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Performance of Quicksort

the running time depends on how balanced or unbalanced theqes
are;

and this depends on the choice of pivots

Intuitively, if partitions arebalanced
then as in case of Mergesort,
the running time iSO (nlog n);

If they are veryunbalanced
It can run as slow as Selection-Sort
and the running time i€ (n?)
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The worst case partitioning

occurs when one partition has— 1 elements and the other is empty (
elements)
assume that such a partitioning happens in each recurdion ca

recursive call to empty array just returns the control badkch takes
T(0) = O(1) time, so we get the recurrence for the running time:
T(n)=T(n—-1)+1T(0) + O(n)
=T(n—1)+ 0O(n)
which is the sum of arithmetic series=
T(n) = ©(n?)

Note: this bad partitioning can really happen (see assignmemd)sa we
get the lower bound for the worst running tirfi¢n?)

on the other hand we will prove the same upper bound
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Assignment Problem 4.1.(deadline: June 3, 5:30pm)

Show that the running time of tHeuicksort presented at the lecture is
©(n?) when the elements of the arralyare distinct and sorted

(a) in increasing order;

(b) in decreasing order.
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Worst-case performance

Let 7'(n) be the worst-case running time on input of sizelhen

T(n) < max (T(g)+T(n—q—1))+dn

e dn € O(n) is some upper bound for the time needed for partitioning
e we take the worst of all possible partitioning in each step

We guesd'(n) < cn? for some constant.

Inductive step:
< — -
T(n) 0§%§—1 (T(q)+T(n—q—1)) +dn

< 2 —qg—1)?
< Jmex (cg® + c(n—q—1)°) +dn

2 2
. R R d
C <m<axl(q —|—(n q l))—|— n
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Consider the functiod'(¢) = ¢* + (n — ¢ — 1) in the range
0<qg<n-—1:

10000 I I T T T T

| 2+(100-x-1)2

9500

9000

8500

8000

7500

7000

6500

6000

5500

5000

4500 ] ] ] ] ] ] ] ] ]
0 10 20 30 40 50 60 70 80 90

Last modified: Tuesday 37May, 2008, 22:05 2008 &n Maiuch



SFU CMPT-307 2008-2 7 Lecture: Week 4

This is a quadratic function with the minimum @t — 1) /2, and so the
expression is maximized when=0orqg =n — 1.

This implies
Ftn—g-12<(m—-17%+n—(n-1) -1

(n—1)7

n? —2n+1

and therefore

< .. 2 12
T(n) <c ogrélgz(—l(q +(n—q—1)°) +dn

<c-(n*—=2n+1)+dn
=cn®— (2c—d)n+c

< cn?

forec>d
Hence, the worst-case running time@iicksort is © (n?).
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The best case partitioning

occurs when partitioning is even:
one partition has sizen /2| and the othefn /2| — 1

(that is for oddn, both have the same size, and for ewgithey differ by
1)

we get the recurrence:
T(n) =2T(n/2) + 6(n)

which has the solutioff’(n) = ©(nlogn)
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Assignment Problem 4.2.(deadline: June 3, 5:30pm)
Show that the best-case running timeQficksort is 2(n logn), i.e.,
show that the recurrence

T(n) 2 min (T(g)+T(n—q-1))+dn

ISinQ(nlogn).

Hint: You can use the fact that the function
f(x) =xlogz + (n — 1 — x)log(n — 1 — z) achieves its global
minimum at pointz = (n — 1) /2.
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The average case partitioning (intuition)

assume that in every recursive step one partition has:gireé and the
other9n /10 (which seems as a quite unbalanced partitioning)
then we get the recurrence:

T(n)=T(9In/10) +T(n/10) + O(n)

building the recursion tree shows that we are stilifr. log n)

In fact the same is true for any constant factor partition!
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Efficient implementation

1. optimal procedures for sorting at the bottom of recursion

2. pick the pivots so that we gevenpartitions of subarrayd|(p. .. r|
Into two smaller subarrays

how to modify Partition ?

if we pick A[q] as a pivot instead ofl|r], we just swapd|q] and A|r|
before step 1 of proceduRartition (A, p, r)

how to pick a better pivot?

There are several not-too-bad ways:
e look at, sayp fixed array elements and pick the median
e pick arandomly chosenelement

e look at, sayb randomly chosenelements and pick the median
e mMany more
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In practice, the randomized variant usually works the best

Why randomized strategy?

some of inputs (for example, if the input is sorted or almostexl) have a
bad performance

In practical applications it often happens that the inputsnt
completely random, so even if our algorithm performs gooaverage,

some application might prefer the inputs with the worstegasrformance
Example.

e transactions on an account are usually kept in order of timegs

e people usually write checks in order by check number, but Hre
cashed with some delays

e many people want the checks listed in order by check numleacé
we have to convert time-of-transaction ordering to chegkiber or-
dering

e this is sorting of nearly sorted input, which performs vepdly in
Quicksort we have considered
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Solution.

