SFU CMPT-307 2008-2 1 Lecture: Week 3

SFU CMPT-307 2008-2 Lecture: Week 3

Jan Manuch

E-mail: jmanuch@sfu.ca

Lecture on May 20, 2008, 5.30pm-8.20pm

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 2 Lecture: Week 3

Important basic procedures for max-heaps

1. Max-Heapify, runs in timeO(log n) time, a key procedure that
maintains thenax-heap propertyf we change a value in the root of
a heap, this procedure will correct the heap, so that it'swegaeap)

2. Build-Max-Heap, runs in timeO(n), produces a max-heap from
unsorted data

3. Heap-Sort, runs in timeO(n log n), sorts array in place (uses above)

Also Max-Heap-Insert, Heap-Extract-Max, Heap-Increase-Key(run
in time O(log n)), Heap-Maximum, (run in timeO(1)), used when the
heap is used to implementoaiority queue

Last modified: Wednesday 2May, 2008, 00:02 2008 &An Maiuch

SFU CMPT-307 2008-2 3 Lecture: Week 3

Max-Heapify

Maintains the max-heap property
Inputs are an arrayl and an index

Assumption: sub-trees rooted ireET(z) and RGHT(7) are proper
max-heaps, butl ;] may be smaller than its children

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 4 Lecture: Week 3

Task ofMax-Heapify is to let A|:] float down in the max-heap below it so
that heap rooted inbecomes proper max-heap

@
12; O

10 (6 C @

OIVIOICORe

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 5 Lecture: Week 3

Max-Heapify (A,)
1: /< LEFT(z)
2: 7 < RIGHT (%)

If £ < heap-siz€A) andA[¢] > A[i] then
largest«+ /¢

else
largest+ i

end if

If » < heap-sizéA) andA|[r]| > Allarges} then
largest«+ r

10: end if

11: If largest# ¢ then

12: exchanged|i| <+ Allargest
13: Max-Heapify (A, largesj
14: end if

Last modified: Wednesday 2May, 2008, 00:02 2008 &An Maiuch

SFU CMPT-307 2008-2 6 Lecture: Week 3

ldea:
Lines 1-2are just for convenience
Lines 3—-10find the largest of element4|i|, A[/], and A|r]

Lines 11-14
1. first check if there’s anything to be done at all,

2. and if yes,

(a) move the “misplaced element” one level down,
(b) and make a recursive call one level deeper on this element

We know that after the exchange we have the largeat/df A[¢], and
Alr] in positionz, so among these three, everything is OK.

However, further down may still be problems.

Also note that we check < heap-sizeA) andr < heap-sizéA), so that
we don’t go checking outside of the heap — the recursion wudl & these

tests fail

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

Lecture: Week 3

SFU CMPT-307 2008-2

2008 An Maiuch

Last modified: Wednesday 2May, 2008, 00:02

SFU CMPT-307 2008-2 8 Lecture: Week 3

Running time ofMax-Heapify on subtree of size rooted at Is

e O(1) for finding largest and possibly swapping
e plus time to runiMax-Heapify on sub-tree rooted in one of the
children of:

Size ofi’'s sub-tree in consideration is about
(n — 1)/2 if complete trees

We allow for “nearly” complete trees, but here the size of anlg-tree is
at most[2n /3]

This worst-case occurs if last level is exactly half full

n=11:2-11/3=22/3=17.33...
Last modified: Wednesday 2May, 2008, 00:02 2008 &An Maiuch

SFU CMPT-307 2008-2 9 Lecture: Week 3

This gives
T(n) <T(2n/3)+ 6(1)

Case 2 of Master Theorem givégn) = O(logn)

Alternative proof:running time ofMax-Heapify on node of heighk

(counted from bottom!) i©)(h) andh = O(log n) by Assignment
Problem 2.5.

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 10 Lecture: Week 3

Building a heap

Easy usingMlax-Heapify
Suppose we have given an unordered array
A[l], ..., Aln] with n = length(A)

One can show that the elements
Alln/2] +1], Al|n/2] + 2], ..., Aln]

are theleavesof a heap..

Thus, it's OK to initially consider them alselement heaps, and run
Max-Heapify “on top” of them, once for each non-leaf element
(1-element heaps are always proper heaps!).

