SFU CMPT-307 2008-2 1 Lecture: Week 2

SFU CMPT-307 2008-2 Lecture: Week 2

Jan Manuch

E-mail: jmanuch@sfu.ca

Lecture on May 13, 2008, 5.30pm-8.20pm

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 2 Lecture: Week 2

Divide and Conquer — Merge-Sort

e dividethe problem into a number of subproblems

e conguer the subproblems by solving them recursively or if they are
small, there must be an easy solution.

e combine the solutions to the subproblems to the solution of the
problem

Example:

MERGESORT(A, p,)
1. If p < rthen
22 g« [(p+1)/2]
3: MERGESORT(A,p,q)
4. MERGESORT(A,q + 1,r)
5. MERGHA,p,q,r)
6: end if

Initial call for input arrayA = A[1]... A[n] is MERGESORT(A, 1,n).
Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2

Lecture: Week 2

Example:

sorted seguence

12234561

2457

1236

25

47

13

26

512

4

Z

1

3

2

Initial sequence

MERGESORT

e splits length¢ sequence into two lengtf)-2 sequences

e sorts them recursively

e merges the two sorted subsequences

Last modified: Wednesday $4viay, 2008, 00:04

2008 &n Maiuch

SFU CMPT-307 2008-2 4 Lecture: Week 2

Merging

MERGEA, p, q,7)
Take the smallest of the two frontmost elements of sequeAges;| and

Alq + 1..r] and put it into a temporary array. Repeat this, until both
sequences are empty. Copy the resulting sequence from tari@oray
into A[p..r].

Assignment Problem 2.1.(deadline: May 20, 5:30pm)

Write a pseudo code for the procedur&ERM:E A, p, ¢, r) used in
Merge-sort algorithm for merging two sorted arrayi® . . . ¢| and

Alg + 1...r]into onewithout using sentinels (see Section 2.3.1 of the

textbook for details).

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 5 Lecture: Week 2

Analyzing an D&Q algorithms

Let 7'(n) be running time on problem of size

e If nis small enough (say, < c for constant), then straightforward
solution take$ (1)

e If division of problem yields: subproblems, each of whidhs of
original (Merge-Sorta = b = 2)

¢ Division into subproblems take3(n)

e Combination of solutions to subproblems tak&s:)

Then,
O(1) ifn<c

T(n) = .
al'(n/b) + D(n) + C(n) otherwise

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 6 Lecture: Week 2

For Merge-Sort:

e a=0=2
e D(n)=0(1) (Just compute “middle” of array)

e C(n) = ©(n) (merging has running time linear in length of resulting
sequence; take my word for it)

Thus

o(1) if n <1

TI\/IS(”) — TMS(Ln/QJ) n TMSqn/Q") + ©(n) otherwise.

That's what's called aecurrence

But: we wantclosed form i.e., we want tasolve the recurrence.

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 7 Lecture: Week 2

Solving recurrences

There are a few methods for solving recurrences, some easyan
powerful, some complicated and powerful.

Methods:

1. guess & verify (also called
“substitution method™)

2. recursion-tree method
3. master method

4. generating functions
and some others.

We're going to see 1., 2. and 3.

Last modified: Wednesday $4viay, 2008, 00:04 2008 &n Maiuch

SFU CMPT-307 2008-2 8 Lecture: Week 2

Substitution method

Basic idea:
1. “guess’ the form of the solution

2. Use mathematical induction to find constants smmv that solution
works.

Usually more difficult part is the part 1.

Back to example: we had

Tis(n) < 2Tvs([n/2]) + ©(n)
forn > 2.

If you hadn’t seen something like this befolmw would you guess?

There is no general way to guess the correct solutions. déstakperience.

