
SFU CMPT-307 2008-2 1 Lecture: Week 3

SFU CMPT-307 2008-2 Lecture: Week 3

Ján Maňuch

E-mail: jmanuch@sfu.ca

Lecture on May 20, 2008, 5.30pm-8.20pm

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 2 Lecture: Week 3

Important basic procedures for max-heaps

1. Max-Heapify, runs in timeO(log n) time, a key procedure that

maintains themax-heap property(if we change a value in the root of

a heap, this procedure will correct the heap, so that it’s again a heap)

2. Build-Max-Heap, runs in timeO(n), produces a max-heap from

unsorted data

3. Heap-Sort, runs in timeO(n log n), sorts array in place (uses above)

Also Max-Heap-Insert, Heap-Extract-Max, Heap-Increase-Key(run

in timeO(log n)), Heap-Maximum, (run in timeO(1)), used when the

heap is used to implement apriority queue

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 3 Lecture: Week 3

Max-Heapify

Maintains the max-heap property

Inputs are an arrayA and an indexi

Assumption: sub-trees rooted in LEFT(i) and RIGHT(i) are proper
max-heaps, butA[i℄ may be smaller than its children

7

9

12 6

10 5 3
Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 4 Lecture: Week 3

Task ofMax-Heapify is to letA[i℄ float down in the max-heap below it so

that heap rooted ini becomes proper max-heap

12

10 6

37 59

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 5 Lecture: Week 3

Max-Heapify(A; i)
1: ` LEFT(i)
2: r RIGHT(i)
3: if ` � heap-size(A) andA[`℄ > A[i℄ then
4: largest `
5: else
6: largest i
7: end if
8: if r � heap-size(A) andA[r℄ > A[largest℄ then
9: largest r

10: end if

11: if largest6= i then
12: exchangeA[i℄$ A[largest℄
13: Max-Heapify(A; largest)

14: end if

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 6 Lecture: Week 3

Idea:

Lines 1–2are just for convenience

Lines 3–10find the largest of elementsA[i℄, A[`℄, andA[r℄

Lines 11–14
1. first check if there’s anything to be done at all,

2. and if yes,

(a) move the “misplaced element” one level down,

(b) and make a recursive call one level deeper on this element

We know that after the exchange we have the largest ofA[i℄, A[`℄, andA[r℄ in positioni, so among these three, everything is OK.

However, further down may still be problems.

Also note that we check` � heap-size(A) andr � heap-size(A), so that

we don’t go checking outside of the heap – the recursion will end if these

tests fail

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 7 Lecture: Week 3

1

8 9 10 11 12

5 6 7

32

4

1

8 9 10 11 12

54 6 7

32

1

8 9 10 11 12

54 6 7

32

15

21

14

12

14

12

8

7

6

6 4

2

1

1

2

46

6

7

8

12

21

15

12

14

15

21

1

2

46

6

7

8

12

12

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 8 Lecture: Week 3

Running time ofMax-Heapify on subtree of sizen rooted ati is� �(1) for finding largest and possibly swapping� plus time to runMax-Heapify on sub-tree rooted in one of the
children ofi

Size ofi’s sub-tree in consideration is about(n� 1)=2 if complete trees

We allow for “nearly” complete trees, but here the size of anysub-tree is
at mostd2n=3e
This worst-case occurs if last level is exactly half full

n = 11: 2 � 11=3 = 22=3 = 7:33 : : :

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 9 Lecture: Week 3

This gives T (n) � T (2n=3) + �(1)

Case 2 of Master Theorem givesT (n) = �(log n)

Alternative proof:running time ofMax-Heapify on node of heighth

(counted from bottom!) isO(h) andh = O(log n) by Assignment

Problem 2.5.

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 10 Lecture: Week 3

Building a heap

Easy usingMax-Heapify

Suppose we have given an unordered arrayA[1℄; : : : ; A[n℄ with n = length(A)
One can show that the elementsA[bn=2+ 1℄; A[bn=2+ 2℄; : : : ; A[n℄

are theleavesof a heap..

Thus, it’s OK to initially consider them as1-element heaps, and run
Max-Heapify “on top” of them, once for each non-leaf element
(1-element heaps are always proper heaps!).