Build-Max-Heap (A)
1: heap-sizéA) < length(A)
2: for ¢ + |lengthlA)/2] downto 1 do
3: Max-Heapify(A4, i)

4: end for
Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 11 Lecture: Week 3

41 1| 3| 2(16| 9/10(14| 8 | 7| Inputarray A

Last modified: Wednesday 2May, 2008, 00:02 2008 &An Maiuch

SFU CMPT-307 2008-2 12 Lecture: Week 3

Build-Max-Heap Correctness

Loop invariant:

At the start of each iteration, each node
1+ 1,74+ 2,...,nlis aroot of a proper max-heap

Initialization: Initially, ¢ = [n/2].
Nodes|n/2| + 1, |n/2] +2,...,n are leaves.
Leaves ar@alwaysroots of trivial max-heaps.

Maintenance: Observe, children nodes ohre numbered higher than
By invariant, both are roots of max-heaps.

Thus, we can call Max-Heapifyd, 7). Now ¢ is a root of max-heap.
Max-Heapify does not destroy the max-heap property of

1+ 1,14 2,...,n, thus they're still roots of max-heaps.
Decrementing reestablishes invariant for next iteration.

Termination: Now: = 0, thusl, 2, ..., n are roots of max-heaps (in
particular,1 is).

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 13 Lecture: Week 3

Build-Max-Heap Running time

Simple bound: calls to Max-Heapify codlog n), there are)(n) of
them, thugO(nlogn).

Correct, butnot tight (asymptotically).
Truth is©(n).

First observation: time for Max-Heapify depends on heighmaxle
(clearly).

Second observatiom-element heap has heighibg n| (Problem 2.5).

Third observation: it has at most /2”11 nodes of any height
(Problem 3.1).

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 14 Lecture: Week 3

Assignment Problem 3.1.(deadline: May 27, 5:30pm)
Prove by mathematical induction arthat there are at mos$t /2" 1]
nodes of height in anyn-element heap.

Hint: For the induction step, your induction hypothesis is

e For anyn, n-element heap has at mdst/2"] nodes of height — 1.
and you want to prove that

e For anyn, n-element heap has at mdst/2"+1| nodes of height.

Hence, if you are proving the claim for a heBfpwith n elements, then

you can apply the induction hypothesis on any heap (for m&@n a
heap which contains only a part &f).

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 15 Lecture: Week 3

We know: Time required by Max-Heapify on node of heighs O(h).

Thus, running time of Build-Max-Heap is upper-bounded by

| logn | n [log n] h
T'(n) = Z {2h+1l O(h) = O(n Z 2_h)
h=0 h=0

By formula

kxk = v
2 ket =

and substituting: = 1/2 we obtain

—~h 1/2
227»_(1—1/2)2_2

h=0

and thus

[log n]

T(n):()(nz h) (g%)z

Hence, Build-Max-Heap runs in linear time.
Last modified: Wednesday 2May, 2008, 00:02 2008 &An Maiuch

SFU CMPT-307 2008-2 16 Lecture: Week 3

Heapsort

Now it’s very easy to write down the algorithm for Heapsort.
|dea as follows:

1. Given unsorted array, build heap om4, using Build-Max-Heap

2. Extract largest element (is #[1]), and move it to the end of array
(swapA[l] and A[n))

3. Decrease the size of the heap by 1

4. The root might not satisfy the heap property (that’s wileeselement
formerly in A|n| now is), hence, using Max-Heapify, correct the heap

5. Extract the 2nd-largest element (againdifi]), and so on. ..

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 17 Lecture: Week 3

Heapsort(A)
1: Build-Max-HeagA)
2: for ¢ + length A) downto 2 do
3: exchanged|l] < Al
4: heap-sizéA) < heap-sizeA) — 1
5. Max-Heapify(4,1)
6: end for

Running time:O(n logn) (Build-Max takesO(n), and therD(n) rounds
with O(logn) each).

Correctness

Loop invariant:
At the start of each iteration of tHer loop of lines 2-5, the

subarrayA|l .. .| is a max-heap containing thesmallest
elements ofd[1...n|, and the subarray|i + 1. ..n] contains
then — ¢ largest elements in sorted order.