To sort nearly ordered inputs @(n log n) time usingQuicksort it's
enough to choose a pivet= A|[(p + r)/2] from the middle of subarray
Alp...r].

However, one could design inputs on which this modificatibn o
Quicksort would perform badly.

what should we do to avoid the worst-case inputs?
use randomization!

Basically, two ways:

1. permute the input randomly before running standard orrsf
Quicksort

2. leave the input as it is, but use some random pivot-selestrategy
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Properties of randomized algorithms

e each time we run the algorithm on the same input, the exatutio
depends on the random choices and is likely different froen th
previous execution

e NO particular input shows the worst-case performance

e it can still happen that during a single run of the randomized
algorithm it performs badly
If the random generator produces “unlucky” numbers:

— In the 1st approach it would permute input so that it’s (althos
sorted in increasing order (“bad input”)

— In the 2nd approach it would choose pivots so that it’'s alwhgs
minimal or the maximal element of the subarray (“worst-case
partitioning”)

but it can happen only with a very small probability
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Randomized Quicksort

we will consider the 2nd approach above, calladdom sampling

In the original procedure, we have partition the subadgy. . . | using
the right-most elememd|r] as a pivot.

Now, we will use aandomly chosenelement fromA[p ... r]:

1. pickanindex: € {p,...,r} independently on other choices and
uniformly at random
2. exchanged|z] <+ A|r]

3. run the original procedureartition
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Randomized-Partition( A, p, r)
1: z < Randonip, r)
2: exchanged[z] « Alr]
3: return PartitionA, p, r)

Note: procedur&andom(a, b) returns an integer from the set
{a,a+1,...,b—1,b} each with the same probability' (b — a + 1)
(“uniform distribution”)

Randomized-Quicksor{ A4, p, 1)
1. If p < rthen
2:  q + Randomized-PartitiaM, p, r)
3:  Randomized-Quicksq, p, ¢ — 1)
4.  Randomized-Quicksqd, g + 1,7)
5. end if

Before we can start analyzing performancdraeindomized-Quicksort
we need to recall basics pfobability theory
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Probability

Defined in terms of @robability space or sample spaces (or €2), aset
whose elements € S (orw € () are callecelementary events

you can view elementary events as possible outcomes of amimgnt.
Examples

e flip acoin: S = {headtail}

e rolladie: S ={1,2,3,4,5,6}

e pick a random pivotiM|p...,r]:
S ={p,p+1,...,r}—indexes of the pivot

Here, we are talking only abofinhite discrete probability spaces.
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An eventis a subset of the probability space

Examples

e rolladie;A={2,4,6} C {1,2,3,4,5,6} is the event of having an
even outcome

e flip two distinguishable coins:
S={HH,HT, TH,TT},andA = {TT,HH} C S is the event of
having the same outcome with both coins

We sayS (the entire sample space) igartain event and() is theempty
or null event

We say eventsl and B aremutually exclusiveif AN B = ()
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AXioms

A probability distribution P() on S is mapping from events f to real
numbers in interval0, 1] such that

1. P(A) >0forallAC S

2. P(S) =1 (normalization)

3. P(A) + P(B) = P(A U B) for any twomutually exclusive events
AandB,i.e.,ANB = .

Generalization: for any finite sequence of pairwise muyuall
exclusive eventsl;, A-, . ..

pe)-pe

P(A) is calledprobability of eventA
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Properties of probability that that follows from axioms:

1. P(@)=0

2. If A C BthenP(A) < P(B)

3. WithA =5 — A, we haveP(A) = P(S) — P(A) =1 — P(A)
4. For anyA and B (not necessarily mutually exclusive),

P(AuB) = P(A)+P(B)—P(ANB)
< P(A)+ P(B)

Considering discrete sample spaces, we have for any dvent

P(A)=) P(s)

secA

If S'is finite, andP(s € §) = 1/|.5|, then we haveiniform probability
distribution on S (that’s what'’s usually referred to as “picking an
element ofS at random”)
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Conditional probabilities

when you already have partial knowledge

Example: a friend rolls two fair dice (prob. space is
{(x,y): =,y € {1,...,6}}) and tells you that one of them shows§.a
What's the probability for &6, 6) outcome?

The information eliminates outcomes without ahy.e., all combinations
of 1 through5. There are5? = 25 of them. The original prob. space has
size6? = 36, thus we are left witl36 — 25 = 11 outcomes where at least
oneoé is involved.

These are equally likely, thus the sought probability mest A 1.

Theconditional probability of an eventd given that another everi#

OCCUrS IS
(AN B)

P(B)

PAB) ="

givenP(B) # 0
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In the example:

A = {(6,6)}
B = {6,z):x€{l,...,6}} U
{(z,6) :xz€{1,...,6}}
with |B| = 11 (the (6, 6) is in both parts) and thus
P(ANB) = P({(6,6)}) =1/36 and

_ P(AnB) 1/36 1
P(A|B) = P(B) — 11/36 11
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Independence

We say two events atiadependentif
P(ANnB)=P(A)-P(B)
which is equivalent to (i (B) # 0) to

pAB) Y L (1;4(;;5’) _P “2 ('l;(m — P(A)

EventsA,, A,, ..., A, arepairwise independentif
P(A; N Aj) = P(A;) - P(4))
foralll <:<j <n.