Build-Max-Heap(A)

1: heap-size(A) length(A)

2: for i blength(A)=2 downto 1 do
3: Max-Heapify(A; i)

4: end for
Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 11 Lecture: Week 3

8

7654

2 3 32

4 5 6 7

9 108

1

32

1

32

4 5 6 7

9 108

1

8 109

7654

2 3

4 5 6 7

9 108

1

8 109

1

32

4 5 6 7

9 10

1

Result

4 8 710 Input array A

Binary tree representing A

141 3 2 916

2 9 10

14 8 7

4 4

142

3978

1014

16

9 10

2 8 7

782

391614

101

4

1 3

2 16 9 10

14 8 7

4

1614

31

4

182

39714

1016

1 3

16

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 12 Lecture: Week 3

Build-Max-Heap Correctness

Loop invariant:

At the start of each iteration, each nodei+ 1; i+ 2; : : : ; n is a root of a proper max-heap

Initialization: Initially, i = bn=2.
Nodesbn=2+ 1; bn=2+ 2; : : : ; n are leaves.
Leaves arealwaysroots of trivial max-heaps.

Maintenance: Observe, children nodes ofi are numbered higher thani.
By invariant, both are roots of max-heaps.
Thus, we can call Max-Heapify(A; i). Now i is a root of max-heap.
Max-Heapify does not destroy the max-heap property ofi+ 1; i+ 2; : : : ; n, thus they’re still roots of max-heaps.

Decrementingi reestablishes invariant for next iteration.

Termination: Now i = 0, thus1; 2; : : : ; n are roots of max-heaps (in
particular,1 is).

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 13 Lecture: Week 3

Build-Max-Heap Running time

Simple bound: calls to Max-Heapify costO(log n), there areO(n) of

them, thusO(n log n).
Correct, butnot tight (asymptotically).

Truth is �(n).
First observation: time for Max-Heapify depends on height of node

(clearly).

Second observation:n-element heap has heightblog n (Problem 2.5).

Third observation: it has at mostdn=2h+1e nodes of any heighth
(Problem 3.1).

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 14 Lecture: Week 3

Assignment Problem 3.1.(deadline: May 27, 5:30pm)

Prove by mathematical induction onh that there are at mostdn=2h+1e

nodes of heighth in anyn-element heap.

Hint: For the induction step, your induction hypothesis is� For anyn, n-element heap has at mostdn=2he nodes of heighth� 1.

and you want to prove that� For anyn, n-element heap has at mostdn=2h+1e nodes of heighth.

Hence, if you are proving the claim for a heapH with n elements, then

you can apply the induction hypothesis on any heap (for instance on a

heap which contains only a part ofH).

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 15 Lecture: Week 3

We know: Time required by Max-Heapify on node of heighth isO(h).
Thus, running time of Build-Max-Heap is upper-bounded by

T (n) = blognXh=0 l n2h+1 mO(h) = O�n blognXh=0 h2h�

By formula 1Xk=0 kxk = x(1� x)2
and substitutingx = 1=2 we obtain1Xh=0 h2h = 1=2(1� 1=2)2 = 2
and thus T (n) = O�n blognXh=0 h2h� = O�n 1Xh=0 h2h� = O(n)
Hence, Build-Max-Heap runs in linear time.

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 16 Lecture: Week 3

Heapsort

Now it’s very easy to write down the algorithm for Heapsort.

Idea as follows:

1. Given unsorted arrayA, build heap onA, using Build-Max-Heap

2. Extract largest element (is inA[1℄), and move it to the end of array

(swapA[1℄ andA[n℄)
3. Decrease the size of the heap by 1

4. The root might not satisfy the heap property (that’s wherethe element

formerly inA[n℄ now is), hence, using Max-Heapify, correct the heap

5. Extract the 2nd-largest element (again, inA[1℄), and so on. . .

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 17 Lecture: Week 3

Heapsort(A)
1: Build-Max-Heap(A)
2: for i length(A) downto 2 do
3: exchangeA[1℄$ A[i℄
4: heap-size(A) heap-size(A)� 1

5: Max-Heapify(A; 1)
6: end for

Running time:O(n log n) (Build-Max takesO(n), and thenO(n) rounds

with O(log n) each).

