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Exercise 6.1.Consider the following modification of the above
algorithm:

Permute-Without-Fixed-Point(A[1 : : : n℄)

1: for i 1 to n� 1 do
2: swapA[i℄$ A[Random(i+ 1; n)℄

3: end for
4: returnA

What kind distributions of permutations does it produce?

Hypothesis: The procedure produces a uniform random permutation
without “fixed points”.

A fixed point of a permutation is an element which stays at the same
position after permuting.

Example. Consider all permutations of the arrayh1; 2; 3i: h1; 2; 3i,h1; 3; 2i, h2; 1; 3i, h2; 3; 1i, h3; 1; 2i andh3; 2; 1i.
Only two of them are without any fixed point:h2; 3; 1i andh3; 1; 2i.
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Exercise 6.2(continued). Study performance of the algorithm forn = 3

andn = 4.

Which outputs (permutations) does it produce?

What are the probabilities of outputs?

Is the above hypothesis correct?

Exercise 6.3(continues). Using the loop invariant technique show that

the algorithm generates only permutations without fixed point.
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Assignment Problem 6.1.(deadline: June 17, 5:30pm)

Suppose that instead of swapping elementA[i℄ with a random element

from the subarrayA[i : : : n℄, we swapped it with a random element from

anywhere in the array:

Permute-With-All (A[1 : : : n℄)
1: for i 1 to n do
2: swapA[i℄$ A[Random(1; n)℄
3: end for
4: returnA

Show that this code doesn’t produce a uniform random permutation for all

sizes of inputs. That is, find an integern, for which the above algorithm

doesn’t produce a uniform random permutation. Justify youranswer.
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QuickSort — Average case

Therandomized QuickSort which uses the first approach (randomly

permutes the input before sorting) has expected running time equal to the

average running time of (non-randomized)QuickSort.

We have seen some intuition that this time is�(n log n). Let’s try to

calculate this average running time exactly.

We will count only the number of comparisons. LetC(n) be the average

number of comparison ofQuickSort assuming that every order ofn

elements is equally likely to appear as the input (uniform distribution),

i.e.,

C(n) = 1n! X�2Sn CQS(�)
whereCQS(�) is the number of comparisons performed byQuickSort on

the input (ordered by)�.
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Recall, Sn is the set of all permutations on n elements.

CalculatingCQS(�), for every� 2 Sn would be extremely difficult. So,

let’s try to perform only one step ofQuickSort to get the recurrent

formula forC(n).
Question: What happens in the first step ofQuickSort on the input�?

The array is partitioned to two parts using�(n) as the pivot. The first part

will have�(n)� 1 elements and the secondn� �(n).
Let’s divide the inputs ton sets depending on�(n). For everyi 2 f1; : : : ; ng, letSin be the set of all permutations� 2 Sn such that�(n) = i. Note that eachSin has the same number of permutations

(namely,(n� 1)!).
Last modified: Tuesday 10th June, 2008, 22:07 2008 J́an Mǎnuch
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For every� 2 Sin, runPartititon algorithm. The first partition will be a
permutation fromSi�1 and the second partition is a permutation of the seti+ 1; : : : ; n.

One can show that the set of the first partitions contains eachpermutation
in Si�1 the same number of times and the set of the second partitions
contains each permutation ofi+ 1; : : : ; n the same number of times (see
theextra problem on the next slide).

Hence, the average running time in the recursive call on the first partition
will be C(i� 1) and on the second partitionC(n� i). Therefore,C(n) = n� 1 + 1n nXi=1(C(i� 1) + C(n� i)) (1)� 2n lnn � 1:39n log n
Note: Next, we will show that any comparison-based sorting algorithm
has the average number of comparison at least� n log n, i.e., on average
QuickSort is only 39% worse than the best possible comparison-based
sorting algorithm.

Last modified: Tuesday 10th June, 2008, 22:07 2008 J́an Mǎnuch
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Extra Assignment Problem. (3% added to the overall performance if

solved completely)

Deadline: The last lecture.(Note: You get extra points only if your solution is

completely correct. You can submit the solution several times. If it’s not correct, I

will point out the problem(s) in your solution and you can tryagain.)

