo

ClA[j]] C[A[j]] +1
end for
[+ C[i] contains # of elenents equal to ¢ /
for s < 1to kdo

Cli] + Cli] + Ct — 1]
. end for
[+ C[i] contains # of elements <i */
. for 5 + n downto 1 do
14: BIC[A[j)]] + Alj]
15: ClA[j]] + ClA[j]] - 1
16: end for

e el e
w N P O

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 32 Lecture: Week 6

explanation:
e loop 2—4: initialize array’
e loop 5-7: if the value of an input ele-
mentisi, incrementC|i] by 1; hence, after

the loop,C[i] contains the number of ele- “°!""g-SorA)

1: n < length(A)

ments equal t@ 2: for i < 0to k do
e loop 9-11: after loopC[i] contains the @ (;Ef]“o
4. end 1or
number of elements that are less than Ok. for j < 11ton do
equal to 6: ClA[j]] < C[A[j]] +1
]] 7: end for
the loop invariant: 8 /* C[i] contains # of

el ements equal to ¢ */

— before thei-th iteration, for allk < o for 1
: for i+ 1tokdo
i, C[k] contains number of elementsio: C[i] « C[i] + Cli — 1]

11: end for
smaller than or equal tb 12 1+ Cli contains # of

e loop 13-16: before the first iteratio@;[:] el enents <i */

. .. 13: for j «+ n downto 1 do
contains the last position where an eles, giora)) < ap
ment with value should go; after we place = i[fA[j” < ClA[]] -1
Alj] into B, we decrement’[i] so that the e
next element with value would be place
at position smaller by

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 33 Lecture: Week 6

Counting-Sort(A)
1: n < length(A)

2: for i < 0to k do
3 Cli|«+0
: N 4: end for
running time: 5. for j «+ 1ton do
6 ClA[j]] « CIA[j)] +1
e loop 2-4:0(k) 7: end for
e loop 5-7:0(n) 8: /* C[i] contains # of
+ 100p 9-11.6(k) o el o
e loop 13-16:0(n) 10: Cli] + C[i] + Cli — 1]
11: end for

total: O(n+k) =0O(n)if k =0O(n) 12/« C[i] contains # of
el enments <7 x/
13: for j + n downto 1 do
14: B[C[A[j]]] + AlJ]
15: C[A]j]] + ClA]j]] - 1
16: end for

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 34 Lecture: Week 6

Example.

nputA:| 412148 |8|4]|4

after loop 5-7: Counting-Sort(A)
0 1 2 3 45 6 7 8 L n ¢ length(A)

for s < 0to k do
0,010,400 0]2

Cli] <0
end for
for j < 1tondo
CIA[j)] + CIA[j]] +1
end for
[+ C[i] contains # of
el enents equal to i */
loop 13-16, after 1st iteration: o forieltokdo
10: C[i] < C[i] + C[i — 1]
1 2 3 4 5 6 7 11: end for
B: 12: /= C[i] contains # of
| = |-14|-]- el enents < */

after loop 9-11.:
O 1 2 3 4 5 6 7 8

O|0(1|1(5|5|5|5]|7

13: for j + n downto 1 do
> b 7 8 14: BI|C[A[j]]] « AlJ]
5|5|5|7 15: ClA[j]] « ClA[j]] -1

16: end for

0 1
0|0

N

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 35 Lecture: Week 6

nputA:| 412148 |8|4]|4

Counting-Sort(A)

loop 13-16, after 2nd iteration: 1: n < length(A)
1 2 3 4 5 6 7 2: for i <~ 0to k do
33 Ci]«0
— | - =14 | 4| -] — 4: end for
5: for j <~ 1tondo
O 1 2 3 4 5 6 7 8 6: C[A[]] < ClA[f] +1
O 7: end for
010|113 |5|5|5|7 8: [CJi] contains # of

el enents equal to i */
9: for i+ 1to kdo

loop 13-16, after 3rd iteration:

1 2 3 4 5 6 7 100 Cli] « C[i] + Cli — 1]
B: 11: end for
-|—-|-14|4|—-|8 12: /= Cli] contains # of
el ements <i¢ */
O 0 1 2 3 4 5 6 7 8 13: for j + n downto 1 do
1olol1/1!/3|5|5|5]|6 14 B[C[A[]]] + Alj
15: ClA[j]] + ClA[j]] - 1
16: end for

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2

36

Lecture: Week 6

inputA:| 4 12| 4| 8| 8

loop 13-16, after 4th iteration:
1 2 3 4 5 6 7

4|8

B:

C:

4
O 1 2 3
1|1

4 5
00 3|5

515

loop 13-16, after 5th iteration:
1 2 3 4 5 6 7

B:

— | —1414|4| 8] 8

O 1 2 3 4 5 6
C:

O,0|111|2|5|5]|5

Last modified: Tuesday {0June, 2008, 22:07

loop 13-16, after 6th iteration:

B:

C":

1

2

6 7

2

0

1

8
6

0

0

3
4
2
0

4
4
3
1

)
4
4
2

8
3)
S}

5155

loop 13-16, after 7th iteration:
3 4 5 6 7

B:

1

2

4

4

4

8|8

6 7 8

2
0
0

1
0

2
0

4
3
1

4
1

3)
S| 5|55

2008 &n Maiuch

SFU CMPT-307 2008-2 37 Lecture: Week 6

Note: no a single comparison during the run of the algorithm — tyear
this Is not a comparison sort

Stability

e the counting sort istable: the numbers with the same value appear in
the output in the same order as in the input

e Of course, this property is important only if some satelligda is
carried around with the elements we are sorting — that is each
element contains a lot of records, but we are sorting elesranly
according to one of the records (tkey)

Exercise 6.4.1s Bucket-Sort stable?

