
SFU CMPT-307 2008-2 1 Lecture: Week 5

SFU CMPT-307 2008-2 Lecture: Week 5

Ján Maňuch

E-mail: jmanuch@sfu.ca

Lecture on June 3, 2008, 5.30pm-8.20pm

Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 2 Lecture: Week 5

Analysis of Randomized-Quicksort

We want to analyseexpected running time

Already have some intuition:

if splits are (more or less) balanced, then good performance

Some observations:� running time is dominated by time spent in Partition()� each time Partition() is called, a pivot is selected� this pivot isnever againincluded in further recursive calls� thus at mostn calls to Partition() overentire execution

Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 3 Lecture: Week 5

Recall the Partition algorithm

Partition (A; p; r)
1: x A[r℄ /* choose a pivotx */

2: i p� 1

3: for j p to r � 1 do
4: if A[j℄ � x then
5: i i+ 1

6: exchangeA[i℄$ A[j℄
7: end if
8: end for
9: exchangeA[i+ 1℄$ A[r℄

10: returni+ 1
2 8 7 1 3 5 6 4

p r

i j

2 8 7 1 3 5 6 4

p r

i j

2 8 7 1 3 5 6 4

p r

i j

2 8 7 1 3 5 6 4

p r

i j

2 1 7 8 3 5 6 4

p r

i j

2 1 3 8 7 5 6 4

p r

i j

2 1 3 8 7 5 6 4

p r

i j

2 1 3 8 7 5 6 4

p r

i

Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 4 Lecture: Week 5

� one call to Partition() takesO(1) plus amount proportional to # of

iterations of the loop� each iteration compares pivot to some other element� thus boundingtotal # of comparisons yields bound ontotal time

spent in loop (which dominates overall running time)

Lemma. LetX be # of comparisons over entire execution onn-element

array. Then running time isO(n+X).
Proof. At mostn calls to partition, each of which� does constant amount of work, and then� executes the loop some # of times

Each iteration of loop performs one comparison

Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 5 Lecture: Week 5

Seems we need to boundX, total # of comparisons

Not going to analyze # of comparison ineachcall to Partition(), but rather

total #

Convenience: rename elements ofA asz1; z2; : : : ; zn with zi beingi-th
smallest element.

LetZij = fzi; zi+1; : : : ; zjg
Question: does algorithm comparezi andzj and how often?

Observation: each pair of elements is comparedat most once
(comparisons only to pivot, and that one never again)

Define random variables

Xij = 8<: 1 zi is compared tozj at some time0 otherwise

Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 6 Lecture: Week 5

Each pair compared at most once, thusX = n�1Xi=1 nXj=i+1Xij

is total # of comparisons during entire run

Interested in expectations:

E[X℄ = E 24n�1Xi=1 nXj=i+1Xij35 = n�1Xi=1 nXj=i+1E[Xij ℄

= n�1Xi=1 nXj=i+1P (zi is compared tozj)
2nd equation is because of linearity of expectation,
3rd becauseXij is so-calledBernoulli (or 0� 1) random variable: by
definition,E[Xij ℄ =Px x � P (Xij = x), and with Bernoulli random
variable we haveE[Xij ℄ = 0 � P (Xij = 0) + 1 � P (Xij = 1) = P (Xij = 1)

Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 7 Lecture: Week 5

So, now we only need to bound the probabilityP (zi is compared tozj)

Let’s do it the other way around: when are theynot compared?� once a pivotx with zi < x < zj is chosen,zi andzj cannot be

compared at any subsequent time (they are in different branches of

the recursion tree)

Note: elements ofZij are (initially) not necessarily in adjacent positions

in (subarray of)A. Could look like[� � � zj � � � zi � � �x � � � ℄
However, after partitioning (givenzi < x < zj)[� � � zi � � � ℄ x [� � � zj � � � ℄

Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 8 Lecture: Week 5

� prior to the point where some element fromZij is chosen, the whole

setZij is together in one partition.� if zi is chosen as a pivotbefore any other item in Zij , then thenzi

will be compared to each item inZij , except itself� similar for zj
Thus,zi andzj are comparedif and only if the first element to be chosen

as a pivot fromZij is eitherzi or zj (again, at this timeZij can be mixed

with other elements)

Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 9 Lecture: Week 5

Example: consider an input[3; 5; 1; 2; 10; 9; 7; 8; 6; 4℄

Assume that the first pivot is7. After the first call to Partition()[3; 5; 1; 2; 4; 6℄ 7 [8; 9; 10℄7 is compared toevery othernumber, but, say,2 will never be compared

to, say,9

Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 10 Lecture: Week 5

Since elements inZij are in the same partition before any of them is

chosen as a pivot, each one has the same probability of being the first one

chosen (among all fromZij).jZij j = j � i+ 1, thus probability that any given element is the first one

chosen as a pivot is1=(j � i+ 1)
Note: This isnot the probability that� a given element is chosen as a pivot during the execution of the

algorithm;� neither that a given element is chosen as a pivot during a (any)

partitioning step;� but it is the probability that a given element is chosen as a pivot

during partitioning in which one of the elements ofZij is chosen as a

pivot.

Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 11 Lecture: Week 5

P (zi is compared tozj)= P (zi or zj is first pivot chosen fromZij)(�)= P (zi is first pivot chosen fromZij) +P (zj is first pivot chosen fromZij)= 1j � i+ 1 + 1j � i+ 1= 2j � i+ 1
(*) follow because the events are mutually exclusive

Now we haveE[X℄ = n�1Xi=1 nXj=i+1P (zi is compared tozj)

= n�1Xi=1 nXj=i+1 2j � i+ 1
Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 12 Lecture: Week 5

Let start by replacingj � i with k:

E[X℄ = n�1Xi=1 nXj=i+1 2j � i+ 1 = n�1Xi=1 n�iXk=1 2k + 1

< n�1Xi=1 n�iXk=1 2k = 2 n�1Xi=1 n�iXk=1 1k< 2 n�1Xi=1 nXk=1 1k = 2 n�1Xi=1 O(log n) = O(n log n)

Harmonic number Hn = 1=1 + 1=2 + : : : 1=n.Hn = lnn+O(1) = �(log n)
Result: Randomized-Partition yields expected (overall) running time of

Quicksort of orderO(n log n)

Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 13 Lecture: Week 5

Assignment Problem 5.1.(deadline: June 10, 5:30pm)

Show that expected running time ofRandomized-Quicksort is
(n log n). In fact it’s enough to show thatE[X℄ =
(n log n).
Hint: From the lecture notes we note that� E[X℄ =Pn�1i=1 Pn�ik=1 2k+1 ; and� Hn � lnn.

Use these two facts to show that for some > 0 andn0, E[X℄ � :n lnn,

for all n � n0.
Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 14 Lecture: Week 5

Note: a difference betweenaverageandexpectedrunning time:� Average running time is the averageover all possible inputs.� Expected running time is, given some input, the average running time

of your randomized algorithm on this inputover all possible random

choices.

Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 15 Lecture: Week 5

Randomized-QuickSort — the first approach� we want to randomly permute the input array� we need to generate a random permutation in reasonable time
(at mostO(n log n), but preferablyO(n))

Permute by sorting

� assign to each element a random priorityP[i℄� sort the array by priorities:
after sorting, ifP[i℄ is thej-th smallest priority, thenA[i℄ will be in
positionj of the output

Example:
initial arrayA = f1; 2; 3; 4g

random prioritiesP = f36; 3; 97; 19g
after sorting by priorities we get permutationA0 = f2; 4; 1; 3g

Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 16 Lecture: Week 5

Permute-By-Sorting(A[1 : : : n℄)

1: for i 1 to n do
2: P[i℄ Random(1; n3)

3: end for
4: sortA usingP as sort keys

5: returnA

the procedure takes
(n log n) time (due to sorting)

with probability at least1� 1=n the keys generated are unique

assume, for simplicity, that the generated keys are unique

we should analyze the algorithm to prove that it generates all possible

permutations of the input withuniform distribution

Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 17 Lecture: Week 5

Analysis.

Fix a permutation� 2 Sn. What is the probability that input will be

permuted according to�?

(A[1℄ will be in position�(1),A[2℄ in position�(2),. . . ,A[n℄ in position�(n))
That is: what’s the probability thatP[i℄ is

the�(i)-th smallest priority for alli?
defineevents, i = 1; : : : ; n,Ei is the event thatP[i℄ is

the�(i)-th smallest priority

That is: what’s the probability that all events occur?P (E1 \E2 \ � � � \En) =?
Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 18 Lecture: Week 5

Assignment Problem 5.2.(deadline: June 10, 5:30pm)

Show by mathematical induction that for anyn and eventsA1; A2; : : : ; An we have the equality:P (A1 \A2 \ � � � \An) =P (A1) � P (A2jA1) � P (A3jA2 \A1) � � �P (AnjAn�1 \ � � � \A2 \A1)
Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 19 Lecture: Week 5

� What is the probabilityP (E1), i.e., thatP[1℄ is the�(1)-th smallest

element?