Part 1. Fix i 2 f1; : : : ; ng. Consider all permutations� 2 Sin and run

Partition algorithm for each such permutation. Show that the set of the

first partitions generated by the algorithm (permutations of Si�1) have the

same number of occurrences of each permutation. Show that the set of

second partitions generated by the algorithm (permutations of elementsi+ 1; : : : ; n) have the same number of occurrences of each permutation.

Part 2. Show that the solution to the recurrence (1) is very close to2n lnn. It’s not enough to show that it is�(2n lnn), you need to show

that it does not differ from2n lnn by more than linear term, i.e., thatC(n) = 2n lnn+O(n).
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Average running time of comparison sorts — a lower
bound

Consider adecision treewith ` leaves corresponding to a comparison sort

onn elements.

Remove all unreachable branches from the tree.� now every output ( = permutation of input elements) appears exactly

once in the decision tree.

– appears at least once, since for each permutation the sorting

algorithm has to output the correct result

– appears at most once, if the input is permuted in a certain way, then

all decisions in the decision tree will be the same for each run of the

algorithm, so we always end-up in the same leaf. Hence, all the other

leaves with the same output are unreachable (and we removed them

already).
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Decision tree for Selection-Sorton3-element inputs
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Hence: number of leaves` = # of permutations ofn elements= n!

what’s the average running time?� the running time depends on the number of comparisons, so we will

only count the number of comparisons� assume that each permutation appears equally likely� for each permutation� 2 Sn of the input, the running time is the

depth depth(�) of the leaf containing the permutation� in the

decision tree = the number of edges (comparisons) from the root

down to�

Hence, theaverage number of comparisonsis

Caverage(n) = P�2Sn depth(�)n!
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For any treeT , let D(T ) = Xx is a leaf ofT depth(x)

LetD(`) be theminimum of D(T ) over allbinary trees T (not necessary

complete) with` leaves, i.e.,D(T ) � D(`) for all T with ` leaves.

So we have: Caverage(n) � D(n!)n!
We need a lower bound forD(`).
Guess:D(`) � ` log `

Proof: (by induction on`)
Base case: ` = 1. Obviously, the minimal value ofD(1) is 0 = 1 � log 1.
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Inductive step: Consider a tree with` leaves with the minimal value ofD(`). The root of the tree has 1 or 2 children.� 1 child — by removing a root we get again a tree with` leaves, but
with value ofD(`) smaller by`, a contradiction withminimality� 2 children:

l1 l2

T1 T2

if the left subtree has`1 > 0 leaves and the right subtree has`2 > 0

leaves, where`1 + `2 = `

then D(`) = D(T ) = D(T1) +D(T2) + `� D(`1) +D(`2) + `
Last modified: Tuesday 10th June, 2008, 22:07 2008 J́an Mǎnuch
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we don’t know what is the minimal division of leaves, but we have a

recursive lower bound:D(`) � min1�`1�`�1D(`1) +D(`� `1) + `

(similar to Assignment Problem 4.2)

by induction hypothesis we haveD(`) � min1�`1�`�1 `1 � log `1 + (`� `1) � log(`� `1) + `

minimum for`1 = `2 = `� `2D(`) = � 2 � `=2 � log(`=2) + `= ` � (log `� 1) + ` = ` log `
Hence: D(`) � ` log `
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back to decision tree

now,` = n!, and soCaverage(n) � D(n!)n! � n! log(n!)n! = log(n!) = �(n log n)

Note: Bases on the analysis oflog(n!), we know that thatn log n � log(n!) � n log n, for any < 1, hencelog(n!) � n log n

An easy way, how to show thatlog(n!) = 
(n log n):log(n!) = log(1 � 2 � � �n) = log 1 + log 2 + � � �+ log n� log n2 + � � �+ log n2| {z }n=2= 12n log n2 2 
(n log n)
Hence, theaverage running time for anycomparison sort isCaverage(n) � log(n!) = 
(n log n)
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Sorting in linear time

We have seen a lower bound of order
(n log n) for worst and average

running time of comparison-based sorting algorithms.

Some algorithms achieveO(n) average running time, given certain

assumptions about the input.