Correctness

Loop invariant:
At the start of each iteration of thefor loop of lines 2–5, the

subarrayA[1 : : : i℄ is a max-heap containing thei smallest

elements ofA[1 : : : n℄, and the subarrayA[i+ 1 : : : n℄ contains

then� i largest elements in sorted order.

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 18 Lecture: Week 3

Initialization: After runningBuild-Max-Heap, the elementsA[1 : : : n℄

form a max-heap. Since, innitiallyi = n, the first subarray isA[1 : : : n℄ (a

max-heap), while the second is empty, and so satisfies all conditions

trivially.

Maintenance: SinceA[1℄ contains the maximal element ofA[1 : : : i℄, but

is smaller than any of the elements inA[i+ 1 : : : n℄, after swappingA[1℄

andA[i℄:� A[i : : : n℄ is sorted (sinceA[i+ 1 : : : n℄ was sorted)� elements inA[1 : : : i� 1℄ are smaller than elements inA[i : : : n℄� A[1 : : : i� 1℄ is a max-heap except for the root

Lines 4-5 correct the max-heap property in the root, hence, in the end of

the iterationA[1 : : : i� 1℄ is a proper max-heap.

Termination: in the end, we have that the loop invariant is satisfied fori = 1: elementsA[2 : : : n℄ are sorted and greater thanA[1℄. . . done

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 19 Lecture: Week 3

(Simple) Queues

What is a queue?

(insert)
b ca

enqueuedequeue

(remove)

We insert new elements at thetail , andremoveelements from thehead.

The standard queue is aFirst-In-First-Out (FIFO) buffer.

Many applications, for instance CD burning:� reader processreads files from a hard disk and inserts data into a

queue� writer process reads from the queue and writes onto CD

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 20 Lecture: Week 3

Priority queues

They are different: there’s no “real” FIFO rule anymore.

A priority queue maintains setS of elements, each with akey (priority).

Two kinds:max-priority queues andmin-priority queues, usually

implemented bymax-heapsandmin-heaps.

Max-priority queue

Operations:� Insert(S; x) inserts elementx into setS� Maximum(S) returns element ofS with largest key� Extract-Max (S) removes and returns element ofS with largest key� Increase-Key(S; x; k) increasesx’s key to new valuek, assumingk

is at least as large asx’s old key

Min-priority queue is used via operations:Insert, Minimum ,

Extract-Min , andDecrease-Key.

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 21 Lecture: Week 3

What are they good for?

Example for Max-priority queue :

job schedulingon a shared computer� jobs with priorities, can be stored in a max-priority queue� each time a new job is to be scheduled, it’s got to be one of highest

priority (Extract-Max operation)� new jobs can be inserted usingInsert operation� in order to avoid “starvation”, priorities can be increased
(Increase-Keyoperation)

Example for Min-priority queue :

event-driven simulator� items in the queue are events to be simulated, and the key is the time
of the event when it should occur (happen)� events are simulated in time order, hence we always extract the event
with the smallest time from the queue and simulate it� new events are procuded, so they have to be inserted in the queue

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 22 Lecture: Week 3

Heaps are very convenient here:� using max-heaps, we know that the largest element is inA[1℄: we

haveO(1) access to largest element� removing/inserting elements and increasing keys means that we

(basically) can callMax-Heapify or a similar procedure (fixing the

heap from bottom up) at the right place (relatively efficientoperationO(log n))
Min-priority queues analogous.

Implementation

We’re consideringmax-priority queues, implemented usingmax-heaps

Let’s start with a simple operation.

Heap-Maximum(A)

1: return A[1℄

implementsMaximum operation inO(1) time.

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 23 Lecture: Week 3

Extract max

Now, how to weremove the largest element from the queue/heap so that

we will still have a proper max-heap?

