SFU CMPT-307 2008-2 1 Lecture: Week 13

SFU CMPT-307 2008-2 Lecture: Week 13

Jan Manuch

E-mail: jmanuch@sfu.ca

Lecture on July 29, 2008, 5.30pm-8.20pm

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 2 Lecture: Week 13

Minimum spanning trees

One of the most famous greedy algorithms
(actually rathefamily of greedy algorithms).

e Given undirected grapy = (V, E), connected
e Weight functionw : £ — R

e Spanning tree: tree that connects all vertices, henee|V | vertices
andn — 1 edges

o MSTT : w(T') =)>_(, p)er w(u,v) Minimized
What for?

e Chip design

e Communication infrastructure in networks

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 3 Lecture: Week 13

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 4 Lecture: Week 13

Growing a minimum spanning tree

First, “generic” algorithm. It manages set of edgeamaintains invariant:
Prior to each iteration, A is subset of some MST.

At each step, determine edge, v) that can be added td, i.e. without
violating invariant , i.e., A U {(u, v)} is also subset of some MST. We
then call(u, v) asafe edge
1: A+ 0
2: while A does not form a spanning trele
3: find an edgdwu, v) that is safe ford
4. A+ AU{(u,v)}
5: end while

We use an invariant to check that an MST is produced:

Initialization. After line 1, A trivially satisfies invariant.
Maintenance. Loop in lines 2-5 maintains invariant by adding only safeexdg
Termination. All edges added tal are in an MST, sad must be an MST.

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 5 Lecture: Week 13

Question:How to recognize safe edges?
The following theorem provides a rule.

Definition. A cut(S,V — S) of an undirected grap& = (V, E) is a
partition of V.

Definition. An edge(u, v) crossesa cut(S,V — S) if one end pointis in
S, the other the other iy — §.

Definition. A cut respectsa setd C F if no edge inA crosses the cut.

Definition. An edge is dight edgecrossing a cut if its weight is the
minimum of all edges crossing the cut.

Theorem 1.Let G = (V, ') be connected, undirected graph with
real-valued weight function defined dn Let A be a subset ok that is
included in some MST fo&, let (S, V — §) be any cut of that respects
A, let (u,v) be alight edge crossing, V — 5). Then,(u, v) is safe for
A.

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 6 Lecture: Week 13

Proof of Theorem 1.

let’T" be an MST that included (by assumptions there is one)
assumd’ does not includeu, v) (otherwise we are done)

we will construct another MST” that includesA U {(u, v)},
showing thatu, v) is safe

(u,v) € T, so there exists a path

p=(u=wi,ws,..., W =10)

with (w;, w; 1) € Tforall1 <i </

u andv are on opposite sides of the &, V' — S), hence when
going fromu to v along the path, at least one of the edges, say
(wg, wrr1) ON the patlp is crossing the cut

(wg, wka1) IS NOtiN A becaused respects the cut

(wg, wr1) 1S ON the unique path from to v, So removing
(wg, wia 1) breaksI” into two components

adding(u, v) reconnects them to form a new spanning tree
T"=T - {<wk7wk¢—|—1>} U {(U,U>}

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 7 Lecture: Week 13

now, it's enough to show th&t’ is an MST containingd U {(u, v)}:

e (u,v)Iisalight edge crossing the c(f,V — 5), and(wg, wi11)
also crosses this cut, therefaréu, v) < w(wg, wr1) and

W(T") = w(T) — w(wg, wgr1) +w(u,v) < W(T)

e sinceT isan MST, i.e.w(T) < w(T"), we havew(T") = w(T), and
hencel” is an MST too v

o AC T and(wg,wgs11) € A,S0A CT"also

e since(u,v) € T',we haveA U {(u,v)} CT' V

we are done.

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 8 Lecture: Week 13

Exercise 1.
Show that if for every cut of a graph there is a unique lighteedigpssing

the cut, then the graph has a unique minimum spanning tremsv Stat
the converse is not true by giving a counterexample.

Remark:Do not assume that all weight edges are distinct.