Examples:� bucket sort: assumes that the input elements are drawn from a

uniform distribution;� counting sort: assumes that the input elements are integers in range0 to k, wherek = O(n);� radix sort : assumes that the input elements haved digits, each digit

is an integer in range0 to k, whered is a constant andk = O(n).
Last modified: Tuesday 10th June, 2008, 22:07 2008 J́an Mǎnuch
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Bucket-Sort

Assumption: input numbers to be sorted are drawn from interval[0; 1)

with uniform distribution .

In this case,expectedrunning time of bucket sort isO(n). Algorithm

maintains “buckets” (linked lists).

Basic idea:� if you haven input elements, then we needn buckets� divide [0; 1) evenly inton consecutive sub-intervals[0; 1=n),[1=n; 2=n), . . . , [(n� 1)=n; 1) (calledbuckets)� given an elementA[i℄ 2 [0; 1), throw it into the bucket with indexbn �A[i℄� hope that input is distributed evenly among buckets� sort buckets separately and concatenate results
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InputA = A[1℄; : : : ; A[n℄ with A[i℄ 2 [0; 1) drawn uniformly at random

Need auxiliary arrayB[0℄; : : : ; B[n� 1℄ of linked lists (buckets)

Bucket-Sort(A)
1: n length(A)
2: for i 1 to n do
3: insertA[i℄ into listB[bn �A[i℄℄
4: end for
5: for i 0 to n� 1 do
6: sort listB[i℄ with insertion sort

7: end for
8: concatenate listsB[0℄; : : : ; B[n� 1℄ together in order

Claim: expected running time isO(n)
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Example10 inputs elements: 0.32, 0.12, 0.78, 0.55, 0.91, 0.22, 0.41, 0.59, 0.72,

0.02,

buckets:[0; 1=10), [1=10; 2=10), . . .[9=10; 1)
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After sorting buckets:

bucket content[0; 1=10) 0:02[1=10; 2=10) 0.12[2=10; 3=10) 0.22[3=10; 4=10) 0.32[4=10; 5=10) 0.41[5=10; 6=10) 0:55! 0:59[6=10; 7=10) /[7=10; 8=10) 0:72! 0:78[8=10; 9=10) /[9=10; 1) 0.91
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Analysis of Bucketsort

Correctness obvious

Why expected running timeO(n)?
Certainly depends on sizes of buckets (# of elements in linked lists)

Let ni be a random variable denoting the size of thei-th bucketBi.
Insertion sort runs in timeO(n2), thus the overall running time is

T (n) = �(n) + n�1Xi=0 O(n2i )
Last modified: Tuesday 10th June, 2008, 22:07 2008 J́an Mǎnuch
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What is the expected value of running time?

E[T (n)℄ = E "�(n) + n�1Xi=0 O(n2i )#

= �(n) +E "n�1Xi=0 O(n2i )#

= �(n) + n�1Xi=0 E[O(n2i )℄

= �(n) + n�1Xi=0 O(E[n2i ℄)
Now, we need to estimateE[n2i ℄.
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Assignment Problem 6.2.(deadline: June 17, 5:30pm)

Roll 3 fair 6-sided dice. Consider random variableX equal to the sum of

outcomes on all dice. (Hence,X has values from3 to 18.) CalculateE[X℄2 andE[X2℄.
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SFU CMPT-307 2008-2 24 Lecture: Week 6

Claim: E[n2i ℄ = 2� 1=n for all 0 � i � n� 1

Clearlysame expectationsfor all buckets since the input is drawn from

uniform distribution on[0; 1): each value isequally likely to fall into any
bucket

Define a random variableXij for i = 0; : : : ; n� 1 andj = 1; : : : ; n as

follows: Xij = 8<: 1 A[j℄ falls into bucketi0 otherwise

Clearly, ni = nXj=1Xij
becauseXij is equal to1 for each element that falls intoi-th bucket

Last modified: Tuesday 10th June, 2008, 22:07 2008 J́an Mǎnuch
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E[n2i ℄ = E 2640� nXj=1Xij1A2375