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 9 Lecture: Week 2

Heuristics that can help to find a good guess.

e One way would be to havelaok at first few terms. Say if we had
T(n)=2T(n/2)+ 3n, then
T(n) = 2T(n/2)+ 3n
= 2(2T(n/4) +3(n/2)) + 3n
= 2(2(2T(n/8) +3(n/4)) +3(n/2)) + 3n
= 2°T(n/2°) + 223(n/2%) + 2'3(n/2') + 2°3(n/2")
We can do thidog n times

log(n)—1
25T T(nf28 ")+ Y7 2'3(n/2)
1=0

log(n)—1
= n-T(1)+3n- Y 1
i=0
= n-T(1)+3nlogn = O(nlogn)

A guess! After guessing a solution you’ll have farove the correctness
Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 10 Lecture: Week 2

e recursion-tree method (in a moment)

e similar recurrences might have similar solutions

Consider
T(n) =2T(|n/2] +25)+n

Looks similar to last example, but is the additiogalin the
argument going to change the solution?

Not really, because for large difference between
T(|n/2]) and T(|n/2|+ 25)
IS not large: both cut nearly in half: forn = 2,000 we have
T(1,000) and T(1,025),
for n = 1,000, 000 we have
T(500,000) and T'(500,025).

Thus, reasonable assumption is that now
T(n) = 0O(nlogn) as well.
Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 11 Lecture: Week 2

e stepwise refinement- guessing loose lower and upper bounds, and
gradually taking them closer to each other

ForT(n) =2T(|n/2]) + n we see
— T'(n) = Q(n) (because of the term)
— T(n) = O(n?) (easily proven)

From there, we can perhaps “converge” on asymptoticallyttig
bound®(nlogn).

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 12 Lecture: Week 2

Proving correctness of a guess

For Merge-Sort we hav€(n) < 27T'(|n/2|) + ©(n), which means, there
IS a constan > 0 such that

T(n) <2T(|n/2])+dn forn > 2.

We guessed that(n) = O(nlogn).

We proveT'(n) < cnlogn for appropriate choice of constant> 0.

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 13 Lecture: Week 2

Induction hypothesis: assume that bound holds for any m, hence
also forn = [m/2], i.e.,

T(Im/2]) < c[m/2]log([m/2])

and prove it form > 4 (induction step):

T(m) < 2T([m/2])+dm
< 2(c[m/2]log([m/2])) + dm
< 2(e(m+1)/2-log((m+1)/2)) + dm
< c¢(m+1)log((m+1)/2) +dm
= c¢(m+1)log(m+1) —c(m+1)log2+ dm
< c¢m+1)(logm+1/3) —c(m+1) +dm
= cmlogm+ clogm +c¢/3(m+1) —c(m + 1) +dm
< cmlogm+cm/2—2/3c(m+ 1) +dm
< emlogm+ (¢/2—2/3c+d)m = cmlogm + (d — ¢/6)m
< emlogm forc > 6d.

Last modified: Wednesday $4viay, 2008, 00:04 2008 &n Maiuch

SFU CMPT-307 2008-2 14 Lecture: Week 2

Base step

It remains to show that boundary conditions of recurremee< 4) are
suitable as base cases for the inductive proof

We have got to show that we can choedarge enough s.t.bound
T(m) < cmlogm

works for boundary conditions as well (when < 4).
Assume thafl'(1) = b > 0.

Form =1,
T(m)<cmlogm=c-1-0=0

IS a bit of a problem, becaudg1) is a constant greater thén

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 15 Lecture: Week 2

How to resolve this problem?
Recall that we wanted to prove tHA{n) = O(nlogn).

Also, recall that by def 0®(), we are free to disregard a constant number
of small values ofr: f(n) = O(g(n)) < there exist constantsn :
f(n) <c-g(n)forn > ng

A way out of our problem is toemovedifficult boundary condition
T(1) = b > 0 from consideration in inductive proof.

Note: form > 4, T'(m) doesnot depend directly off’(1)
(T'(2) < 2T(1) + 2d = 2b + 2d,
T(3) < 2T°(2) + 3d = 2(2b + 2d) + 3d = 4b + 7d, T'(4) < 2T(2) + 4d)

This means:
We replacéel’(1) by T'(2) andT’(3) as the base case in the inductive

proof, lettingny = 2.