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 9 Lecture: Week 13

Observations:

e as algorithm proceeds! is alwaysacyclic (otherwise, the MST
Including A would contain cycle)

e at any point, grapli-, = (V, A) is aforest (each connected
component is &ee)

e SOmMe components may contain just one vertex (initiallys empty,
and forest containg/| trees, one for each vertex)

e any safe edgéu, v) for A connects two distinct components@f;,
sinceA U {(u, v)} must be acyclic

e main loop is executefl’| — 1 times: each iteration adds 1 edge to the
resulting MST and decreases number of components by 1

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 10 Lecture: Week 13

Let’s generalize the definition dfjht edge

Definition. An edge is dight edgesatisfying a given property, if its
weight is the minimum of all edges satisfying the property.

The following consequence dheorem 1lis going to be used to design 2
algorithms for constructing an MST.

Corollary. LetG = (V, E) be a connected undirected graph with a
real-valued weight function defined dn Let A be a subset ok that is
included in some MST fo&, letC' = (V, E¢) be a connected
component (tree) in foregi 4 = (V, A).

If (u,v) is alight edgeconnectingC to some other component (& 4,
then(u, v) is safe forA.

Proof. The cut(Ve, V' — Vo) respectA (A defineghe components of
G 4), and(u, v) is a light edge for this cut. Thereforey, v) is safe forA.

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 11 Lecture: Week 13

We will describe Kruskal’'s and Prim’s algorithms. They difin how
they specify rules to determine safe edges.

In Kruskal’s algorithm.A is aforest; while in Prim’s algorithm,A is a
single tree(other components are single vertices).

Kruskal’s algorithm

Finds a safe edge to add to growing forest by finding minimuangiv
edgee that connects any two trees (directly usiagrollary).

If C'1, C5 denote the two trees that are connected:ay), then since
(u, v) must be light edge connectirdgy to some other tree, the corollary
implies that(u, v) is safe forA.

Kruskal's isgreedybecause at each step it adds an edge of least possible
weight.

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 12 Lecture: Week 13

We will useDi sj oi nt - Set data structure.
Each set contains the vertices in a tree of the current forest
We will use the following operations:

o Make- Set (u) initializes a new set containing just vertex

e Fi nd- Set (u) returns representative element from set that contains
u (so we can check whether two vertices belong to same tree).

e Uni on(u,v) combines two sets (the one containingvith the one
containingu).

Time complexity depends on the actual implementation ofding-set
data structure. Implementation described in Section 2loBthe
textbook requires(n) time, wheren is the number of elements ands
a very slowly growing function, hence,n) = O(logn).

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 13 Lecture: Week 13

Given: graphG = (V, E), weight functionw on £
MST-Kruskal (G, w)
1: A+ ()
2: for each vertex € V|[G] do
3: Make- Set (v)
4. end for
5. sort edges of into nondecreasing order by weigit
6: for each edgeu,v) € E, taken in the ordedo
7. if Fi nd- Set (u) # Fi nd- Set (v) then
8 A+ AU{(u,v)}
9 Uni on(u, v)
10 endif
11: end for
12: return A
— in the loop 6-11, for each edge we check whether it belongseto

same component (tree); if not: it's a cheapest edge (= say&) ed
connecting 2 components (edges are sorted, hence all ctiveeedges
have a weight at least the weight of the current edge)

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 14 Lecture: Week 13

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 15 Lecture: Week 13

Running time

We assume that alli sj ol nt - Set operations, can be done In
O(log |V|) time

initializing A takesO(1)

sorting edges take@(|E|log | E|); since|E| < |V|?, we have

log |[E| = O(log |V]); hence sorting take)(|E| log [V])

the initialization loop performgl/| Make- Set operation;

the mainfor loop performsO(E) Fi nd- Set andUni on
operations;

together it take® ((|V| + |E|) log |V)

sinceG is connected,E| > |V| — 1, soDi sj oi nt - Set operations
takeO(|E| - log |V)

the total running time i1 (|E| log |V|)

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 16 Lecture: Week 13

Exercise 2.
Show that for each minimum spanning tfBef G, there is a way to sort

the edges of7 in Kruskal’s algorithm so that the algorithm returfis

Remark:Do not assume that all weight edges are distinct.

