
SFU CMPT-307 2008-2 1 Lecture: Week 2

SFU CMPT-307 2008-2 Lecture: Week 2

Ján Maňuch

E-mail: jmanuch@sfu.ca

Lecture on May 13, 2008, 5.30pm-8.20pm

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 2 Lecture: Week 2

Divide and Conquer — Merge-Sort� divide the problem into a number of subproblems� conquer the subproblems by solving them recursively or if they are
small, there must be an easy solution.� combine the solutions to the subproblems to the solution of the
problem

Example:

MERGE-SORT(A; p; r)
1: if p < r then
2: q b(p+ r)=2c

3: MERGE-SORT(A; p; q)
4: MERGE-SORT(A; q + 1; r)
5: MERGE(A; p; q; r)

6: end if

Initial call for input arrayA = A[1] : : : A[n] is MERGE-SORT(A; 1; n).
Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 3 Lecture: Week 2

Example:

sorted sequence

1 2 2 3 4 5 6 7

2 4 5 7 1 2 3 6

2 5 4 7 1 3 2 6

5 2 4 7 1 3 2 6

initial sequence

MERGE-SORT� splits length-` sequence into two length-`=2 sequences� sorts them recursively� merges the two sorted subsequences

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 4 Lecture: Week 2

Merging

MERGE(A; p; q; r)
Take the smallest of the two frontmost elements of sequencesA[p::q] andA[q + 1::r] and put it into a temporary array. Repeat this, until both

sequences are empty. Copy the resulting sequence from temporary array

intoA[p::r].
Assignment Problem 2.1.(deadline: May 20, 5:30pm)

Write a pseudo code for the procedure MERGE(A; p; q; r) used in

Merge-sort algorithm for merging two sorted arraysA[p : : : q] andA[q + 1 : : : r] into onewithout using sentinels (see Section 2.3.1 of the

textbook for details).

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 5 Lecture: Week 2

Analyzing an D&Q algorithms

Let T (n) be running time on problem of sizen� If n is small enough (say,n � c for constantc), then straightforward

solution takes�(1)� If division of problem yieldsa subproblems, each of which1=b of

original (Merge-Sort:a = b = 2)� Division into subproblems takesD(n)� Combination of solutions to subproblems takesC(n)
Then, T (n) = 8<: �(1) if n � caT (n=b) +D(n) + C(n) otherwise

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 6 Lecture: Week 2

For Merge-Sort:� a = b = 2� D(n) = �(1) (just compute “middle” of array)� C(n) = �(n) (merging has running time linear in length of resulting

sequence; take my word for it)

Thus

TMS(n) = 8<: �(1) if n � 1TMS(bn=2c) + TMS(dn=2e) + �(n) otherwise.

That’s what’s called arecurrence

But: we wantclosed form, i.e., we want tosolve the recurrence.

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 7 Lecture: Week 2

Solving recurrences

There are a few methods for solving recurrences, some easy and not

powerful, some complicated and powerful.

Methods:

1. guess & verify (also called

“substitution method”)

2. recursion-tree method

3. master method

4. generating functions

and some others.

We’re going to see 1., 2. and 3.

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 8 Lecture: Week 2

Substitution method

Basic idea:

1. “guess” the form of the solution

2. Use mathematical induction to find constants andshow that solution

works.

Usually more difficult part is the part 1.

Back to example: we hadTMS(n) � 2TMS(dn=2e) + �(n)
for n � 2.

If you hadn’t seen something like this before,how would you guess?

There is no general way to guess the correct solutions. It takes experience.

