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Analysis of Randomized-Quicksort

We want to analysexpected running time

Already have some intuition:
If splits are (more or less) balanced, then good performance

Some observations:

e running time is dominated by time spent in Partition()

e each time Partition() is called, a pivot is selected

e this pivot isnever againincluded in further recursive calls
e thus at most calls to Partition() oveentire execution
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Recall the Partition algorithm

Partition (A, p, )
1.z + Alr] /* choose a pivot

x */
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e one call to Partition() take®(1) plus amount proportional to # of
iterations of the loop

e each iteration compares pivot to some other element

e thus boundindotal # of comparisons yields bound oéotal time
spent in loop (which dominates overall running time)

Lemma. Let X be # of comparisons over entire executiorvealement
array. Then running time i©(n + X).

Proof. At mostn calls to partition, each of which

e does constant amount of work, and then

e executes the loop some # of times

Each iteration of loop performs one comparison
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Seems we need to bourdd, total # of comparisons

Not going to analyze # of comparisonéachcall to Partition(), but rather
total #

Convenience: rename elementsdbészq, 2o, ..., z, With z; being:-th
smallest element.

Let Zij = {Zi, Zidly ooy Zj}
Question: does algorithm comparg andz; and how often?

Observation: each pair of elements is comparaomost once
(comparisons only to pivot, and that one never again)

Define random variables

X 1 z;Is compared ta; at some time
N 0 otherwise
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Each pair compared at most once, thus
n—1 n
X=2, > X
i=1 j=i+1
IS total # of comparisons during entire run

Interested Iin expectations:

EX] = E Z Z Xij —z_: > ElXy]

1=1 j=1+1 1=1 j=1+1

n_

_ Z Z P(z; is compared ta;)

1=1 7=1+1

2nd equation is because of linearity of expectation,

3rd becauseX;; is so-calledBernoulli (or 0 — 1) random variable: by
definition, E[X;;] = >__ = - P(X;; = z), and with Bernoulli random
variable we have

EXij]=0-P(X;; =0)+1-P(X;;=1)=P(X;; =1)
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So, now we only need to bound the probabiliyz; is compared ta;)

Let’s do it the other way around: when are theyt compared?

e once a pivotr with z; < = < z; IS choseng; andz; cannotbe
compared at any subsequent time (they are in different hesnaof
the recursion tree)

Note: elements ofZ;; are (initially) not necessarily in adjacent positions
In (subarray of)4A. Could look like
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e prior to the point where some element frafy; is chosen, the whole
setZ,; Is together in one partition.

o If 2; IS chosen as a pivditefore any other itemin Z;;, then therg;
will be compared to each item i, ;, except itself

o similar for z;

Thus,z; andz; are compared and only if the first element to be chosen
as a pivot fromz;; Is eitherz; or z; (again, at this time&Z;; can be mixed
with other elements)
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Example: consider an input3, 5,1,2,10,9,7,8, 6, 4]
Assume that the first pivot i After the first call to Partition()

3,5,1,2,4,6] 7[8,9, 10]

7 Is compared t@very other number, but, say2 will never be compared
to, say,9
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Since elements I7;; are in the same partition before any of them is
chosen as a pivot, each one has the same probability of erfgdt one
chosen (among all frord;;).

|Zi;| = j — 1+ 1, thus probability that any given element is the first one
chosen as a pivotis/(j — ¢+ 1)

Note: This isnot the probability that

e agiven element is chosen as a pivot during the executioneof th
algorithm;

e neither that a given element is chosen as a pivot during g (any
partitioning step;

e butitis the probability that a given element is chosen as a pivot
during partitioning in which one of the elements4f; is chosen as a
pivot.
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P(z; is compared ta;)

= P(z; or z; is first pivot chosen fron¥; )

*) P(z; is first pivot chosen fron¥; ;) +

P(z; is first pivot chosen fron¥; ;)

1 1
T irl it
B 2

i1

(*) follow because the events are mutually exclusive

Now we have

n—1 n
E[X] = ) Y P(ziscompared ta;)
i=1 j=i+1
n—1 n 9
i=1 j=i+1 j—r+l
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Let start by replacing — ¢ with k:

E[X] = 2
;J;lj—z—l—l i:z“;k—l—l
n—1n—1 n—1n— 7,1
DI IELI ) -
1=1 k=1 1=1 k=1
n—1 n
< QZZ —ZZOlogn O(nlogn)
1=1 k=1

Harmonic number H,, =1/1+1/2+...1/n.

H,=Inn+ O(1) = 0(logn)

Result: Randomized-Partition yields expected (overall) runningetof
Quicksort of ordeiO(n log n)
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Assignment Problem 5.1.(deadline: June 10, 5:30pm)
Show that expected running time RAndomized-Quicksortis
Q(nlogn). In fact it's enough to show that | X| = Q(nlogn).

Hint: From the lecture notes we note that

E[X] =70 Y501 55 and

e H, > Inn.

Use these two facts to show that for soae 0 andng, E[X]| > c.nlnn,
for all n > nyg.
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Note: a difference betweeaverageandexpectedrunning time:
e Average running time is the averager all possible inputs.

e EXxpected running time is, given some input, the averageingrirme

of your randomized algorithm on this inpoer all possible random
choices.
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Randomized-QuickSort — the first approach

e We want to randomly permute the input array

e We need to generate a random permutation in reasonable time
(at mostO(n log n), but preferablyO(n))

Permute by sorting

e assign to each element a random priofty|

e sort the array by priorities:
after sorting, ifP|i] is thej-th smallest priority, ther [7] will be in
positionj of the output

Example:
initial array A = {1, 2, 3,4}
random priorities? = {36, 3,97, 19}
after sorting by priorities we get permutation
A'=1{2,4,1,3}
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Permute-By-Sorting(A[1...n])

1: for s + 1ton do

2. Pli] + Random(1, n?)
3: end for

4. sort A usingP as sort keys
5. returnA

the procedure take3(n logn) time (due to sorting)
with probability at leasit — 1/n the keys generated are unique
assume, for simplicity, that the generated keys are unique

we should analyze the algorithm to prove that it generatgsoakible
permutations of the input witbhniform distribution
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Analysis.