Since, eachP[i℄ is chosen from the same distribution, each has equal

chance that it’s the�(1)-th smallest (uniform distribution). Hence,P (E1) = 1=n.� What isP (E2jE1), i.e., the probability thatP[2℄ is the�(2)-th
smallest priority under assumption thatP[1℄ is already fixed.n� 1 priorities are not fixed, each of them can be�(2)-th smallest

one. Uniform distribution, again. That is: the probabilitythat it isP[2℄ is 1=(n� 1).� In general, if eventsE1; : : : ; Ei has happened, i.e.,P[1℄; : : : ;P[i℄ are

already fixed thenn� i priorities are not fixed, and each of them can

be�(i+ 1)-th smallest one.P (Ei+1jEi \ : : : E1) = 1=(n� i)
Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 20 Lecture: Week 5

Hence, P (E1 \E2 \ � � � \En) =P (E1) � P (E2jE1) � P (E3jE2 \E1) � � �P (EnjEn�1 \ � � � \E2 \E1)= 1n � 1n� 1 � � � 12 � 11 = 1n!

We have shown that probability that we get a fixed permutationof the

input is1=n!, hence every permutation isequally likely produced — a

uniform distribution .

Note: It’s not enough to show that the probability that elementA[i℄ is

permuted to a positionj is 1=n, i.e., thatP (Ei) = 1=n.

Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 21 Lecture: Week 5

Assignment Problem 5.3.(deadline: June 10, 5:30pm)

Prove that in the arrayP in procedurePermute-By-Sorting, the

probability that all elements (priorities) are unique is exactlynYi=1(1� i� 1n3)

Then prove that this formula is greater than1� 1=n.

Hints:� Define the eventsEi is the event thatP[i℄ is different fromP[1℄; : : : ;P[i� 1℄

In fact, we are looking for probabilityP (E1 \ � � � \En). Use the

same technique as on the lecture, to compute this probability.� For the second part, first show that the product is larger than(1� 1=n2)n and then use Binomial Theorem.

Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 22 Lecture: Week 5

Assignment Problem 5.4.(deadline: June 10, 5:30pm)

Consider the following procedure for generating a uniform random

permutation:

Permute-By-Cyclic(A[1 : : : n℄)
1: offset Random(1; n)
2: for i 1 to n do
3: dest i+ offset
4: if dest > n then
5: dest dest� n
6: end if
7: B[dest℄ A[i℄
8: end for
9: returnB

Show that each elementA[i℄ has a1=n probability of being permuted to

any particular position inB. Is the resulting permutation (of the

procedure) uniformly random?

Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 23 Lecture: Week 5

Faster procedure for permuting

Permute-In-Place(A[1 : : : n℄)
1: for i 1 to n do
2: swapA[i℄$ A[Random(i; n)℄
3: end for
4: returnA

works in linear timeO(n)!
but does it really produce a uniform random permutation?k-permutation — a sequence containingk elements of a set withn

elements

there aren!=(n� k)! possiblek-permutations

Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 24 Lecture: Week 5

loop invariant:� prior to thei-th iteration of the loop on lines 1–3, the subarrayA[1 : : : i� 1℄ contains any of(i� 1)-permutations with probability1n!=(n� i+ 1)! = (n� i+ 1)!=n!
Initialization: prior to the 1st iteration, the subarray is empty;

there is only one0-permutation, the empty sequence, and hence the

probability that the subarray contains the empty sequence is1 = (n� 1 + 1)!=n!
Maintenance: assume that just before thei-th iteration, each possible(i� 1)-permutation appears inA[1 : : : i� 1℄ with probability(n� i+ 1)!=n!

we will show that after thei-th iteration, each possiblei-permutation

appears inA[1 : : : i℄ with probability(n� i)!=n!
Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 25 Lecture: Week 5

Maintenance: (continued)

pick ani-permutationhx1; : : : ; xi�1; xii

consider 2 events:� E1 — the firsti� 1 iterations has produced the(i� 1)-permutationhx1; : : : ; xi�1i in A[1 : : : i� 1℄

by the loop invariant,P (E1) = (n� i+ 1)!=n!� E2 — thei-th iteration puts elementsxi in positionA[i℄

thei-permutationhx1; : : : ; xi�1; xii is placed inA[1 : : : i℄ if and only

if both,E1 andE2 occur
by Assignment 5.2,P (E1 \E2) = P (E1) � P (E2jE1)� P (E2jE1) = 1=(n� i+ 1)P (E1 \E2) = P (E1) � P (E2jE1)= (n� i+ 1)!n! � 1n� i+ 1 = (n� i)!n!

Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 26 Lecture: Week 5

Termination: i = n+ 1, i.e., each possible permutation (=n-permutation) appears inA[1 : : : n℄ with probability1=n!

Hence,Permute-In-Placeproduces a uniform random permutation.

Last modified: Tuesday 3rd June, 2008, 22:16 2008 J́an Mǎnuch

	Analysis of Randomized-Quicksort
	Randomized-QuickSort --- the first approach
	Permute by sorting

	Faster procedure for permuting