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 17 Lecture: Week 13

Prim’s algorithm

e Like Kruskal's, a special case of the generic algorithm.

e The setd always forms a&ingle tree(as opposed to a forest in
Kruskal’s).

e The tree starts from a single (arbitrary) veriefroot) and grows
until it spans all ofl/.

e At each step, a light edge is added to trethat connectsi to
Isolated vertex o5 4 = (V, A) (a cheapest edge crossing the cut
(A, V — A)).

e By corollary, this adds only edges safe #byhence on termination,
Als an MST.

e Strategy is greedy, always pick a cheapest possible edge.

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 18 Lecture: Week 13

The crucial point igfficiently selecting new edgedn this
Implementation, we store all vertices that agd in the tree, in a
min-priority queuel). We have to assign prioritiek€ys) to vertices:

Forv eV,

e keyv]is

the minimum weight of any edge connectingo a
vertex in treed

key|v] = oo if there is no such edge.
e 7[v]is the parent ob in tree.

During the algorithm, the set from generic algorithm is kept implicitly
as

A=A{(v,wlv]): veV —{r} -0Q}

When the algorithm terminates, the min-priority quépes empty, hence
A contains an MST fo(:

A={(v,mlv]): veV —{r}}

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 19 Lecture: Week 13

Given: graphG = (V, E), weight functionw, root vertexr € V
MST-Prim (G, w, r)

1: for eachu € V do

2: keylu] < o

3: wlu] < NIL

4: end for

5: key[r] «

6: Q< V /* Bui | d-M n- Heap =/
7: while Q # 0 do

8
9

u < Extract-M n(Q)
for eachv € adju| do

10: If v € @ andw(u,v) < keylv] then

11: mlv] < u

12: keylv] <+ w(u,v) [+ Decrease-Key x/
13: end if

14: end for

15: end while
Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 20 Lecture: Week 13

Lines 1-6

e set the key of each vertex to (except root- whose key is set t0 so
that it will be processed first)
e set parent of each vertex to NIL

e initialize min-priority queue) (all vertices)

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 21 Lecture: Week 13

Algorithm maintains the followindpop invariant:

1. A={(v,ww]): veV —{r} - Q}

2. Vertices already placed into MST are thosé&/in- ()

3. Forallv € @, if w[v] # NIL, then keyv] < oo and keyu] is the
weight of a light edgéwv, 7|v]) connectingy to some vertex already
placed into MST

Line 8identifiesu € @ incident to a light edge crossing ¢t — @, @),
expect in first iteration, in whiclhy = r due to line 5.

Removingu from () adds it to set” — (Q of vertices in the tree, adding
(u, w|u]) to A.

Thefor loop of lines 9—-14updates th&eyandr fields of every vertex
adjacent ta; butnot in the tree. This maintains the third part of the loop
Invariant.

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 22 Lecture: Week 13

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 23 Lecture: Week 13

Running time

Depends on how the min-priority quegkis implemented. If as binary
min-heap then

can useBui | d- M n- Heap for initialization, timeO(|V|)

body of thewhile loop is executedV | times, eaclExt ract - M n
takesO(log |V'|), hence total time for all calls tBxt ract - M n is
O(|Vlog |V])

for loop in lines 9-14 is execute@(F) times altogether, since sum
of lengths of all adjacency lists §F|

test for membership i) on line 10, can be implemented in constant
time O(1) (keeping a membership bit for every vertex)

line 12 performdecr ease- Key operation, each take3(log |V])
time, hence the total time spent her&l§ E|log |V|)

the total time: O(|V|log |V |+ |E|log |V|) = O(|E|log |V)

However, when usingibonacci heapsmplementation of the min-priority
queue (Chapter 20), we get running ti¢|E| + |V |log |V']).

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 24 Lecture: Week 13

Approximation algorithms

Intuitive definition 1. A problem is in P if there is a polynomial time
algorithm to solve it (optimally, in case of optimizationoems).

Intuitive definitio 2. A problem is NP-completéard) if it is “very
unlikely” that there is a polynomial time algorithm to solv€optimally,
In case of optimization problems) but it’s solvable in expomal time.
Plus: the corretness of the solution can be verified in patyiabtime.

Approximation algorithms computenear-optimal solutions.
Consider aroptimization problem

Each potential solution haspmsitive cost

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 25 Lecture: Week 13

Algorithm has arapproximation ratio of p, if for any input the cosC' of
Its solution iswithin the factor p of cost of optimal solutior'*, i.e.:

For maximization problems < C' < C*, thus we requir€™ /C < p.
For minimization problems0 < C* < C, thus we requir€’/C* < p.
Approximation ratio isnever less than one.

