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Performance of Quicksort

the running time depends on how balanced or unbalanced the partitions

are;

and this depends on the choice of pivots

intuitively, if partitions arebalanced,
then as in case of Mergesort,

the running time isO(n log n);
if they are veryunbalanced,
it can run as slow as Selection-Sort

and the running time is
(n2)
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The worst case partitioning

occurs when one partition hasn� 1 elements and the other is empty (0

elements)

assume that such a partitioning happens in each recursion call

recursive call to empty array just returns the control back,which takesT (0) = O(1) time, so we get the recurrence for the running time:T (n) = T (n� 1) + T (0) + �(n)= T (n� 1) + �(n)
which is the sum of arithmetic series=)T (n) = �(n2)

Note: this bad partitioning can really happen (see assignment), and so we

get the lower bound for the worst running time
(n2)
on the other hand we will prove the same upper bound
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Assignment Problem 4.1.(deadline: June 3, 5:30pm)

Show that the running time of theQuicksort presented at the lecture is�(n2) when the elements of the arrayA are distinct and sorted

(a) in increasing order;

(b) in decreasing order.
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Worst-case performance

Let T (n) be the worst-case running time on input of sizen. Then

T (n) � max0�q�n�1 (T (q) + T (n� q � 1)) + dn� dn 2 �(n) is some upper bound for the time needed for partitioning� we take the worst of all possible partitioning in each step

We guessT (n) � n2 for some constant.
Inductive step:T (n) � max0�q�n�1 (T (q) + T (n� q � 1)) + dn� max0�q�n�1 �q2 + (n� q � 1)2�+ dn=  � max0�q�n�1 �q2 + (n� q � 1)2�+ dn
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Consider the functionF (q) = q2 + (n� q � 1)2 in the range0 � q � n� 1:
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SFU CMPT-307 2008-2 7 Lecture: Week 4

This is a quadratic function with the minimum at(n� 1)=2, and so the
expression is maximized whenq = 0 or q = n� 1.

This impliesq2 + (n� q � 1)2 � (n� 1)2 + [n� (n� 1)� 1℄2= (n� 1)2= n2 � 2n+ 1
and thereforeT (n) �  � max0�q�n�1 �q2 + (n� q � 1)2�+ dn�  � (n2 � 2n+ 1) + dn= n2 � (2� d)n+ � n2

for  � d

Hence, the worst-case running time ofQuicksort is�(n2).
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The best case partitioning

occurs when partitioning is even:

one partition has sizebn=2 and the otherdn=2e � 1

(that is for oddn, both have the same size, and for evenn, they differ by1)

we get the recurrence:T (n) = 2T (n=2) + �(n)
which has the solutionT (n) = �(n log n)
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Assignment Problem 4.2.(deadline: June 3, 5:30pm)

Show that the best-case running time ofQuicksort is
(n log n), i.e.,

show that the recurrenceT (n) � min0�q�n�1 (T (q) + T (n� q � 1)) + dn

is in
(n log n).
Hint: You can use the fact that the functionf(x) = x log x+ (n� 1� x) log(n� 1� x) achieves its global

minimum at pointx = (n� 1)=2.
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SFU CMPT-307 2008-2 10 Lecture: Week 4

The average case partitioning (intuition)

assume that in every recursive step one partition has sizen=10 and the

other9n=10 (which seems as a quite unbalanced partitioning)

then we get the recurrence:T (n) = T (9n=10) + T (n=10) + �(n)
building the recursion tree shows that we are still inO(n log n)

In fact the same is true for any constant factor partition!
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Efficient implementation

1. optimal procedures for sorting at the bottom of recursion

2. pick the pivots so that we getevenpartitions of subarraysA[p : : : r℄

into two smaller subarrays

how to modify Partition ?

if we pickA[q℄ as a pivot instead ofA[r℄, we just swapA[q℄ andA[r℄

before step 1 of procedurePartition (A; p; r)
how to pick a better pivot?

There are several not-too-bad ways:� look at, say,5 fixed array elements and pick the median� pick arandomly chosenelement� look at, say5 randomly chosenelements and pick the median� many more
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in practice, the randomized variant usually works the best

Why randomized strategy?

some of inputs (for example, if the input is sorted or almost sorted) have a
bad performance

in practical applications it often happens that the inputs are not
completely random, so even if our algorithm performs good inaverage,
some application might prefer the inputs with the worst-case performance
Example.� transactions on an account are usually kept in order of theirtimes� people usually write checks in order by check number, but they are

cashed with some delays� many people want the checks listed in order by check number, hence

we have to convert time-of-transaction ordering to check-number or-

dering� this is sorting of nearly sorted input, which performs very badly in

Quicksort we have considered
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Solution.
To sort nearly ordered inputs in�(n log n) time usingQuicksort it’s

enough to choose a pivotx = A[(p+ r)=2℄ from the middle of subarrayA[p : : : r℄.
However, one could design inputs on which this modification of

Quicksort would perform badly.

what should we do to avoid the worst-case inputs?

use randomization!