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 9 Lecture: Week 2

Heuristics that can help to find a good guess.� One way would be to have alook at first few terms. Say if we hadT (n) = 2T (n=2) + 3n, thenT (n) = 2T (n=2) + 3n= 2(2T (n=4) + 3(n=2)) + 3n= 2(2(2T (n=8) + 3(n=4)) + 3(n=2)) + 3n= 23T (n=23) + 223(n=22) + 213(n=21) + 203(n=20)

We can do thislog n times

2logn � T (n=2logn) + log(n)�1Xi=0 2i3(n=2i)

= n � T (1) + 3n � log(n)�1Xi=0 1= n � T (1) + 3n log n = �(n log n)
A guess! After guessing a solution you’ll have toprove the correctness.

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 10 Lecture: Week 2� recursion-tree method (in a moment)� similar recurrences might have similar solutions

Consider T (n) = 2T (bn=2c+ 25) + n

Looks similar to last example, but is the additional25 in the
argument going to change the solution?

Not really, because for largen, difference betweenT (bn=2c) and T (bn=2c+ 25)

is not large: both cutn nearly in half: forn = 2; 000 we haveT (1; 000) and T (1; 025);
for n = 1; 000; 000 we haveT (500; 000) and T (500; 025):
Thus, reasonable assumption is that nowT (n) = O(n log n) as well.

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 11 Lecture: Week 2

� stepwise refinement– guessing loose lower and upper bounds, and

gradually taking them closer to each other

ForT (n) = 2T (bn=2c) + n we see

– T (n) =
(n) (because of then term)

– T (n) = O(n2) (easily proven)

From there, we can perhaps “converge” on asymptotically tight

bound�(n log n).

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 12 Lecture: Week 2

Proving correctness of a guess

For Merge-Sort we haveT (n) � 2T (dn=2e) + �(n), which means, there

is a constantd > 0 such thatT (n) � 2T (dn=2e) + dn for n � 2.

We guessed thatT (n) = O(n log n).
We proveT (n) � cn log n for appropriate choice of constantc > 0.

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 13 Lecture: Week 2

Induction hypothesis: assume that bound holds for anyn < m, hence
also forn = dm=2e, i.e.,T (dm=2e) � cdm=2e log(dm=2e)

and prove it form � 4 (induction step):T (m) � 2T (dm=2e) + dm� 2(cdm=2e log(dm=2e)) + dm� 2(c(m+ 1)=2 � log((m+ 1)=2)) + dm� c(m+ 1) log((m+ 1)=2) + dm= c(m+ 1) log(m+ 1)� c(m+ 1) log 2 + dm� c(m+ 1)(logm+ 1=3)� c(m+ 1) + dm= cm logm+ c logm+ c=3(m+ 1)� c(m+ 1) + dm� cm logm+ cm=2� 2=3c(m+ 1) + dm� cm logm+ (c=2� 2=3c+ d)m = cm logm+ (d� c=6)m� cm logm for c � 6d.

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 14 Lecture: Week 2

Base step

It remains to show that boundary conditions of recurrence (m < 4) are

suitable as base cases for the inductive proof.

We have got to show that we can choosec large enough s.t.boundT (m) � cm logm
works for boundary conditions as well (whenm < 4).

Assume thatT (1) = b > 0.

Form = 1, T (m) � cm logm = c � 1 � 0 = 0
is a bit of a problem, becauseT (1) is a constant greater than0.

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 15 Lecture: Week 2

How to resolve this problem?

Recall that we wanted to prove thatT (n) = O(n log n).
Also, recall that by def ofO(), we are free to disregard a constant number

of small values ofn: f(n) = O(g(n)) , there exist constantsc; n0 :f(n) � c � g(n) for n � n0
A way out of our problem is toremovedifficult boundary conditionT (1) = b > 0 from consideration in inductive proof.

Note: form � 4, T (m) doesnot depend directly onT (1)

(T (2) � 2T (1) + 2d = 2b+ 2d,T (3) � 2T (2) + 3d = 2(2b+ 2d) + 3d = 4b+ 7d, T (4) � 2T (2) + 4d)

This means:
We replaceT (1) by T (2) andT (3) as the base case in the inductive

proof, lettingn0 = 2.