(�)= E 24 nXj=1 nXk=1XijXik35

= E 2664 nXj=1X2ij + X1�j�n X1�k�nk 6=j XijXik3775

= nXj=1�E[X2ij℄ + X1�k�nk 6=j E[XijXik℄�
Last modified: Tuesday 10th June, 2008, 22:07 2008 J́an Mǎnuch
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(�) is because0� nXj=1Xij1A2
= (Xi1 +Xi2 + � � �+Xi;n�1)2= Xi1Xi1 +Xi1Xi2 + � � �+Xi1Xi;n�1 +Xi2Xi1 +Xi2Xi2 + � � �+Xi2Xi;n�1 + � � �+Xi;n�1Xi1 +Xi;n�1Xi2 + � � �+Xi;n�1Xi;n�1= nXj=1 nXk=1Xi;jXi;k
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By definition of expectation,E[X2ij ℄ = E[Xij ℄ = 0 ��1� 1n�+ 1 � 1n = 1n

(note that ifX is a 0-1 variable thenE[X2℄ = E[X℄ = P [X℄)
and whenk 6= j, Xij andXik are independent, and thusE[XijXik℄ = E[Xij ℄E[Xik℄ = 1n � 1n = 1n2

This gives E[n2i ℄ = nXj=1� 1n + X1�k�nk 6=j 1n2�

= n � 1n + n(n� 1) � 1n2= 1 + n� 1n = 1 + nn � 1n = 2� 1n
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and thereforeE[T (n)℄ = �(n) + n�1Xi=0 O(E[n2i ℄)

= �(n) + n�1Xi=0 O�2� 1n� = �(n)
Last modified: Tuesday 10th June, 2008, 22:07 2008 J́an Mǎnuch
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Note: Bucket sort may have linear running time even when input is not

drawn from uniform distribution on[0; 1):� we’re fine whenever sum of squares of bucket sizes is linear in# of

elements (when using the insertion sort for sorting buckets);� or if we use a more efficient sorting algorithm for sorting buckets,

say, merge sort, then wheneverPn�1i=0 ni log ni = O(n)
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Counting sort

Assumption on input: input elements are integers in the range0 to k.

Whenk = O(n), then running time:�(n).
Basic idea:for each input elementx, find the number of elements smaller

thanx. Let this number be`. Then we can placex directly at position`+ 1.

Complications: several elements might have the same value.

— we have to avoid putting them at the same position.

algorithm uses 3 arrays:� A[1 : : : n℄ — input array� B[1 : : : n℄ — output array� C[0 : : : k℄ — temporary array,C[p℄ = number of elements less or

equal thanp
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Counting-Sort(A)
1: n length(A)
2: for i 0 to k do
3: C[i℄ 0
4: end for
5: for j  1 to n do
6: C[A[j℄℄ C[A[j℄℄ + 1
7: end for
8: /* C[i℄ contains # of elements equal to i */

9: for i 1 to k do
10: C[i℄ C[i℄ + C[i� 1℄
11: end for
12: /* C[i℄ contains # of elements � i */

13: for j  n downto 1 do
14: B[C[A[j℄℄℄ A[j℄

15: C[A[j℄℄ C[A[j℄℄� 1

16: end for
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explanation:� loop 2–4: initialize arrayC� loop 5–7: if the value of an input ele-

ment isi, incrementC[i℄ by 1; hence, after

the loop,C[i℄ contains the number of ele-

ments equal toi� loop 9–11: after loopC[i℄ contains the

number of elements that are less than or

equal toi
the loop invariant:

– before thei-th iteration, for allk <i, C[k℄ contains number of elements

smaller than or equal tok� loop 13–16: before the first iteration,C[i℄
contains the last position where an ele-

ment with valuei should go; after we placeA[j℄ intoB, we decrementC[i℄ so that the

next element with valuei would be place

at position smaller by1
Counting-Sort(A)

1: n length(A)

2: for i 0 to k do
3: C[i℄ 0

4: end for
5: for j  1 to n do
6: C[A[j℄℄ C[A[j℄℄ + 1

7: end for
8: /* C[i℄ contains # of

elements equal to i */

9: for i 1 to k do
10: C[i℄ C[i℄ + C[i� 1℄

11: end for
12: /* C[i℄ contains # of

elements � i */

13: for j  n downto 1 do
14: B[C[A[j℄℄℄ A[j℄

15: C[A[j℄℄ C[A[j℄℄� 1

16: end for
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running time:� loop 2–4:�(k)� loop 5–7:�(n)� loop 9–11:�(k)� loop 13–16:�(n)
total: �(n+k) = �(n) if k = O(n)