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 16 Lecture: Week 2

In other words, we are showing that the bound
T(n) <cnlogn
holds for anyn > 2.
o Form =2:T(2) =2b+ 2d? <?c.2log2 = 2¢
o Form =3: T(3) = 4b + 7d? <?c.3log 3

Hence, set to max(6d, b + d, 57275) and the above boundary conditions

as well as the induction step will work.

Important:
General technique! Can be used very often!

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 17 Lecture: Week 2

Exercise: Show that the solution of the recurrence
T'(n) =T([n/2]) +T(|n/2]) + O(n),

IS also inQ2(nlogn).

Assignment Problem 2.2.(deadline: May 20, 5:30pm)
Show that the solution of

T(n)=2T(|n/2] +25)+n

ISin O(nlogn) and inQ2(nlogn).

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 18 Lecture: Week 2

Common pitfall

Might be tempted to “falsely” prove that faf(n) = 27(n/2) + n we
haveT' (n) = O(n).

Guessl'(n) < c - n.

=

G

0 IA A
ST e
Et+ 53
- I3 =
N

= + +
S 3

Although (¢ + 1) - n certainlyisin O(n), we havenot proved that
T(n) <c-n.

We must proveexactform of inductive hypothesis!

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 19 Lecture: Week 2

A neat trick called “changing variables”

Suppose we have
T(n) =2T(v/n) +logn

Now renamen = logn < 2™ = n. We know
v =nl/? = (2m)1/2 = 2m/2 and thus obtain

T(2™) = 2T(2™'%) + m
Now renameS(m) = T'(2™) and get
S(m) =25(m/2) +m

Looks familiar. We know the solutiofS(m) = ©(mlogm).

Going back fromS(m) to T'(n) we obtain

T(n)=T(2™)=5S(m)=0(mlogm) = O(lognloglogn)

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 20 Lecture: Week 2

The recursion-tree method

e helps to come up with a good guess for the substitution method

e useful for recurrences describing the running time of a
divide-and-conquer algorithm,

e build arecursion tree where each node represents the cost of single
subproblem called somewhere during the computation of e m
problem

e We can forget about the detalls: floors and ceilings

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 21 Lecture: Week 2

Some basic algebra

Sums

+(a+1)+(@+2)+---+(b—-1)+0

a+b)(b—a+1
—Z@az()(o—at1)

at+a-cta-c*+---+a-c"t+a-c"

_ n i _ 1—cnt!

If 0 < ¢ < 1then we can estimate the sum as follows

n i o 1—c"t! 1
D i@ C' =a T ¢ <1

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 22 Lecture: Week 2

logarithms and powers

log, n anda™ are inverse functions to each other:

log,(a™) = n |forall n

a8 = pn (foralln > 0

properties:

log, (b-c) =log, b+ log, c

_ log.b
log, b = oz a

log, b = oz, a
alogc b _ blogC a

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 23 Lecture: Week 2

Example.T'(n) = 3T(|n/4]) + O(n?)
build a recursion tree fdf'(n) = 3T'(n/4) + cn?
see Figure 4.1 in textbook
summing the rows of the tree we get
T(n) =cn® + —cn + (%)2071 + -+ (1%)10%”L n—lep? 4 ©(nloss3)
- 1
1—3/16

}gcn + O(n'°813) € O(n?)

cn? + O(nlo8s3)

log, 3 = 1.262, hence

n'°8s+3 ¢ o(n?) and so

T(n) € O(n?)
then prove by the substitution method (MI) that the gu@¢s?) is correct

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 24 Lecture: Week 2

Assignment Problem 2.3.(deadline: May 20, 5:30pm)
Use a recursion tree to determine a good asymptotic uppedoon the
recurrence

T(n) = 3T(|n/2]) +n.