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 16 Lecture: Week 2

In other words, we are showing that the boundT (n) � cn log n

holds for anyn � 2.� Form = 2: T (2) = 2b+ 2d? �?c:2 log 2 = 2c� Form = 3: T (3) = 4b+ 7d? �?c:3 log 3
Hence, setc tomax(6d; b+ d; 4b+7d3 log 3) and the above boundary conditions

as well as the induction step will work.

Important:
General technique! Can be used very often!

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 17 Lecture: Week 2

Exercise: Show that the solution of the recurrenceT (n) = T (bn=2c) + T (dn=2e) + �(n);

is also in
(n log n).
Assignment Problem 2.2.(deadline: May 20, 5:30pm)

Show that the solution ofT (n) = 2T (bn=2c+ 25) + n
is inO(n log n) and in
(n log n).

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 18 Lecture: Week 2

Common pitfall

Might be tempted to “falsely” prove that forT (n) = 2T (n=2) + n we
haveT (n) = O(n).
GuessT (n) � c � n.

T (n) = 2T (n=2) + n� 2(c:n=2) + n� cn+ n= (c+ 1) � n= O(n)
Although(c+ 1) � n certainlyis in O(n), we havenot proved thatT (n) � c � n.

Wemust proveexact form of inductive hypothesis!

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 19 Lecture: Week 2

A neat trick called “changing variables”

Suppose we have T (n) = 2T (pn) + log n

Now renamem = log n, 2m = n. We knowpn = n1=2 = (2m)1=2 = 2m=2 and thus obtainT (2m) = 2T (2m=2) +m
Now renameS(m) = T (2m) and getS(m) = 2S(m=2) +m
Looks familiar. We know the solutionS(m) = �(m logm).
Going back fromS(m) to T (n) we obtainT (n) = T (2m) = S(m) = �(m logm) = �(log n log log n)

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 20 Lecture: Week 2

The recursion-tree method

� helps to come up with a good guess for the substitution method� useful for recurrences describing the running time of a

divide-and-conquer algorithm,� build arecursion tree where each node represents the cost of single

subproblem called somewhere during the computation of the main

problem� we can forget about the details: floors and ceilings

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 21 Lecture: Week 2

Some basic algebra

Sumsa+ (a+ 1) + (a+ 2) + � � �+ (b� 1) + b=Pbi=a i = (a+b)(b�a+1)2a+ a � c+ a � c2 + � � �+ a � cn�1 + a � cn=Pni=0 a � ci = a � 1�cn+11�c
if 0 < c < 1 then we can estimate the sum as followsPni=0 a � ci = a � 1�cn+11�c < a � 11�c

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 22 Lecture: Week 2

logarithms and powersloga n andan are inverse functions to each other:loga(an) = n for all naloga n = n for all n > 0
properties:loga(b � c) = loga b+ loga cloga b = logc blogc aloga b = 1logb aalogc b = blogc a

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 23 Lecture: Week 2

Example.T (n) = 3T (bn=4c) + �(n2)

build a recursion tree forT (n) = 3T (n=4) + cn2

see Figure 4.1 in textbook

summing the rows of the tree we getT (n) =cn2 + 316cn2 + (316)2cn2 + � � �+ (316)log4 n�1cn2 +�(nlog4 3)< 11� 3=16cn2 +�(nlog4 3)=1613cn2 +�(nlog4 3) 2 O(n2)log4 3 := 1:262, hencenlog4 3 2 o(n2) and soT (n) 2 O(n2)

then prove by the substitution method (MI) that the guessO(n2) is correct

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 24 Lecture: Week 2

Assignment Problem 2.3.(deadline: May 20, 5:30pm)

Use a recursion tree to determine a good asymptotic upper bound on the

recurrence T (n) = 3T (bn=2c) + n :
Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 25 Lecture: Week 2

The “Master Method”

Recipe for recurrences of the formT (n) = aT (n=b) + f(n)

with a � 1 andb > 1 constant, andf(n) an asymptotically positive

function (f(n) = 5, f(n) = c log n, f(n) = n, f(n) = n12 are just fine).