An algorithm with guaranteed approximation rationpat called a
p-approximation algorithm .

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 26 Lecture: Week 13

The traveling-salesman problem

Problem: given complete, undirected gragh= (V, E) with
non-negative integer costu, v) for each edge, find cheapest Hamiltonian

cycle of G.
Consider two cases: with and withautaingle inequality .

c satisfies triangle inequality, if it is always cheapest talgectly from
someu to somew; going by way of intermediate vertices can’t be less

expensive.

Finding an optimal solution is NP-complete in both cases.

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 27 Lecture: Week 13

TSP with triangle inequality

We compute aninimum spanning tree whose weight is lower bound for
length of optimal TSP tour.

We use function MST-RIM (G, ¢, r), which computes an MST fax and
weight functione, given some arbitrary root

Input: G = (V,E),c: E —- R

APPROXTSP-TOUR

1: Select arbitrary € V to be “root”
2: Compute MSTT for GG andc from rootr using
MST-PRIM(G, ¢, T)
3: Let L be list of vertices visited in pre-order tree walk’Bf
4: Return the Hamiltonian cycle that visits the vertices indhger L

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 28

Lecture: Week 13

oN e,
& N
(e)
N>
(o
20
(R

N
Q

M

Optimal tour, cost ca. 14.7

Last modified: Tuesday'5August, 2008, 13:23

C
(=) (c Q}
@f
ne
H/

~

o

Resulting tour, cost ca. 19.1

2008 &n Maiuch

SFU CMPT-307 2008-2 29 Lecture: Week 13

Theorem. APPROXTSP-TOUR is a polynomial time 2-approximation
algorithm for the TSP problem with triangle inequality.

Proof. Polynomial running time obvious, simple MSTRR takes
©(V?), computing preorder walk takes no longer.

Correctness obvious, preorder walk is always a tour.
Let H* denote an optimal tour for given set of vertices.
Deleting any edge froni/ * gives a spanning tree.

Thus, weight oiminimum spanning tree is lower bound on cost of
optimal tour:

co(T) < c(H™)

A full walk of T lists vertices when they afest visited, and also when
they arereturned to, after visiting a subtree.

Example:a,b,c,b,h,b,a,d,e f,e,g,e,d,a

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 30 Lecture: Week 13

Full walk W traverses every edgexactly twice, thus
c(W) = 2¢(T)
Together withe(T') < ¢(H™), this gives

c(W) =2¢(T) < 2c(H”)

We want to find connection between costisfand cost of “our” tour.

Problem: W is in generahot a proper tour, since vertices may be visited
more than once. ..

But: using thetriangle inequality, we candeletea visit to any vertex
from W and cost doenmot increase

Deleting a vertexv from walk W between visits ta: andw means going
from u directly to w, without visitingv.

This way, we can consecutively remove all multiple visitauy vertex.

Example:
full walk a,b,c,b,h,b,a,d,e,f,e,g,e,d,a becomes a,jo,elhg.

Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

SFU CMPT-307 2008-2 31 Lecture: Week 13

This ordering (with multiple visits deleted) identical to that obtained
by preorder walk ofl” (with each vertex visited only once).

It certainly is a Hamiltonian cycle. Let’s call f.
H is just what is computed by #PROXTSP-TOUR.
H is obtained by deleting vertices frol, thusc(H) < ¢(W)
Conclusion:

c(H) < c(W) < 2¢(H")
Done.
Although factor 2 looks nice, there are better algorithms.
There’s a3/2 approximation algorithm by Christofedesith triangle
Inequality).

The general TSP

Now ¢ does no longer satisfy triangle inequality.

Theorem. If P # NP, then for any constant > 1, there is no

polynomial timep-approximation algorithm for the general TSP.
Last modified: Tuesday'5August, 2008, 13:23 2008 &n Maiuch

	Minimum spanning trees
	Growing a minimum spanning tree
	Kruskal's algorithm
	Prim's algorithm

	Approximation algorithms
	The traveling-salesman problem
	TSP with triangle inequality
	The general TSP