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 25 Lecture: Week 2

The “Master Method”

Recipe for recurrences of the form

T(n) = aT(n/b) + f(n)
with ¢ > 1 andb > 1 constant, ang (n) an asymptotically positive
function (f(n) = 5, f(n) = clogn, f(n) = n, f(n) = n'? are just fine).
Split problem intaz subproblems each of sizg'b.
Subproblems are solved recursively, each in tifite /b).

Dividing problem and combining solutions of subproblemeaptured by

fn).

Deals with many frequently seen recurrences (in particolar
Merge-Sort example with = b = 2 and f(n) = ©(n)).

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 26 Lecture: Week 2

Theorem. Leta > 1 andb > 1 be constants, lef(n) be a function, and
let T'(n) be defined on the nonnegative integers by the recurrence

T(n) = aT(n/b) + f(n),

where we interpret /b to mean eithefn/b| or [n/b]. ThenT'(n) can be
bounded asymptotically as follows.

. If f(n) = O(nl°8 2)=¢) for some constant > 0, then
" T © o).

2. If f(n) = ©(n'°8 %), then
T(n) = ©(n'°8 % . logn).

. If f(n) = Q(n°8> 9)+¢) for some constant > 0, and if

a- f(n/b) <c- f(n)for some constant < 1 and all sufficiently
largen, thenT'(n) = ©(f(n)).

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 27 Lecture: Week 2

Notes on Master’'s Theorem

2. If f(n) = ©(n'°e» %), then
T(n) = ©(n'°8s 2 . logn).
Note 1: Although it’s looking rather scary, it really isn’t. For it@ce,
with Merge-Sort’s recurrenc€é(n) = 27'(n/2) + ©(n) we have
niogs @ = plog22 — nl — ¢ and we can apply case 2.
The result is therefor®(n'°8: @ . logn) = A(nlogn).

I f(n) = O(n'1°8» =€) for some constarnt > 0, then
T(n) — O(nloss @),

Note 2: In case 1,
f(”ll) _ n(logb a)—e _ nlogb a/ne _ O(nlogb a) ’

so thee doesmatter. This case is basically about “small” functighBut
it's not enough iff (n) is just asymptotically smaller thagi°s: ¢ (that is
f(n) € o(n'°8»), it mustpolynomially smaller!

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 28 Lecture: Week 2

. If f(n) = Q(nl°8 2)+) for some constant > 0, and if
a- f(n/b) <c- f(n)for some constant < 1 and all sufficiently
largen, thenT'(n) = ©(f(n)).

Note 3: Similarly, in case 3,
f(n) _ n(logb a)te _ nlogb a ., € w(,nlogb a) 7

so thee doesmatter again. This case is basically about “large” funaion
n. But again,f(n) € w(n'°&) is not enough, it must bgolynomially
larger. And in additionf(n) has to satisfy therégularity condition ™

af(n/b) < cf(n)

for for some constant < 1 andn > ng for someny.

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 29 Lecture: Week 2

The idea is that weompare n'°8> @ to f(n).

Result is (intuitively) determined by larger of two.
In case 1p'°8 @ is larger, so result i®)(n!'°g> @),

In case 3,f(n) is larger, so result i®(f(n)).

In case 2, both have same order, we multiply it by a logarithiactor,
and result i (n'°& @ . logn) = O(f(n) - logn).

Important: Does not coveall possible cases.

For instance, there is a gap between cases 1 and 2 whef{evas
smaller tham!°g» @ but notpolynomially smaller.

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 30 Lecture: Week 2

Using the master theorem

Simple enough. Some examples:
T(n)=9T(n/3) +n

We havea = 9, b = 3, f(n) = n. Thus,n!°8 ¢ = plog:9 = 2, Clearly,
f(n) = O(n'°8:(®)=¢) for ¢ = 1, so case 1 give(n) = O(n?).