Heap-Extract-Max(A)
1: if heap-size(A) < 1 then
2: error “heap underflow”

3: end if

4: max A[1℄
5: A[1℄ A[heap-size(A)℄
6: heap-size(A) heap-size(A)� 1
7: Max-Heapify(A; 1)

8: return max

implementsExtract-Max

Running time isO(log n)

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 24 Lecture: Week 3

Increase key

Suppose that the element which key is to be increased is identified by

indexi

We first update the keyA[i℄
Clearly, this can destroy the max-heap property, thus we need to find a

new place for this element

The idea is to move the updated element as far up toward the root as

necessary

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 25 Lecture: Week 3

Heap-Increase-Key(A; i; key)
1: if key< A[i℄ then
2: error “new key is smaller than current key”

3: end if

4: A[i℄ key

5: while i > 1 andA[Parent(i)℄ < A[i℄ do
6: exchangeA[i℄$ A[Parent(i)℄
7: i Parent(i)

8: end while

Running time isO(log n) (height of tree)

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 26 Lecture: Week 3

Example:

Heap-Increase-Key(A; 9; 15)

The node with index9:

update the key from4 to 15

9

16

14 10

8 7 9 3

2 4 1

16

14 10

8

7 3

2 1

15

16

15 10

14 7 9 3

2 8 1

16

14 10

8 7 9 3

2 115

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 27 Lecture: Week 3

Assignment Problem 3.2.(deadline: May 27, 5:30pm)

Argue the correctness ofHeap-Increase-Keyusing the following loop

invariant� At the start of each iteration of thewhile loop of lines 5–8, the arrayA[1 : : :heap-size(A)℄ satisfies the max-heap property with possible

one exception:A[i℄ may be larger thanA[Parent(i)℄.

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 28 Lecture: Week 3

Insert

Inserting is now easy:

1. add a new element to the end of heap

2. set its key to desired value

Heap-Insert(A; key)
1: heap-size(A) heap-size(A) + 1
2: A[heap-size(A)℄ �1
3: Heap-Increase-Key(A; heap-size(A); key)

Running time isO(log n)

Conclusion: all considered operations can be implemented to run in timeO(log n), Maximum() even inO(1)
Note: there are other, more efficient implementations around!

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 29 Lecture: Week 3

Exercise 3.1.Consider an implementation of priority queue using a

sorted array instead of a max-heap. What are the running timeof the four

operations needed for priority queue?

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 30 Lecture: Week 3

A lower bound
for comparison-based sorting

We’ve seen a few sorting algorithms:

Selection-Sort: in place, upper boundO(n2)

Merge-Sort: upper boundO(n log n)
Heap-Sort: in place, upper boundO(n log n)
Can we get any better algorithm?

Or is�(n log n) an inherent barrier?

a comparison sort– information about the elements is collected only via

comparing the elements

We prove that anycomparison sortmust make
(n log n) comparisons in

the worst case to sortn elements.

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 31 Lecture: Week 3

input sequenceha1; a2; : : : ; ani

for ai andaj we can perform any of the testsai < aj?, ai � aj?, ai > aj?, ai � aj?

to determine their relative order

we are not interested in actual values of the elements

for simplicity let’s us assume thatai 6= aj for all i 6= j, and hence we can

assume that all comparisons have the formai � aj?

Decision tree� a full binary tree (every node has either zero or two children)� represents comparisons between elements performed by particular

algorithm run on all possible inputs� only comparisonsare relevant, everything else is ignored

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 32 Lecture: Week 3

� internal nodesare labelledi : j for 1 � i; j � n, meaning elementsai andaj are compared� edgesare labelled “�” or >, depending on the outcome of the

comparisons� leavesare labelled with a permutation�(1); �(2); : : : ; �(n) – representing the output of the algorithm,

i.e., at this pointa�(1) � a�(2) � � � � � a�(n)� abranch from the root to a leaf describes a sequence of comparisons

(nodes and edges) resulting in a permutation (a leaf)� a reachable node– a node into which we can get on an input;

especially we are interested in reachable leaves

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 33 Lecture: Week 3

Example:

SELECTION-SORT

1: for i 1 to n� 1 do
2: /* 3–10: find min inA[i℄; : : : ; A[n℄ */

3: smallestelement A[i℄
4: smallestposition i
5: for j i+ 1 to n do
6: if A[j℄ < smallestelementthen
7: smallestelement A[j℄
8: smallestposition j
9: end if

10: end for
11: swapA[i℄ andA[smallestposition℄
12: end for

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 34 Lecture: Week 3

Note: distinguish between the input sequencea1; a2; : : : ; an and the

arrayA[1℄; A[2℄; : : : ; A[n℄ used to store the sequence.