They are(mutually) independentif every k-subset4; ..., A
2<k<nandl <i; <ig9 <--- <1 <n satisfies

ik

P(A;, N---NA;) =P(A;,) - P(A;,)
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Example: Throw two fair dice, one green and one red.

Consider 2 events:

e A: the event that their sumis P(A) = |A|/36 =6/36 =1/6
e B: the event that the red die shows an even numBeR) = 1/2

Are they independent?

P(ANB) = P({(1,6),(3,4), (5,2)}) = 3/36 = 1/12

Test for independence

P(AHB):T;:%-%: (A)- P(B)

Therefore, the events are independent.
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Assignment Problem 4.3.(deadline: June 3, 5:30pm)

Consider a probability space= {1, 2, ..., 8} (outcome of a throw of
8-sided die). Find and example of three evehis3, C' of S such that
A, B, C are pairwise independent, but evedtand B N C are not (i.e.
P(A)-P(BNC)#P(ANnBNCQ()).
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Random variables

A random variable X is a function from a probability spaceto the set
of real numbers, i.e., it assigns some value to elementamnytev

Event “X = z”is definedtobegls € S: X(s) =z}
Example: roll three dice
o S = {S = (81,82,83) ‘ S1,82,83 € {1,2,,6}}
S| = 63 = 216 possible outcomes

e Uniform distribution: each element has probability S| = 1/216

e Let random variableX be the sum of dice, i.e.,
X(S) = X(Sl,Sz,Sg) = 81 + S + S3

Last modified: Tuesday 37May, 2008, 22:05 2008 &n Maiuch



SFU CMPT-307 2008-2

27

Lecture: Week 4

P(X =7) =15/216 because

115
124
133
142
151

214
223
232
241

313 412 511
322 421
331

Important: With a random variabl&', writing P(X ) doesnot make any

Sense,

P(X = something does (because it's apveny

Clearly, P(X =) > 0and)__ P(X = x) = 1 (from probability

axioms)
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If X andY are random variables théA(X = x andY = y) is called
joint probabillity distribution of X andY'.

P(Y=y) = Y P(X=zandY =y)

P(X=12) = )Y P(X=zandY =y)
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Independence of random variables

Random variableX, Y areindependentif for all x, y, events X = z”
and Y = y” are independent

Recall: eventsA and B are independent itP(A N B) = P(A) - P(B).
Now: X, Y are independent iff for alt, v,

P( X =xandY =y)=P(X =z)-P(Y =y)

Intuition:
A = [X=1z]=|X=zandY =7]
B = Y =y]=[X="andY =y]
ANB := [X =zandY =y]
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Expected values of random variables

Also calledexpectationsor means

Given a random variablg, its expected value is

EX]=) =z P(X =u)

Well-defined if sum is finite or converges absolutely
Sometimes writtem x (or w4 if context is clear)
Example: roll a fair six-sided die, lefX denote expected outcome
E[X] = 1-1/6+2-1/6+3-1/6+
4-1/64+5-1/6+6-1/6
= 1/6-(1+2+34+4+5+6)
= 1/6-21
= 3.5
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Another example: flip three fair coins

For each head you win $4, for each tail you lose $3

Let a random variabl& denote your profit. Then the probability space is
{HHH,HHT,HTH, THH,HTT,THT,TTH,TTT}

and

E[X] = 12-P(3H)+5- P(2H) —
—2-P(1H) — 9 - P(OH)

— 12-1/8+5-3/8—2-3/8—9-1/8
12415-6-9 12

1.5
8 8

which is intuitively clear: each single coin contributesexipected win of
0.5
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Linearity of expectations

Important:
EX +Y|=FE|X|+ E|Y]

wheneverE | X | and E[Y| are defined

True even ifX andY arenot independent
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Exercise 4.1.Roll three 6-sided dice. Consider the following two
random variables:

X =the sum of dice

Y =the difference between the die with the maximal outcometheadilie
with the minimal outcome

(a) Find out whetheX andY are independent.

(b) Find expected values d&f andY'.
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Some more properties

Given random variableX andY with expectations, a constadmt

o FlaX]|=aF|X]
(note:a X Is a random variable)

e for constants, b,
ElaX +bY| =FElaX|+ EbY|=a-E[X]|+b-E|Y]
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o If XY Iindependent then

EIXY] = ) z2P(XY =2)
= Z ) 2P(X =z andY =y)
- XS sanay <
= ZzwyP )P(Y = y)

_ (; rP(X = x)) (%: yP(Y = y))

—  E[X|E[Y]
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