Fix a permutationr € 5,,. What is the probability that input will be
permuted according te?

(A[1] will be in positionz(1),

A[2] in positionr(2),. . .,

Aln] in position(n))

That is: what's the probability thaP|:] is

thex(7)-th smallest priority for alk?

defineevents: =1, ..., n,

E; is the event thaP[i] is
the 7 (7)-th smallest priority

That is. what's the probability that all events occur?
P(E:NEyN---NE,) ="

Last modified: Tuesday®June, 2008, 22:16 2008 &n Maiuch



SFU CMPT-307 2008-2 18 Lecture: Week 5

Assignment Problem 5.2.(deadline: June 10, 5:30pm)
Show by mathematical induction that for anyand events
A, Ao, ..., A, we have the equality:

P(AiNAyN---NA,) =
P(Ay) - P(A3|Ay) - P(A3]A2 N Ay) -+
P(Au|An_1N--NAyN A
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e What is the probability?(F4 ), i.e., thatP[1] is then(1)-th smallest
element?
Since, eaclP|:] is chosen from the same distribution, each has equal
chance that it's the(1)-th smallest (uniform distribution). Hence,
P(E1) =1/n.

e WhatisP(FEs|FE,), i.e., the probability thaP|2] is then(2)-th
smallest priority under assumption thafl| is already fixed.
n — 1 priorities are not fixed, each of them can@)-th smallest
one. Uniform distribution, again. That is: the probabilitat it is
P2]isl/(n—1).

e In general, if eventdsy, ..., E; has happened, i.65(1],...,P[:] are
already fixed them — ¢ priorities are not fixed, and each of them can
ben (i + 1)-th smallest one.
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Hence,

P(E;NE;N---NE,) =
P(E:) - P(Es|E1) - P(E3|Es N Ey) - -
P(Ey|Ep_1N---NEyN Ey)
11 11 1

n n—1 2 1 nl

We have shown that probability that we get a fixed permutadfdhe
iInput is1/n!, hence every permutationésually likely produced — a
uniform distribution .

Note: It's not enough to show that the probability that elemdnd is
permuted to a positiopis 1/n, i.e., thatP(E;) = 1/n.
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Assignment Problem 5.3.(deadline: June 10, 5:30pm)
Prove that in the arraf in procedurd’ermute-By-Sorting, the
probability that all elements (priorities) are unique Iaety

Then prove that this formula is greater thianr 1 /n.

Hints;

e Define the events
E; is the event thaP|i] is different fromP[1],..., Pt — 1]

In fact, we are looking for probability’(E1 N --- N E,). Use the
same technigue as on the lecture, to compute this prolyabilit

e For the second part, first show that the product is larger than
(1 —1/n*)™ and then use Binomial Theorem.
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Assignment Problem 5.4.(deadline: June 10, 5:30pm)
Consider the following procedure for generating a unifoamdom
permutation:

Permute-By-Cyclic(A[l ... n])
1. of fset < Random(1,n)

2: fori < 1ton do
3: dest<— 1+ of fset

4: If dest > n then

5: dest < dest — n
6: endif

7. Bldest] + Ali]

8: end for

9: returnB

Show that each elementt:] has al /n probability of being permuted to
any particular position irB. Is the resulting permutation (of the
procedure) uniformly random?
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Faster procedure for permuting

Permute-In-Placg A[l ... n])

1: for 1 + 1ton do
2:  swapAl[i] < A[Random(z, n)]
3: end for
4: returnA

works in linear timeOD(n)!

but does it really produce a uniform random permutation?

k-permutation — a sequence containirigelements of a set with
elements

there aren!/(n — k)! possiblek-permutations
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loop invariant:

e prior to the:-th iteration of the loop on lines 1-3, the subarray
A[l...7 — 1] contains any of: — 1)-permutations with probability

1 .
ey AR U

Initialization: prior to the 1st iteration, the subarray is empty;
there is only on@-permutation, the empty sequence, and hence the
probability that the subarray contains the empty sequence |
l=(n—-1+1)!/n!

Maintenance: assume that just before thwh iteration, each possible
(¢ — 1)-permutation appears iA[1...: — 1] with probability
(n—1+ 1)!/n!
we will show that after the-th iteration, each possibtepermutation
appears i |1 ... 4] with probability (n — i)! /n!
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Maintenance: (continued)
pick an:-permutationzy, ..., x; 1, ;)
consider 2 events:
e F; —the first: — 1 iterations has produced the
(¢ — 1)-permutationxy, ..., x;—1) IN A[1...7 — 1]
by the loop invariantP(F1) = (n — i + 1)!/n!
e F, —thei-th iteration puts elements; in position A|:]
thes-permutation(zy, ..., x;_1,x;) is placed inA[1 .. .<] if and only
If both, £; and E5 occur
by Assignment 5.2,

P(E1 N Es) = P(E,) - P(Es|E1)
o P(Es|Er) =1/(n—1i+1)

P(E1 N Es) = P(E,) - P(Es|E1)

(n—i+ 1)! 1 ~ (n—a)!
n! n—i+1  nl
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Termination: : =n + 1, I.e., each possible permutation (=
n-permutation) appears id|1 . . . n] with probability 1 /n!

Hence Permute-In-Placeproduces a uniform random permutation.
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