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 18 Lecture: Week 3

Initialization: After runningBuild-Max-Heap, the elementsi|1. .. n]
form a max-heap. Since, innitially= n, the first subarray igl[1...n] (a
max-heap), while the second is empty, and so satisfies allitons
trivially.

Maintenance: Since A|1] contains the maximal element df1 . . . {], but
IS smaller than any of the elementsAn + 1. .. n], after swappingd|1]
and A[i]:

e Ali...n]is sorted (sincel: + 1...n| was sorted)

e elementsind[l...i — 1] are smaller than elements Aj: . . . n]

e A[l...7— 1]is a max-heap except for the root

Lines 4-5 correct the max-heap property in the root, hemcena end of
the iterationA[1...7 — 1] is a proper max-heap.

Termination: in the end, we have that the loop invariant is satisfied for
i = 1: elementsA|2. .. n] are sorted and greater thdnl]. .. done

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2

19 Lecture: Week 3

What is a queue?

(Simple) Queues

dequeue E .

b | c ——

(remove)

enqueus
(insert)

We insert new elements at th&il, andremove elements from theead

The standard queue isFarst-In-First-Out (FIFO) buffer.

Many applications, for instance CD burning:
e reader processreads files from a hard disk and inserts data into a

queue

e Writer processreads from the queue and writes onto CD

Last modified: Wednesday 2May, 2008, 00:02

2008 An Maiuch

SFU CMPT-307 2008-2 20 Lecture: Week 3

Priority queues

They are different: there’s no “real” FIFO rule anymore.
A priority queue maintains seb of elements, each withleey (priority).

Two kinds: max-priority queues andmin-priority queues, usually
Implemented bynax-heapsandmin-heaps

Max-priority queue

Operations:
e Insert(S, z) inserts element into setS

e Maximum (5) returns element af with largest key
e Extract-Max (5) removes and returns element®fvith largest key

e Increase-Key(S, x, k) increases:’s key to new value:, assuming:
IS at least as large ass old key

Min-priority queue is used via operationgnsert, Minimum,
Extract-Min , andDecrease-Key

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 21 Lecture: Week 3

What are they good for?

Example for Max-priority queue :

job schedulingpn a shared computer
e jobs with priorities, can be stored in a max-priority queue

e each time a new job is to be scheduled, it's got to be one ofdsigh
priority (Extract-Max operation)

e new jobs can be inserted usihggert operation

e in order to avoid “starvation”, priorities can be increased
(Increase-Keyoperation)

Example for Min-priority queue

event-driven simulator
e items in the queue are events to be simulated, and the keg itk

of the event when it should occur (happen)

e events are simulated in time order, hence we always extracvent
with the smallest time from the queue and simulate it

e new events are procuded, so they have to be inserted in the que

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 22 Lecture: Week 3

Heaps are very convenient here:
e using max-heaps, we know that the largest element &1t we

haveO(1) access to largest element

e removing/inserting elements and increasing keys meansvina
(basically) can calMax-Heapify or a similar procedure (fixing the
heap from bottom up) at the right place (relatively efficieperation
O(logn))

Min-priority queues analogous.
Implementation
We're consideringnax-priority gueues, implemented usinghax-heaps
Let’s start with a simple operation.
Heap-Maximum(A)
1: return A[1]

implementdvlaximum operation inO(1) time.

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 23 Lecture: Week 3

Extract max

Now, how to weremovethe largest element from the queue/heap so that
we will still have a proper max-heap?

Heap-Extract-Max(A)
1: if heap-sizéA) < 1 then
2: error “heap underflow”
3: end if

max<— A[l]

A[l] < Alheap-sizeA)]
heap-siz€A) < heap-sizéA) — 1
Max-Heapify (A, 1)

return max

©© N o g A

ImplementExtract-Max
Running time i90 (log n)

Last modified: Wednesday 2May, 2008, 00:02 2008 &An Maiuch

SFU CMPT-307 2008-2 24 Lecture: Week 3

Increase key

Suppose that the element which key is to be increased igfieéeny
iIndex:

We first update the keyl|:]

Clearly, this can destroy the max-heap property, thus wd teeénd a
new place for this element