in the beginning we haveA[1℄ = a1, A[2℄ = a2, . . . ,A[n℄ = an
but in the end we wantA[1℄ = a�(1), A[2℄ = a�(2), . . . ,A[n℄ = a�(n)

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 35 Lecture: Week 3

Decision treefor Selection-Sorton3-element inputs

<

<< << >

<

<

> >

> >

>

>

1,3,2 3,1,2 2,1,3 3,2,12,3,1

2:3

1:3

3,2,1

1:2

1:3

2:3 1:21:2

1,2,3 3,1,2

SELECTION-SORT

1: for i 1 to n� 1 do
2: /* 3–10: find min inA[i℄; : : : ; A[n℄ */

3: smallestelement A[i℄

4: smallestposition i

5: for j i+ 1 to n do
6: if A[j℄ < smallestelementthen
7: smallestelement A[j℄

8: smallestposition j

9: end if
10: end for
11: swapA[i℄ andA[smallestposition℄

12: end for

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 36 Lecture: Week 3

More efficient decision tree

<

<

<

<

<>

>

>

>

>

1:3

1,3,2 2,1,3 2,3,1

3,1,2 3,2,1

1:2

1:3 2:3

2:3

1,2,3

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 37 Lecture: Week 3

Assignment Problem 3.3.(deadline: May 27, 5:30pm)

Draw an “efficient” decision tree for inputs with4 elements.

Hint: The height of the tree should be5.

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 38 Lecture: Week 3

Any correct sorting algorithm must be able to produce each permutation

of its input

Thus, a necessary condition is that each of then! permutations must

appear in a reachable leaf of the decision tree

Lower bound for worst case

Length of longest path from root of decision tree to any leaf represents

worst case number of comparisons

Lower bound on heights of all decision trees where each permutation

appears as leaf is thus lower bound on running time ofany comparison

based sort algorithm

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 39 Lecture: Week 3

Theorem. Any comparison sort algorithm requires
(n log n) comparisons in the worst case.

Proof. Sufficient to determine the height of a decision tree in whicheach

permutation appears as a leaf

Consider decision tree of heighth with ` leaves corresponding to a

comparison sort onn elements

Each of then permutations of the input appears as a leaf, thereforen! � `

Binary tree of heighth has at most2h leaves, thusn! � ` � 2h

Take logs:h � log(n!) =
(n log n)
Exercise 3.2.Show that there is no comparison sort whose running time

is linear for at least half of then! inputs of lengthn. What about a

fraction of1=n of the inputs of lengthn? What about a fraction1=2n?

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 40 Lecture: Week 3

Quicksort

Quicksort is based on Divide&Conquer paradigm

its worst-case running time is�(n2)
so why should we consider it?

efficient in average:

the expected running time is�(n log n) with a small constant (hidden in

Theta-notation)!

in place

in practice, we don’t care that it performs “very bad” for some few inputs,

if it performs “very good” on the most of them=)

the best practical choice for sorting

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 41 Lecture: Week 3

Input: arrayA[1 : : : n℄
how to sort a subarrayA[p : : : r℄:
Divide: Compute (in some way) some indexq, and partitionA[p : : : r℄

into two (possibly empty) subarraysA[p : : : q � 1℄ andA[q + 1 : : : r℄

s.t.� each element ofA[p : : : q � 1℄ is less than or equal toA[q℄, and� each element ofA[q + 1 : : : r℄ is greater thanA[q℄� elementA[q℄ is called apivot

Conquer: Sort the two subarraysA[p : : : q � 1℄ andA[q + 1 : : : r℄

recursively

Combine: Subarrays are sorted in-place, nothing is needed here; the

entireA[p : : : r℄ is sorted

the performance ofQuicksort dependsextremelyon how thepivots are

selected!

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 42 Lecture: Week 3

Quicksort(A; p; r)
1: if p < r then
2: q Partition(A; p; r)
3: Quicksort(A; p; q � 1)
4: Quicksort(A; q + 1; r)
5: end if

To sort the entire arrayA, call

Quicksort(A; 1; length(A))
Note: this is a very “naive” implementation because it recurses down to

the very end.