T(n) = T(2n/3) + 1

We haveq = 1,b = 3/2, andf(n) = 1, sonlogs @ = plo82/st — p0 — 1,
Apply case 2 f(n) = O(n'°& 2) = O(1), resultisT'(n) = O(logn).

T(n) =3T(n/4) + nlogn

We haven = 3,b = 4, andf(n) = nlogn, SO

n'osy @ = plogs3 — O(nV-793). Clearly, f(n) = nlogn = Q(n) and thus
also f(n) = Q(n'°ge(@)+€) for e ~ 0.2. Also,

a- f(n/b) =3(n/4)log(n/4) < (3/4)nlogn = c- f(n) for any

c = 3/4 < 1. Thus we can apply case 3 with resilin) = ©(nlogn).

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 31 Lecture: Week 2

Assignment Problem 2.4.(deadline: May 20, 5:30pm)
Use the master method to give tight asymptotic bounds fofdlh@ving

recurrences:
(@) T'(n) =4T(n/2) + n,
(b) T(n) = 4T (n/2) + n?,
(c) T(n) = 4T (n/2) + n?

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 32 Lecture: Week 2

Examples when we cannot apply the master theorem

T(n) =2T(n/2) +nlogn

we haven = 2, b = 2, f(n) = nlogn andn!°8 ¢ = n. Although,
f(n) = nlogn is asymptotically larger than, it's not polynomially
larger. The ratio

f(n)/n'°&"™ = (nlogn)/n = logn

IS asymptotically smaller tham® for any positive constart The
recurrence is in the “gap” between cases 2 and 3.

T(n)=2T(n/2) +n/logn

similarly, the recurrence is in the gap between cases 1 and 2

but we can get at least asymptotic lower and upper bounds!

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 33 Lecture: Week 2

Scheme how to use the master theorem

T(n) = aT(n/b) + f(n)
1. identifya, b and f (n)
2. compute the special functiciin) = n'°s» ¢

3. compare the special functiain) to f(n)

(@) f(n)asymptotically smaller thas(n)
e check if polynomially smaller:
f(n)

e ifin Q(n°) for somee > 0, then (case 1) answer®(s(n))
e ifin o(n°) for all ¢ > 0, then we have a lower bouriti s(n))
and an upper boun@(s(n) logn)

compute

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 34 Lecture: Week 2

(b) f(n) asymptotically equal te(n)
e case 2, answer ®(f(n)logn)
(c) f(n)asymptotically larger thas(n)
e check if polynomially larger:
f(n)
s(n)
e ifin Q(n) for somee > 0, then check regularity condition; if ok, then
(case 3) answer ®(f(n))

e ifin o(n°) for all e > 0, then we have a lower bourid s(n) logn) and
an upper bound(s(n)n*) for all € > 0

compute

Exercise.Problem 4-1 (page 85), Problem 4—4 (page 86)

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 35 Lecture: Week 2

Sorting

Input: A sequence ofi numbersA(l], ..., An];
Output: A reorderingB(1],..., B|n] of the input sequence such that

B[] < B[2] < --- < B[n]
Sorting in general is extremely important, as well in theasyin practice.

Sorting problems pop up all over the place, thusakéremely important
that sorting can be dorfast (think of large databases).

We've already seen 2 sorting algorithnds|ection-Sort andMerge-Sort.

Selection-Sort has running time& (n?), but: it'sin-place, and the
constants are small. It’'s good for small inputs (like beiegursion
end for other algorithms).

In-place only a constant number of elements of the input array are ever
stored outside the array

Merge-Sort is asymptotically faste) (nlogn), but: it's not in-place
(Merge operation).
Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 36 Lecture: Week 2

We're going to see a few others:
Heap-Sort O(nlogn), in-place

Quick-Sort: O(n?) worst-case, bub(nlogn) on average, in-place, in
practice generally faster than Heap-Sort. Small const&usd for large
Inputs.

So far, allcomparison-basecdalgorithms.