The idea Is to move the updated element as far up toward thesoo
necessary

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 25 Lecture: Week 3

Heap-Increase-Key A, i, key)
1. if key< A[i] then
2: error “new key is smaller than current key”
3: end if
4: Ali] < key
5. while ¢ > 1 and A[Parent:)] < A[:] do
6: exchanged|i| <+ A[Parent:)]
7. i< Parent:)
8: end while

Running time i90 (log n) (height of tree)

Last modified: Wednesday 2May, 2008, 00:02 2008 &An Maiuch

SFU CMPT-307 2008-2 26 Lecture: Week 3

Example:
Heap-Increase-K&w, 9, 15)
The node with inde:
update the key from to 15

Last modified: Wednesday 2May, 2008, 00:02 2008 &An Maiuch

SFU CMPT-307 2008-2 27 Lecture: Week 3

Assignment Problem 3.2.(deadline: May 27, 5:30pm)
Argue the correctness éfeap-Increase-Keyusing the following loop
Invariant

e At the start of each iteration of thehile loop of lines 5-8, the array
A[l...heap-siz€A)| satisfies the max-heap property with possible
one exceptionA|:| may be larger thar[Parent:)].

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 28 Lecture: Week 3

Insert

Inserting IS now easy:

1. add a new element to the end of heap
2. setits key to desired value

Heap-Insert(A, key)

1. heap-siz€A) + heap-sizéA) + 1

2: Alheap-siz€A)| + —o¢

3: Heap-Increase-Key A, heap-siz€A), key)
Running time 10 (log n)

Conclusion: all considered operations can be implemented to run in time
O(logn), Maximum () even inO(1)

Note: there are other, more efficient implementations atbun

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 29 Lecture: Week 3

Exercise 3.1.Consider an implementation of priority queue using a
sorted array instead of a max-heap. What are the runningdirires four
operations needed for priority queue?

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 30 Lecture: Week 3

A lower bound
for comparison-based sorting

We've seen a few sorting algorithms:
Selection-Sort:in place, upper boun@®(n?)
Merge-Sort: upper bound)(n log n)
Heap-Sort: in place, upper boun@(n log n)

Can we get any better algorithm?
Or isO(nlogn) an inherent barrier?

a comparison sort— information about the elements is collected only via
comparing the elements

We prove that angomparison sormust make(n log n) comparisons in
the worst case to sort elements.

Last modified: Wednesday 2May, 2008, 00:02 2008 &An Maiuch

SFU CMPT-307 2008-2 31 Lecture: Week 3

Input sequenceéa, as, ..., a,)

for a; anda; we can perform any of the tests
a; < a;?,a; < a;? a; > a7, 0, > a5

to determine their relative order

we are not interested in actual values of the elements

for simplicity let's us assume that # a, for all : ## j, and hence we can
assume that all comparisons have the fafm< a;?

Decision tree

e afull binary tree (every node has either zero or two children)

e represents comparisons between elements performed lgubeart
algorithm run on all possible inputs

e only comparisonsare relevant, everything else is ignored

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 32 Lecture: Week 3

e internal nodesare labelled : j for 1 <, 5 < n, meaning elements
a; anda; are compared

e edgesare labelled ¥” or >, depending on the outcome of the
comparisons

e leavesare labelled with a permutation

w(1),7(2),...,m(n) |—representing the output of the algorithm,
l.e., at this point

Ur(1) < Or(2) < 00 S Ap(n)

e abranch from the root to a leaf describes a sequence of comparisons
(nodes and edges) resulting in a permutation (a leaf)

e areachable node- a node into which we can get on an input;
especially we are interested in reachable leaves

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 33

Lecture: Week 3

Example:

SELECTION-SORT

1: fori < 1ton—1do

2: [*3-10: find min inA[z], ..., An] */
3: smallestelement+— Al¢]

4: smallestposition<+

5. forj< i+ 1tondo

6: If A[j] < smallestelementhen
7 smallestelement— A|j]

8 smallestposition<+ j

9 end if

10: end for

11: swapA[:] and A[smallestpositior]
12: end for

Last modified: Wednesday 2May, 2008, 00:02

2008 An Maiuch

SFU CMPT-307 2008-2 34 Lecture: Week 3

Note: distinguish between the input sequengeas, . . ., a,, and the
array A[1], A|2], ..., A[n] used to store the sequence.