Basically, two ways:

1. permute the input randomly before running standard version of

Quicksort

2. leave the input as it is, but use some random pivot-selection strategy
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Properties of randomized algorithms
� each time we run the algorithm on the same input, the execution

depends on the random choices and is likely different from the

previous execution� no particular input shows the worst-case performance� it can still happen that during a single run of the randomized

algorithm it performs badly

if the random generator produces “unlucky” numbers:

– in the 1st approach it would permute input so that it’s (almost)

sorted in increasing order (“bad input”)

– in the 2nd approach it would choose pivots so that it’s alwaysthe

minimal or the maximal element of the subarray (“worst-case

partitioning”)

but it can happen only with a very small probability
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Randomized Quicksort

we will consider the 2nd approach above, calledrandom sampling

In the original procedure, we have partition the subarrayA[p : : : r℄ using

the right-most elementA[r℄ as a pivot.

Now, we will use arandomly chosenelement fromA[p : : : r℄:
1. pick an indexz 2 fp; : : : ; rg independently on other choices and

uniformly at random

2. exchangeA[z℄$ A[r℄

3. run the original procedurePartition
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Randomized-Partition(A; p; r)

1: z  Random(p; r)
2: exchangeA[z℄$ A[r℄
3: return Partition(A; p; r)

Note: procedureRandom(a; b) returns an integer from the setfa; a+ 1; : : : ; b� 1; bg each with the same probability1=(b� a+ 1)

(“uniform distribution”)

Randomized-Quicksort(A; p; r)
1: if p < r then
2: q  Randomized-Partition(A; p; r)
3: Randomized-Quicksort(A; p; q � 1)
4: Randomized-Quicksort(A; q + 1; r)
5: end if

Before we can start analyzing performance ofRandomized-Quicksort
we need to recall basics ofprobability theory
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Probability

Defined in terms of aprobability spaceor sample spaceS (or 
), aset
whose elementss 2 S (or ! 2 
) are calledelementary events.

you can view elementary events as possible outcomes of an experiment.

Examples:� flip a coin:S = fhead; tailg� roll a die:S = f1; 2; 3; 4; 5; 6g� pick a random pivot inA[p : : : ; r℄:S = fp; p+ 1; : : : ; rg – indexes of the pivot

Here, we are talking only aboutfinite discrete probability spaces.
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An event is a subset of the probability space

Examples:� roll a die;A = f2; 4; 6g � f1; 2; 3; 4; 5; 6g is the event of having an

even outcome� flip two distinguishable coins:S = fHH;HT; TH; TTg, andA = fTT;HHg � S is the event of

having the same outcome with both coins

We sayS (the entire sample space) is acertain event, and; is theempty
or null event

We say eventsA andB aremutually exclusive if A \B = ;
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Axioms

A probability distribution P () onS is mapping from events ofS to real

numbers in interval[0; 1℄ such that

1. P (A) � 0 for all A � S
2. P (S) = 1 (normalization)

3. P (A) + P (B) = P (A [B) for any twomutually exclusiveeventsA andB, i.e.,A \B = ;.
Generalization: for any finite sequence of pairwise mutually

exclusive eventsA1; A2; : : :P  [i Ai! =Xi P (Ai)

P (A) is calledprobability of eventA
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Properties of probability that that follows from axioms:

1. P (;) = 0
2. If A � B thenP (A) � P (B)

3. With �A = S �A, we haveP ( �A) = P (S)� P (A) = 1� P (A)

4. For anyA andB (not necessarily mutually exclusive),P (A [B) = P (A) + P (B)� P (A \B)� P (A) + P (B)
Considering discrete sample spaces, we have for any eventAP (A) =Xs2AP (s)
If S is finite, andP (s 2 S) = 1=jSj, then we haveuniform probability
distribution onS (that’s what’s usually referred to as “picking an

element ofS at random”)
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Conditional probabilities

when you already have partial knowledge

Example: a friend rolls two fair dice (prob. space isf(x; y) : x; y 2 f1; : : : ; 6gg) and tells you that one of them shows a6.
What’s the probability for a(6; 6) outcome?

The information eliminates outcomes without any6, i.e., all combinations
of 1 through5. There are52 = 25 of them. The original prob. space has
size62 = 36, thus we are left with36� 25 = 11 outcomes where at least
one6 is involved.

These are equally likely, thus the sought probability must be1=11.

Theconditional probability of an eventA given that another eventB

occurs is P (AjB) = P (A \B)P (B)
givenP (B) 6= 0
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S

A B

In the example: A = f(6; 6)gB = f(6; x) : x 2 f1; : : : ; 6gg [f(x; 6) : x 2 f1; : : : ; 6gg
with jBj = 11 (the(6; 6) is in both parts) and thusP (A \B) = P (f(6; 6)g) = 1=36 andP (AjB) = P (A \B)P (B) = 1=3611=36 = 111
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Independence

We say two events areindependentifP (A \B) = P (A) � P (B)

which is equivalent to (ifP (B) 6= 0) toP (AjB) def= P (A \B)P (B) = P (A) � P (B)P (B) = P (A)

EventsA1; A2; : : : ; An arepairwise independentifP (Ai \Aj) = P (Ai) � P (Aj)
for all 1 � i < j � n.