Counting-Sort(A)

1: n length(A)

2: for i 0 to k do
3: C[i℄ 0

4: end for
5: for j  1 to n do
6: C[A[j℄℄ C[A[j℄℄ + 1

7: end for
8: /* C[i℄ contains # of

elements equal to i */

9: for i 1 to k do
10: C[i℄ C[i℄ + C[i� 1℄

11: end for
12: /* C[i℄ contains # of

elements � i */

13: for j  n downto 1 do
14: B[C[A[j℄℄℄ A[j℄
15: C[A[j℄℄ C[A[j℄℄� 1
16: end for
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Example.

inputA: 4 2 4 8 8 4 4

after loop 5–7:C:
0 1 2 3 4 5 6 7 8

0 0 1 0 4 0 0 0 2

after loop 9–11:C:
0 1 2 3 4 5 6 7 8

0 0 1 1 5 5 5 5 7

loop 13–16, after 1st iteration:B:
1 2 3 4 5 6 7

– – – – 4 – –C:
0 1 2 3 4 5 6 7 8

0 0 1 1 4 5 5 5 7

Counting-Sort(A)

1: n length(A)

2: for i 0 to k do
3: C[i℄ 0

4: end for
5: for j  1 to n do
6: C[A[j℄℄ C[A[j℄℄ + 1

7: end for
8: /* C[i℄ contains # of

elements equal to i */

9: for i 1 to k do
10: C[i℄ C[i℄ + C[i� 1℄

11: end for
12: /* C[i℄ contains # of

elements � i */

13: for j  n downto 1 do
14: B[C[A[j℄℄℄ A[j℄

15: C[A[j℄℄ C[A[j℄℄� 1

16: end for
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inputA: 4 2 4 8 8 4 4

loop 13–16, after 2nd iteration:B:
1 2 3 4 5 6 7

– – – 4 4 – –C:
0 1 2 3 4 5 6 7 8

0 0 1 1 3 5 5 5 7

loop 13–16, after 3rd iteration:B:
1 2 3 4 5 6 7

– – – 4 4 – 8C:
0 1 2 3 4 5 6 7 8

0 0 1 1 3 5 5 5 6

Counting-Sort(A)

1: n length(A)

2: for i 0 to k do
3: C[i℄ 0

4: end for
5: for j  1 to n do
6: C[A[j℄℄ C[A[j℄℄ + 1

7: end for
8: /* C[i℄ contains # of

elements equal to i */

9: for i 1 to k do
10: C[i℄ C[i℄ + C[i� 1℄

11: end for
12: /* C[i℄ contains # of

elements � i */

13: for j  n downto 1 do
14: B[C[A[j℄℄℄ A[j℄

15: C[A[j℄℄ C[A[j℄℄� 1

16: end for
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inputA: 4 2 4 8 8 4 4

loop 13–16, after 4th iteration:B:
1 2 3 4 5 6 7

– – – 4 4 8 8C:
0 1 2 3 4 5 6 7 8

0 0 1 1 3 5 5 5 5

loop 13–16, after 5th iteration:B:
1 2 3 4 5 6 7

– – 4 4 4 8 8C:
0 1 2 3 4 5 6 7 8

0 0 1 1 2 5 5 5 5

loop 13–16, after 6th iteration:B:
1 2 3 4 5 6 7

2 – 4 4 4 8 8C:
0 1 2 3 4 5 6 7 8

0 0 0 1 2 5 5 5 5

loop 13–16, after 7th iteration:B:
1 2 3 4 5 6 7

2 4 4 4 4 8 8C:
0 1 2 3 4 5 6 7 8

0 0 0 1 1 5 5 5 5
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Note: no a single comparison during the run of the algorithm — clearly,

this is not a comparison sort

Stability

� the counting sort isstable: the numbers with the same value appear in

the output in the same order as in the input� of course, this property is important only if some satellitedata is

carried around with the elements we are sorting — that is each

element contains a lot of records, but we are sorting elements only

according to one of the records (thekey)

Exercise 6.4. Is Bucket-Sort stable?
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Assignment Problem 6.3.(deadline: June 17, 5:30pm)

Suppose that thefor loop 13–16 is rewritten so that the loops start withj = 1 and end withj = n, i.e., the line 13 is changed to

for j  1 to n do

Show that the algorithm still works properly. Is the modifiedalgorithm

stable?