In the beginning we have
All]l = a1, A[2] = aq, ..., Aln| = a,

but in the end we want
A[l] = aw(l), A[2] = 0/71—(2), . ,A[n] = aﬂ(n)

Last modified: Wednesday 2May, 2008, 00:02 2008 &An Maiuch

SFU CMPT-307 2008-2 35 Lecture: Week 3

Decision tregor Selection-Sorton 3-element inputs

1,2,3| [1,3,2 3,1,2 | 3,1,2 2181231 321 3,2,

| SELECTION-SORT |

1: fori+ 1ton—1do
2: [*3-10: find min inA[i], ..., Aln]*/
smallestelement— AJi]
smallestposition<+ ¢
for j < i+ 1tondo
if A[j] < smallestelementhen
smallestelement— A[j]
smallestposition<« j
end if
10: end for
11: swap A[i] and A[smallestpositior]
12: end for

© O N 29 A~ w

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 36 Lecture: Week 3

More efficient decision tree

1,2,3 1,3,2 2,1,3 2,3,1

Last modified: Wednesday 2May, 2008, 00:02 2008 &An Maiuch

SFU CMPT-307 2008-2 37 Lecture: Week 3

Assignment Problem 3.3.(deadline: May 27, 5:30pm)
Draw an “efficient” decision tree for inputs withelements.

Hint: The height of the tree should Be

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 38 Lecture: Week 3

Any correct sorting algorithm must be able to produce eacmptation
of Its input

Thus, a necessary condition is that each ofithpermutations must
appear in a reachable leaf of the decision tree

Lower bound for worst case

Length of longest path from root of decision tree to any legkesents
worst case number of comparisons

Lower bound on heights of all decision trees where each p&itron
appears as leaf is thus lower bound on running timangfcomparison
based sort algorithm

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 39 Lecture: Week 3

»

Theorem. Any comparison sort algorithm require
(A(nlogn) comparisons in the worst case.

S

Proof. Sufficient to determine the height of a decision tree in wiaabh
permutation appears as a leaf

Consider decision tree of heightwith ¢ leaves corresponding to a
comparison sort on elements

Each of then permutations of the input appears as a leaf, therefore /¢
Binary tree of height has at mos?” leaves, thus! < ¢ < 2"

Take logs:h > log(n!) = Q(nlogn)
Exercise 3.2. Show that there is no comparison sort whose running time

IS linear for at least half of the! inputs of lengthn. What about a
fraction of1/n of the inputs of lengtm? What about a fractioi/2"?

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 40 Lecture: Week 3

Quicksort

Quicksort is based on Divide&Conguer paradigm
its worst-case running time 8(n?)
so why should we consider it?

efficient in average:
the expected running time 6(n log n) with asmall constant (hidden in
Theta-notation)!

In place

In practice, we don’t care that it performs “very bad” for ssfaw inputs,
If it performs “very good” on the most of them

—

the best practical choice for sorting

Last modified: Wednesday 2May, 2008, 00:02 2008 &An Maiuch

SFU CMPT-307 2008-2 41 Lecture: Week 3

Input: arrayA[l . ..n]

how to sort a subarrag|p. .. r|:

Divide: Compute (in some way) some indexand partitionA[p . . . r]
into two (possibly empty) subarraysA|p...q — 1]andAjg+1...7]
S.1.
e eachelementafl[p...q — 1] is less than or equal td|q|, and
e eachelementafllqg + 1...r]is greater tham|q|
e elementd|q| is called apivot

Conquer: Sort the two subarrayd|p...q—1]andAlg+1...r]
recursively

Combine: Subarrays are sorted in-place, nothing is needed here; the
entireA|p...r|is sorted

the performance auicksort dependxtremelyon how thepivots are
selected!

Last modified: Wednesday 2May, 2008, 00:02 2008 &An Maiuch

SFU CMPT-307 2008-2 42 Lecture: Week 3

Quicksort(A, p,r)
1. If p < rthen
2: q < Partition 4, p, r)
3: QuicksortA,p,q — 1)
4. QuicksortA,q+1,r)
5. end if

To sort the entire array, call
Quicksort(A, 1,lengthA))

Note: this is a very “naive” implementation because it reesrdown to
the very end.