We can prove théwer bound of Q2(n log n) for such algorithms (later in
the course).

There are other approaches, when we collect informationtabe input
using different methods than comparing elements.

Using those approaches we can achieve a linear time (example
Radix-Sort andBucket-Sort), but we have to put additional conditions
on the input (for example that elements are integers frons¢he
{1,2,...,cn} for some constant).

We will see later. ..
Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 37 Lecture: Week 2

Heap

A heap(data structure) is lnear array that stores a nearly complete
tree.

Only talking aboubinary heapsthat storebinary trees.

nearly complete trees

e all levels except possibly the lowest one are filled

e the bottom level is filled from left to right up to some point

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 38 Lecture: Week 2

Want to store trees like that one such that certain propeatie
maintained.

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 39 Lecture: Week 2

Suppose that array stores (or represents) a binary heap

Two major attributes:

e length A) is number of elementsin array A
e heap-sizéA) is number of elements in heapstored within arrayd

Although A[1], ..., A[length(A)] can contairvalid numbers, only

elementA[1],. .., A[heap-siz€A)| actually storeelements of the heap
heap-sizéA) < length(A).

Will see what this is good for.

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 40

Lecture: Week 2

Assignment of tree vertices to array elements:

Very easy:
e rootisA[l]
e given index; of some node, we have
— PARENT(2) = [¢/2]
— LEFT(i) = 2¢
— RIGHT(?) = 2i + 1
Implementation straightforward:
o | — 21
left-shift by one of bit string representing
o | —21+1

left-shift by one plus adding ato the last bit

o | — |i/2]
right-shift by one

Last modified: Wednesday $4viay, 2008, 00:04

2008 &n Maiuch

SFU CMPT-307 2008-2 41 Lecture: Week 2

8 9 10 11 12

1 2 3 4 5 6 [/ 8 9 10 11 12

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 42 Lecture: Week 2

This particular vertex numbering isn’t the only requirertEm the thing
to be a proper heap

Two kinds: min-heapsandmax-heaps
Both cases, values in nodes satisgap property
e max-heapwith max-heap property.
for every node (other than root)
A[PARENT(7)] > Alt]
meaning: value of node et mostvalue of parent, largest value is
stored at root
e Min-heap with min-heap property:
for every node (other than root)

A[PARENT(2)] < Al¢]

meaning: value of node et leastvalue of parent, smallest value is
stored at root

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 43 Lecture: Week 2

Suppose given values 1,2,4,6,6,7,8,12,14,15,19,21

number inside vertices are values
numbers outside are array indices
Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 44 Lecture: Week 2

Note: given fixed set of values, there are many possible propermhaaps
and max-heaps (except for what's at root)

We’'ll see applications for max-heaps (Heapsort) and mempbepriority
gueues, later)

If viewing heap as “ordinary” tree, defirieight of vertex as # of edges
on longest simple downward path from vertex to some leaf

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 45 Lecture: Week 2

(.
(C
‘H
C

O O O O C
0 0 0 0 O

The height of a heap is the height of its root.

A heap ofn elements is based on a complete binary tree, therefore its
height is© (log n)

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

SFU CMPT-307 2008-2 46 Lecture: Week 2

Assignment Problem 2.5.(deadline: May 20, 5:30pm)
What are the minimum and maximum numbers of elements in adfeap
heighth? Prove that am-element heap has heighbg, n .

Last modified: Wednesday $4viay, 2008, 00:04 2008 An Maiuch

	Divide and Conquer --- Merge-Sort
	Merging
	Analyzing an D&Q algorithms
	Solving recurrences
	Substitution method
	Proving correctness of a guess
	Base step
	Common pitfall
	A neat trick called ``changing variables''
	The recursion-tree method
	Some basic algebra
	The ``Master Method''
	Notes on Master's Theorem
	Using the master theorem
	Examples when we cannot apply the master theorem
	Scheme how to use the master theorem
	Sorting
	Heap