Split problem intoa subproblems each of sizen=b.
Subproblems are solved recursively, each in timeT (n=b).
Dividing problem and combining solutions of subproblems iscaptured byf(n).
Deals with many frequently seen recurrences (in particular, our

Merge-Sort example witha = b = 2 andf(n) = �(n)).
Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 26 Lecture: Week 2

Theorem. Let a � 1 andb > 1 be constants, letf(n) be a function, and

let T (n) be defined on the nonnegative integers by the recurrenceT (n) = aT (n=b) + f(n);

where we interpretn=b to mean eitherbn=bc or dn=be. ThenT (n) can be

bounded asymptotically as follows.

1. If f(n) = O(n(logb a)��) for some constant� > 0, thenT (n) = �(nlogb a).
2. If f(n) = �(nlogb a), thenT (n) = �(nlogb a � log n).
3. If f(n) =
(n(logb a)+�) for some constant� > 0, and ifa � f(n=b) � c � f(n) for some constantc < 1 and all sufficiently

largen, thenT (n) = �(f(n)).
Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 27 Lecture: Week 2

Notes on Master’s Theorem

2. If f(n) = �(nlogb a), thenT (n) = �(nlogb a � log n).
Note 1: Although it’s looking rather scary, it really isn’t. For instance,
with Merge-Sort’s recurrenceT (n) = 2T (n=2) + �(n) we havenlogb a = nlog2 2 = n1 = n, and we can apply case 2.
The result is therefore�(nlogb a � log n) = �(n log n).
1. If f(n) = O(n(logb a)��) for some constant� > 0, thenT (n) = �(nlogb a).

Note 2: In case 1,f(n) = n(logb a)�� = nlogb a=n� = o(nlogb a) ;
so the� doesmatter. This case is basically about “small” functionsf . But
it’s not enough iff(n) is just asymptotically smaller thannlogb a (that isf(n) 2 o(nlogb a), it mustpolynomially smaller!

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 28 Lecture: Week 2

3. If f(n) =
(n(logb a)+�) for some constant� > 0, and ifa � f(n=b) � c � f(n) for some constantc < 1 and all sufficiently

largen, thenT (n) = �(f(n)).
Note 3: Similarly, in case 3,f(n) = n(logb a)+� = nlogb a � n� = !(nlogb a) ;

so the� doesmatter again. This case is basically about “large” functionsn. But again,f(n) 2 !(nlogb a) is not enough, it must bepolynomially

larger. And in additionf(n) has to satisfy the “regularity condition ”:af(n=b) � cf(n)
for for some constantc < 1 andn � n0 for somen0.

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 29 Lecture: Week 2

The idea is that wecompare nlogb a to f(n).
Result is (intuitively) determined by larger of two.

In case 1,nlogb a is larger, so result is�(nlogb a).
In case 3,f(n) is larger, so result is�(f(n)).
In case 2, both have same order, we multiply it by a logarithmic factor,

and result is�(nlogb a � log n) = �(f(n) � log n).
Important: Does not coverall possible cases.

For instance, there is a gap between cases 1 and 2 wheneverf(n) is

smaller thannlogb a but notpolynomially smaller.

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 30 Lecture: Week 2

Using the master theorem

Simple enough. Some examples:T (n) = 9T (n=3) + n
We havea = 9, b = 3, f(n) = n. Thus,nlogb a = nlog3 9 = n2. Clearly,f(n) = O(nlog3(9)��) for � = 1, so case 1 givesT (n) = �(n2).T (n) = T (2n=3) + 1
We havea = 1, b = 3=2, andf(n) = 1, sonlogb a = nlog2=3 1 = n0 = 1.