They are(mutually) independent if everyk-subsetAi1 ; : : : ; Aik ,2 � k � n and1 � i1 < i2 < � � � < ik � n satisfiesP (Ai1 \ � � � \Aik) = P (Ai1) � � �P (Aik)
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Example: Throw two fair dice, one green and one red.

Consider 2 events:� A: the event that their sum is 7;P (A) = jAj=36 = 6=36 = 1=6� B: the event that the red die shows an even number;P (B) = 1=2

Are they independent?P (A \B) = P (f(1; 6); (3; 4); (5; 2)g) = 3=36 = 1=12

Test for independence P (A \B) = P (A)P (B) ?P (A \B) = 112 = 16 � 12 = P (A) � P (B)
Therefore, the events are independent.
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Assignment Problem 4.3.(deadline: June 3, 5:30pm)

Consider a probability spaceS = f1; 2; : : : ; 8g (outcome of a throw of

8-sided die). Find and example of three eventsA;B;C of S such thatA;B;C are pairwise independent, but eventsA andB \ C are not (i.e.P (A) � P (B \ C) 6= P (A \B \ C)).

Last modified: Tuesday 27th May, 2008, 22:05 2008 J́an Mǎnuch



SFU CMPT-307 2008-2 26 Lecture: Week 4

Random variables

A random variable X is a function from a probability spaceS to the set

of real numbers, i.e., it assigns some value to elementary events

Event “X = x” is defined to befs 2 S : X(s) = xg

Example: roll three dice� S = fs = (s1; s2; s3) j s1; s2; s3 2 f1; 2; : : : ; 6ggjSj = 63 = 216 possible outcomes� Uniform distribution: each element has probability1=jSj = 1=216� Let random variableX be the sum of dice, i.e.,X(s) = X(s1; s2; s3) = s1 + s2 + s3
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P (X = 7) = 15=216 because115 214 313 412 511124 223 322 421133 232 331142 241151
Important: With a random variableX, writing P (X) doesnot make any

sense;P (X = something) does, (because it’s anevent)

Clearly,P (X = x) � 0 and

Px P (X = x) = 1 (from probability

axioms)
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If X andY are random variables thenP (X = x andY = y) is called

joint probability distribution of X andY .P (Y = y) = Xx P (X = x andY = y)P (X = x) = Xy P (X = x andY = y)
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Independence of random variables

Random variablesX;Y areindependentif for all x; y, events “X = x”

and “Y = y” are independent

Recall: eventsA andB are independent iffP (A \B) = P (A) � P (B).
Now: X;Y are independent iff for allx; y,P (X = x andY = y) = P (X = x) � P (Y = y)

Intuition: A := [X = x℄ = [X = x andY =?℄B := [Y = y℄ = [X =? andY = y℄

A \B := [X = x andY = y℄
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Expected values of random variables

Also calledexpectationsor means

Given a random variableX, its expected value isE[X℄ =Xx x � P (X = x)

Well-defined if sum is finite or converges absolutely

Sometimes written�X (or � if context is clear)

Example: roll a fair six-sided die, letX denote expected outcomeE[X℄ = 1 � 1=6 + 2 � 1=6 + 3 � 1=6 +4 � 1=6 + 5 � 1=6 + 6 � 1=6= 1=6 � (1 + 2 + 3 + 4 + 5 + 6)= 1=6 � 21= 3:5
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Another example: flip three fair coins

For each head you win $4, for each tail you lose $3

Let a random variableX denote your profit. Then the probability space isfHHH,HHT,HTH,THH,HTT,THT,TTH,TTTg

and E[X℄ = 12 � P (3H) + 5 � P (2H)��2 � P (1H)� 9 � P (0H)= 12 � 1=8 + 5 � 3=8� 2 � 3=8� 9 � 1=8= 12 + 15� 6� 98 = 128 = 1:5
which is intuitively clear: each single coin contributes anexpected win of0:5
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Linearity of expectations

Important: E[X + Y ℄ = E[X℄ + E[Y ℄
wheneverE[X℄ andE[Y ℄ are defined

True even ifX andY arenot independent
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Exercise 4.1.Roll three 6-sided dice. Consider the following two

random variables:X = the sum of diceY = the difference between the die with the maximal outcome andthe die

with the minimal outcome

(a) Find out whetherX andY are independent.

(b) Find expected values ofX andY .
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Some more properties

Given random variablesX andY with expectations, a constanta� E[aX℄ = aE[X℄
(note:aX is a random variable)� for constantsa; b,E[aX + bY ℄ = E[aX℄ +E[bY ℄ = a �E[X℄ + b �E[Y ℄
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� if X;Y independent, thenE[XY ℄ = Xz zP (XY = z)= Xz Xxy=z zP (X = x andY = y)= Xx Xy xyP (X = x andY = y)= Xx Xy xyP (X = x)P (Y = y)

=  Xx xP (X = x)! Xy yP (Y = y)!= E[X℄E[Y ℄
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