Efficient implementations do special things at the bottom ofrecursion

(callsoptimal procedures to sort sub-arrays of lengths up to, say,7)

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 43 Lecture: Week 3

So, a more “practical” solution would look something like this:

Quicksort(A; p; r)
1: if r � p = 2 then
2: Sort2(A; p)
3: else ifr � p = 3 then
4: Sort3(A; p)
5: else ifr � p = 4 then
6: Sort4(A; p)
7: else ifr � p = 5 then
8: Sort5(A; p)

9: else ifr � p = 6 then
10: Sort6(A; p)

11: else ifr � p = 7 then
12: Sort7(A; p)

13: else ifp < r then
14: q Partition(A; p; r)

15: Quicksort(A; p; q � 1)

16: Quicksort(A; q + 1; r)

17: end if

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 44 Lecture: Week 3

Partition

The most important part ofQuicksort.
Partition (A; p; r)

1: x A[r℄ /* choose a pivotx */

2: i p� 1
3: for j p to r � 1 do
4: if A[j℄ � x then
5: i i+ 1
6: exchangeA[i℄$ A[j℄
7: end if
8: end for
9: exchangeA[i+ 1℄$ A[r℄

10: returni+ 1

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 45 Lecture: Week 3

Partition (A; p; r)
1: x A[r℄ /* choose a pivotx */

2: i p� 1
3: for j p to r � 1 do
4: if A[j℄ � x then
5: i i+ 1
6: exchangeA[i℄$ A[j℄
7: end if
8: end for
9: exchangeA[i+ 1℄$ A[r℄

10: returni+ 1

the loop invariant:� at the beginning of each iteration of the loop 3–8

1. each element ofA[p : : : i℄ is smaller than or equal to pivotx

2. each element ofA[i+ 1 : : : j � 1℄ is greater thanx
3. elementsA[j : : : r � 1℄ are so-far arbitrary

4. elementA[r℄ = x

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 46 Lecture: Week 3

2 8 7 1 3 5 6 4

p r

i j

2 8 7 1 3 5 6 4

p r

i j

2 8 7 1 3 5 6 4

p r

i j

2 8 7 1 3 5 6 4

p r

i j

2 1 7 8 3 5 6 4

p r

i j

2 1 3 8 7 5 6 4

p r

i j

2 1 3 8 7 5 6 4

p r

i j

2 1 3 8 7 5 6 4

p r

i

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 47 Lecture: Week 3

Correctness:

enough to prove first 2 conditions (condition 4 satisfied by line 1)

Initialization: before 1st iteration,i = p� 1 andj = p; first two

conditions are trivial

Maintenance: 2 cases:A[j℄ > x – only j is increased in the loop; enough to check

condition 2 for elementA[j � 1℄A[j℄ � x – i is incremented, thenA[i℄ andA[j℄ are swapped, thenj

is incremented; enough to check condition 1 forA[i℄ (ok, because of

swapping) and condition 2 forA[j � 1℄ (ok, by the loop invariant)

Termination: j = r, hence there are no elements in part 3, the others are

divided as required

finally, to get correct order of these 3 parts, we swap the firstelement of

the second part withA[r℄

running time�(n), wheren = r � p+ 1

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 48 Lecture: Week 3

This particular implementation ofPartition is not good because it always

uses the rightmost element as pivot.

It’s easy to come up with examples that force this implementation to be

very bad (meaning overall running time
(n2)).
What we want is anevenpartition ofA[p : : : r℄ into two sub-arrays of

(about) the same size.

That’s the second very important feature of efficient implementations of

Quicksort.

There are several not-too-bad ways:� look at, say,5 fixed array elements and pick the median� pick arandomly chosenelement� look at, say5 randomly chosenelements and pick the median� many more

In practice, the random variant usually works best (unless you happen to

know something about your inputs)

Last modified: Wednesday 21st May, 2008, 00:02 2008 J́an Mǎnuch

	Important basic procedures for max-heaps
	Max-Heapify
	Building a heap
	Build-Max-Heap Correctness
	Build-Max-Heap Running time
	Heapsort
	(Simple) Queues
	Priority queues
	What are they good for?
	Extract max
	Increase key
	Insert
	A lower boundfor comparison-based sorting
	Quicksort
	Partition