Apply case 2 (f(n) = �(nlogb a) = �(1), result isT (n) = �(log n).T (n) = 3T (n=4) + n log n
We havea = 3, b = 4, andf(n) = n log n, sonlogb a = nlog4 3 = O(n0:793). Clearly,f(n) = n log n =
(n) and thus

alsof(n) =
(nlogb(a)+�) for � � 0:2. Also,a � f(n=b) = 3(n=4) log(n=4) � (3=4)n log n = c � f(n) for anyc = 3=4 < 1. Thus we can apply case 3 with resultT (n) = �(n log n).
Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 31 Lecture: Week 2

Assignment Problem 2.4.(deadline: May 20, 5:30pm)

Use the master method to give tight asymptotic bounds for thefollowing

recurrences:

(a) T (n) = 4T (n=2) + n,

(b) T (n) = 4T (n=2) + n2,
(c) T (n) = 4T (n=2) + n3.

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 32 Lecture: Week 2

Examples when we cannot apply the master theorem
T (n) = 2T (n=2) + n log n

we havea = 2, b = 2, f(n) = n log n andnlogb a = n. Although,f(n) = n log n is asymptotically larger thann, it’s not polynomially

larger. The ratio f(n)=nlogb n = (n log n)=n = log n

is asymptotically smaller thann� for any positive constant�. The

recurrence is in the “gap” between cases 2 and 3.T (n) = 2T (n=2) + n= log n

similarly, the recurrence is in the gap between cases 1 and 2

but we can get at least asymptotic lower and upper bounds!

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 33 Lecture: Week 2

Scheme how to use the master theorem

T (n) = aT (n=b) + f(n)

1. identifya, b andf(n)
2. compute the special functions(n) = nlogb a

3. compare the special functions(n) to f(n)
(a) f(n) asymptotically smaller thans(n)� check if polynomially smaller:

compute

s(n)f(n)� if in
(n�) for some� > 0, then (case 1) answer is�(s(n))� if in o(n�) for all � > 0, then we have a lower bound
(s(n))
and an upper boundO(s(n) log n)

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 34 Lecture: Week 2

(b) f(n) asymptotically equal tos(n)� case 2, answer is�(f(n) log n)

(c) f(n) asymptotically larger thans(n)� check if polynomially larger:

compute
f(n)s(n)� if in
(n�) for some� > 0, then check regularity condition; if ok, then

(case 3) answer is�(f(n))� if in o(n�) for all � > 0, then we have a lower bound
(s(n) log n) and

an upper boundO(s(n)n�) for all � > 0
Exercise.Problem 4–1 (page 85), Problem 4–4 (page 86)

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 35 Lecture: Week 2

Sorting

Input: A sequence ofn numbersA[1]; : : : ; A[n];
Output: A reorderingB[1]; : : : ; B[n] of the input sequence such thatB[1] � B[2] � � � � � B[n].
Sorting in general is extremely important, as well in theoryas in practice.

Sorting problems pop up all over the place, thus it’sextremely important
that sorting can be donefast (think of large databases).

We’ve already seen 2 sorting algorithms,Selection-Sort andMerge-Sort.

Selection-Sort has running timeO(n2), but: it’s in-place, and the
constants are small. It’s good for small inputs (like being recursion
end for other algorithms).

in-place only a constant number of elements of the input array are ever
stored outside the array

Merge-Sort is asymptotically faster,O(n log n), but: it’s not in-place
(Merge operation).

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 36 Lecture: Week 2

We’re going to see a few others:

Heap-Sort: O(n log n), in-place

Quick-Sort: O(n2) worst-case, butO(n log n) on average, in-place, in

practice generally faster than Heap-Sort. Small constants. Good for large

inputs.

So far, allcomparison-basedalgorithms.

We can prove thelower bound of
(n log n) for such algorithms (later in

the course).

There are other approaches, when we collect information about the input

using different methods than comparing elements.