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 38 Lecture: Week 6

Assignment Problem 6.3.(deadline: June 17, 5:30pm)
Suppose that thier loop 13-16 is rewritten so that the loops start with
5 = 1 and end withy = n, i.e., the line 13 is changed to

for j < 1tondo

Show that the algorithm still works properly. Is the modifeddorithm
stable?

Assignment Problem 6.4.(deadline: June 17, 5:30pm)

Which of the following sorting algorithms are stable: sél@t sort,
merge sort, heapsort, and quicksort? If the algorithm istaddle, give an
example of an input showing it. If the algorithm is stablegya it.

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 39 Lecture: Week 6

Radix sort

Assumption on input: the elements hawédigits, and each digit has at
mostk possible values

Examples.

A ={329,457,657,839, 436, 720, 355} — all elements have 3 digits,
k=10

A = {abab, aaba, bbab, abbb, baab, bbbb} — all elements have 4 digits,
k=2

A = {"June 26, 93", “April 13, 04", “October 1, 71’— all elements
have 3 digitsk = 100

The running time iO(d(n + k)), where

n — Size of input

d — number of digits

k — number of possible values, one digit can take.

Hence, ifd is a constant and = O(n), thenlinear time.

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 40 Lecture: Week 6

Basic idea:

e sort inputs on théeast significantdigit, then on second least
significant digit, etc.

e for sorting on digits use sonstable sorting algorithm, for example
Counting-Sort or

— might seem counterintuitive, why we start with the leaghgicant
digit?
— when we want to compare two elements, we would first comypaze t

most significant digits of the elements, if we get tie, we wilotbntinue
with the second significant digits, etc.

— however, when sorting we go backwards, using the fact tleatse a
stable sorting algorithm on digits, to obtain the correct order leheents
In the end

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 41 Lecture: Week 6

Example.

3.29 7210 7.1210 3] .29
4.57 3.5/ 5 3.12|9 3| .55
6.57 43| 6 4.1 3|6 4 | .36
839 =— 45]|7 8.13|9 4 | .57
4.36 6.5 7 3./5|5 6 | .57
7.20 3.2| 9 4. | 5|7 7 .20
3.55 8.3/ 9 6. | 5|7 8 | .39

e consider an input arrayl containing elements witt digits

e let digit 1 be the least significant, and digithe most significant

Radix-Sort(A, d)
1: for 1 < 1toddo

2: use Counting-sort to sort arrad/on digit:

3: end for

Running time:©(d(n + k))

Last modified: Tuesday {0June, 2008, 22:07

2008 &n Maiuch

SFU CMPT-307 2008-2 42 Lecture: Week 6

Correctness. Loop invariant:
e after the:-th iteration the input is sorted on the digits. ., 1

Initialization: trivially true after the first iteration
Maintenance: after (i — 1)-th iteration the input is sorted on digits

v — 1,...,1; during the:-th iteration we use a stable sort on digit
consider any two elemenis= z,...x; andy = y4...y; of the
Input, then:

o If x; < y,;, then element appears beforg in current ordering

e If z; = y;, then, since the used sort is stable, they appear in the
same order as when sorted on digits 1, ..., 1

e — elementsr andy are sorted correctly on digits. .., 1

Termination: after the last iteration, the input is sorted on digits
d,...,1,l.e., sorted on value of elements

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 43 Lecture: Week 6

Usage of Radix-sort

1. used for card-sorting (punched cards) on early computers

2. nowadays, useful when sorting data with multiple keys
(for example: year, month, day)
3. breaking the key into digits:
e input: n b-bit numbers (keys)
e for any integer < b, we can sort the input usirfgadix-sort in
time©(% - (n+2"))
— each key can be viewed as havihg- [b/r| digits, each digit
consists of- bits, i.e.,k = 2"
— hence, usindradix-sort, we can sort input in time
O(dn+k)) =0(0b/r - (n+2"))
e how to choose optimally?
— if b < logn, then choosing = b (d = 1) gives time® (n)
— if b > logn, thenr = |log n| gives the best time within a
constant factor©(bn/logn)

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

SFU CMPT-307 2008-2 44 Lecture: Week 6

Assignment Problem 6.5.(deadline: June 17, 5:30pm)
Show how to sorh: integers in the rangéto n? — 1 in O(n) time.

Last modified: Tuesday {0June, 2008, 22:07 2008 &n Maiuch

	QuickSort --- Average case
	Average running time of comparison sorts --- a lower bound
	Sorting in linear time
	Bucket-Sort
	Counting sort
	Stability

	Radix sort