Efficient implementations do special things at the bottomeafirsion
(callsoptimal procedures to sort sub-arrays of lengths up to, Bay,

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 43 Lecture: Week 3

So, a more “practical” solution would look something likésth

Quicksort(A, p,)
1: if r — p = 2then
2: Sort2 A, p)
else ifr — p = 3 then
Sort3 4, p)
else ifr — p = 4 then
Sort4 A, p)
else ifr — p = 5 then
Sort5 A4, p)
else ifr — p = 6 then
10: Sortg A, p)
11: else ifr — p = 7 then
12: Sort/ A, p)
13: else ifp < r then
14: g <+ Partition 4, p,)
15. QuicksortA,p,q — 1)
16: QuicksortA,q+ 1,7r)
17: end if

Last modified: Wednesday 2May, 2008, 00:02 2008 &An Maiuch

SFU CMPT-307 2008-2 44 Lecture: Week 3

Partition

The most important part duicksort.
Partition (A, p,)

1.z + Alr] [* choose a pivotr */

2.1+ p—1

3: for j < ptor—1do

4. if Alj] < x then

5: 11+ 1

6 exchanged|i| <> Alj]
7. endif

8: end for

9: exchanged|i + 1] <> A|r]

10: returnz + 1

Last modified: Wednesday 2May, 2008, 00:02 2008 &An Maiuch

SFU CMPT-307 2008-2 45 Lecture: Week 3

Partition (A, p, r)
1. x < Alr] [* choose a pivot: */
2.1+ p—1
3: for j« ptor—1do
4. if A[j] < x then
5: 14141
6 exchangedli] < A[j]
7. endif
8: end for
9: exchanged[i + 1] < A|r]
10: returnz + 1
the loop invariant:

e at the beginning of each iteration of the loop 3-8

1. each elementdd|p.. .| is smaller than or equal to pivat
2. eachelementod[: + 1...5 — 1] is greater than

3. elementsA|j...r — 1] are so-far arbitrary

4. elementd|r] =z

Last modified: Wednesday 2May, 2008, 00:02 2008 &An Maiuch

SFU CMPT-307 2008-2 46 Lecture: Week 3

i~
=
i~
=

Last modified: Wednesday 2May, 2008, 00:02 2008 &An Maiuch

SFU CMPT-307 2008-2 47 Lecture: Week 3

Correctness:

enough to prove first 2 conditions (condition 4 satisfied hg 1)

Initialization: before 1st iteration, = p — 1 andj = p; first two
conditions are trivial

Maintenance: 2 cases:

Alj] > x |—onlyj is increased in the loop; enough to check

condition 2 for elemend [j — 1]

Alj] < z|—1iisincremented, thed [i| and A|j] are swapped, then

IS incremented; enough to check condition 1 fof| (ok, because of

swapping) and condition 2 fod[j — 1] (ok, by the loop invariant)

Termination: j = r, hence there are no elements in part 3, the others are
divided as required

finally, to get correct order of these 3 parts, we swap thedleshent of
the second part witl [r]

running time®(n), wheren =r —p + 1

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

SFU CMPT-307 2008-2 48 Lecture: Week 3

This particular implementation éfartition is not good because it always
uses the rightmost element as pivot.

It's easy to come up with examples that force this implememao be
very bad (meaning overall running tinfgn?)).

What we want is amevenpartition of A[p . .. r] into two sub-arrays of
(about) the same size.

That’s the second very important feature of efficient impdatations of
Quicksort.

There are several not-too-bad ways:

e look at, sayp fixed array elements and pick the median

e pick arandomly chosenelement

e look at, sayb randomly chosenelements and pick the median
e Many more

In practice, the random variant usually works best (unlegshappen to
know something about your inputs)

Last modified: Wednesday 2May, 2008, 00:02 2008 &n Maiuch

	Important basic procedures for max-heaps
	Max-Heapify
	Building a heap
	Build-Max-Heap Correctness
	Build-Max-Heap Running time
	Heapsort
	(Simple) Queues
	Priority queues
	What are they good for?
	Extract max
	Increase key
	Insert
	A lower boundfor comparison-based sorting
	Quicksort
	Partition