Assignment Problem 6.4.(deadline: June 17, 5:30pm)

Which of the following sorting algorithms are stable: selection sort,

merge sort, heapsort, and quicksort? If the algorithm is notstable, give an

example of an input showing it. If the algorithm is stable, prove it.
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Radix sort

Assumption on input: the elements haved digits, and each digit has at

mostk possible values

Examples.A = f329; 457; 657; 839; 436; 720; 355g— all elements have 3 digits,k = 10A = fabab; aaba; bbab; abbb; baab; bbbbg— all elements have 4 digits,k = 2A = f“June 26, 93”, “April 13, 04”, “October 1, 71”g— all elements

have 3 digits,k = 100

The running time is�(d(n+ k)), wheren — size of inputd — number of digitsk — number of possible values, one digit can take.

Hence, ifd is a constant andk = O(n), thenlinear time.
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Basic idea:� sort inputs on theleast significantdigit, then on second least

significant digit, etc.� for sorting on digits use somestablesorting algorithm, for example

Counting-Sort or

— might seem counterintuitive, why we start with the least significant

digit?

— when we want to compare two elements, we would first compare the

most significant digits of the elements, if we get tie, we would continue

with the second significant digits, etc.

— however, when sorting we go backwards, using the fact that we use a

stablesorting algorithm on digits, to obtain the correct order of elements

in the end
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Example.

3.29 7.2 0 7. 2 0 3 .29

4.57 3.5 5 3. 2 9 3 .55

6.57 4.3 6 4. 3 6 4 .36

8.39 =) 4.5 7 =) 8. 3 9 =) 4 .57

4.36 6.5 7 3. 5 5 6 .57

7.20 3.2 9 4. 5 7 7 .20

3.55 8.3 9 6. 5 7 8 .39� consider an input arrayA containing elements withd digits� let digit 1 be the least significant, and digitd the most significant

Radix-Sort(A; d)

1: for i 1 to d do
2: use Counting-sort to sort arrayA on digit i
3: end for

Running time:�(d(n+ k))
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Correctness. Loop invariant:� after thei-th iteration the input is sorted on the digitsi; : : : ; 1

Initialization: trivially true after the first iteration

Maintenance: after(i� 1)-th iteration the input is sorted on digitsi� 1; : : : ; 1; during thei-th iteration we use a stable sort on digiti;
consider any two elementsx = xd : : : x1 andy = yd : : : y1 of the

input, then:� if xi < yi, then elementx appears beforey in current ordering� if xi = yi, then, since the used sort is stable, they appear in the

same order as when sorted on digitsi� 1; : : : ; 1� =) elementsx andy are sorted correctly on digitsi; : : : ; 1

Termination: after the last iteration, the input is sorted on digitsd; : : : ; 1, i.e., sorted on value of elements
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Usage of Radix-sort

1. used for card-sorting (punched cards) on early computers

2. nowadays, useful when sorting data with multiple keys

(for example: year, month, day)

3. breaking the key into digits:� input: n b-bit numbers (keys)� for any integerr � b, we can sort the input usingRadix-sort in

time�� br � (n+ 2r)�
– each key can be viewed as havingd = db=re digits, each digit

consists ofr bits, i.e.,k = 2r
– hence, usingRadix-sort, we can sort input in time�(d(n+ k)) = �(b=r � (n+ 2r))� how to chooser optimally?

– if b < log n, then choosingr = b (d = 1) gives time�(n)
– if b � log n, thenr = blog n gives the best time within a

constant factor:�(bn= log n)
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Assignment Problem 6.5.(deadline: June 17, 5:30pm)

Show how to sortn integers in the range0 to n2 � 1 in O(n) time.

Last modified: Tuesday 10th June, 2008, 22:07 2008 J́an Mǎnuch
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