Using those approaches we can achieve a linear time (examples:

Radix-Sort andBucket-Sort), but we have to put additional conditions

on the input (for example that elements are integers from thesetf1; 2; : : : ; cng for some constantc).
We will see later. . .

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 37 Lecture: Week 2

Heap

A heap(data structure) is alinear array that stores a nearly complete

tree.

Only talking aboutbinary heaps that storebinary trees.

nearly complete trees:� all levels except possibly the lowest one are filled� the bottom level is filled from left to right up to some point

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 38 Lecture: Week 2

Want to store trees like that one such that certain properties are

maintained.

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 39 Lecture: Week 2

Suppose that arrayA stores (or represents) a binary heap

Two major attributes:� length(A) is number of elementsin arrayA� heap-size(A) is number of elements in heapstored within arrayA

AlthoughA[1]; : : : ; A[length(A)] can containvalid numbers, only

elementsA[1]; : : : ; A[heap-size(A)] actually storeelements of the heap,
heap-size(A) � length(A).
Will see what this is good for.

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 40 Lecture: Week 2

Assignment of tree vertices to array elements:

Very easy:� root isA[1]� given indexi of some node, we have

– PARENT(i) = bi=2c
– LEFT(i) = 2i
– RIGHT(i) = 2i+ 1

Implementation straightforward:� i! 2i

left-shift by one of bit string representingi� i! 2i+ 1

left-shift by one plus adding a1 to the last bit� i! bi=2c

right-shift by one

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 41 Lecture: Week 2

2

1

8 9 10 11 12

54 6 7

3

4 11 1232

b

c

d efg

h i

j

k

k b l h i ca g f j d e

l

1

a

98765 10

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 42 Lecture: Week 2

This particular vertex numbering isn’t the only requirement for the thing
to be a proper heap

Two kinds:min-heapsandmax-heaps

Both cases, values in nodes satisfyheap property� max-heapwith max-heap property:

for every nodei (other than root)A[PARENT(i)] � A[i]

meaning: value of node isat mostvalue of parent, largest value is
stored at root� min-heapwith min-heap property:

for every nodei (other than root)A[PARENT(i)] � A[i]
meaning: value of node isat leastvalue of parent, smallest value is
stored at root

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 43 Lecture: Week 2

Suppose given values 1,2,4,6,6,7,8,12,14,15,19,21

1

8 9 10 11 12

54 6 7

32

1

8 9 10 11 12

54 6 7

32

max−heap

min−heap

2

6

6

7

8

12

14

15

19

21

2119

15 14

12

8

7

66

4

2

1

14

number inside vertices are values
numbers outside are array indices

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 44 Lecture: Week 2

Note: given fixed set of values, there are many possible proper min-heaps

and max-heaps (except for what’s at root)

We’ll see applications for max-heaps (Heapsort) and min-heaps (priority

queues, later)

If viewing heap as “ordinary” tree, defineheight of vertex as # of edges

on longest simple downward path from vertex to some leaf

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 45 Lecture: Week 2

0 0 0 0 0

11 1

0

2 2

3

The height of a heap is the height of its root.

A heap ofn elements is based on a complete binary tree, therefore its

height is�(log n)

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 46 Lecture: Week 2

Assignment Problem 2.5.(deadline: May 20, 5:30pm)

What are the minimum and maximum numbers of elements in a heapof

heighth? Prove that ann-element heap has heightblog2 nc.

Last modified: Wednesday 14th May, 2008, 00:04 2008 J́an Mǎnuch

	Divide and Conquer --- Merge-Sort
	Merging
	Analyzing an D&Q algorithms
	Solving recurrences
	Substitution method
	Proving correctness of a guess
	Base step
	Common pitfall
	A neat trick called ``changing variables''
	The recursion-tree method
	Some basic algebra
	The ``Master Method''
	Notes on Master's Theorem
	Using the master theorem
	Examples when we cannot apply the master theorem
	Scheme how to use the master theorem
	Sorting
	Heap

