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Minimum spanning trees

One of the most famous greedy algorithms

(actually ratherfamily of greedy algorithms).� Given undirected graphG = (V;E), connected� Weight functionw : E ! R� Spanning tree: tree that connects all vertices, hencen = jV j vertices

andn� 1 edges� MST T : w(T ) =P(u;v)2T w(u; v) minimized

What for?� Chip design� Communication infrastructure in networks
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Growing a minimum spanning tree

First, “generic” algorithm. It manages set of edgesA, maintains invariant:

Prior to each iteration, A is subset of some MST.

At each step, determine edge(u; v) that can be added toA, i.e. without
violating invariant , i.e.,A [ f(u; v)g is also subset of some MST. We

then call(u; v) asafe edge.

1: A ;

2: while A does not form a spanning treedo
3: find an edge(u; v) that is safe forA
4: A A [ f(u; v)g
5: end while

We use an invariant to check that an MST is produced:

Initialization. After line 1,A trivially satisfies invariant.

Maintenance. Loop in lines 2–5 maintains invariant by adding only safe edges.

Termination. All edges added toA are in an MST, soA must be an MST.

Last modified: Tuesday 5th August, 2008, 13:23 2008 J́an Mǎnuch
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Question:How to recognize safe edges?

The following theorem provides a rule.

Definition. A cut (S; V � S) of an undirected graphG = (V;E) is a

partition ofV .

Definition. An edge(u; v) crossesa cut(S; V � S) if one end point is inS, the other the other inV � S.

Definition. A cut respectsa setA � E if no edge inA crosses the cut.

Definition. An edge is alight edgecrossing a cut if its weight is the

minimum of all edges crossing the cut.

Theorem 1.LetG = (V;E) be connected, undirected graph with

real-valued weight function defined onE. LetA be a subset ofE that is

included in some MST forG, let (S; V � S) be any cut ofG that respectsA, let (u; v) be a light edge crossing(S; V � S). Then,(u; v) is safe forA.
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Proof ofTheorem 1.� let T be an MST that includesA (by assumptions there is one)� assumeT does not include(u; v) (otherwise we are done)� we will construct another MSTT 0 that includesA [ f(u; v)g,
showing that(u; v) is safe� (u; v) 62 T , so there exists a pathp = hu = w1; w2; : : : ; w` = vi

with (wi; wi+1) 2 T for all 1 � i < `� u andv are on opposite sides of the cut(S; V � S), hence when
going fromu to v along the pathp, at least one of the edges, say(wk; wk+1) on the pathp is crossing the cut� (wk; wk+1) is not inA becauseA respects the cut� (wk; wk+1) is on the unique path fromu to v, so removing(wk; wk+1) breaksT into two components� adding(u; v) reconnects them to form a new spanning treeT 0 = T � f(wk; wk+1)g [ f(u; v)g
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now, it’s enough to show thatT 0 is an MST containingA [ f(u; v)g:� (u; v) is a light edge crossing the cut(S; V � S), and(wk; wk+1)

also crosses this cut, thereforew(u; v) � w(wk; wk+1) andW (T 0) = w(T )� w(wk; wk+1) + w(u; v) �W (T )� sinceT is an MST, i.e.,w(T ) � w(T 0), we havew(T 0) = w(T ), and

henceT 0 is an MST too X� A � T and(wk; wk+1) 62 A , soA � T 0 also� since(u; v) 2 T 0, we haveA [ f(u; v)g � T 0 X
we are done.
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Exercise 1.
Show that if for every cut of a graph there is a unique light edge crossing

the cut, then the graph has a unique minimum spanning tree. Show that

the converse is not true by giving a counterexample.

Remark:Do not assume that all weight edges are distinct.
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Observations:� as algorithm proceeds,A is alwaysacyclic (otherwise, the MST

includingA would contain cycle)� at any point, graphGA = (V;A) is a forest (each connected

component is atree)� some components may contain just one vertex (initially,A is empty,

and forest containsjV j trees, one for each vertex)� any safe edge(u; v) for A connects two distinct components ofGA,

sinceA [ f(u; v)gmust be acyclic� main loop is executedjV j � 1 times: each iteration adds 1 edge to the

resulting MST and decreases number of components by 1
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Let’s generalize the definition oflight edge.

Definition. An edge is alight edgesatisfying a given property, if its

weight is the minimum of all edges satisfying the property.

The following consequence ofTheorem 1 is going to be used to design 2

algorithms for constructing an MST.

Corollary. LetG = (V;E) be a connected undirected graph with a

real-valued weight function defined onE. LetA be a subset ofE that is

included in some MST forG, letC = (VC ; EC) be a connected

component (tree) in forestGA = (V;A).
If (u; v) is a light edgeconnectingC to some other component inGA,

then(u; v) is safe forA.

Proof. The cut(VC ; V � VC) respectsA (A definesthe components ofGA), and(u; v) is a light edge for this cut. Therefore,(u; v) is safe forA.
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We will describe Kruskal’s and Prim’s algorithms. They differ in how

they specify rules to determine safe edges.

In Kruskal’s algorithm,A is a forest; while in Prim’s algorithm,A is a

single tree(other components are single vertices).

Kruskal’s algorithm

Finds a safe edge to add to growing forest by finding minimum-weight

edgee that connects any two trees (directly usingCorollary ).

If C1; C2 denote the two trees that are connected by(u; v), then since(u; v) must be light edge connectingC1 to some other tree, the corollary

implies that(u; v) is safe forA.

Kruskal’s isgreedybecause at each step it adds an edge of least possible

weight.
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We will useDisjoint-Set data structure.

Each set contains the vertices in a tree of the current forest.

We will use the following operations:� Make-Set(u) initializes a new set containing just vertexu.� Find-Set(u) returns representative element from set that containsu (so we can check whether two verticesu; v belong to same tree).� Union(u; v) combines two sets (the one containingu with the one

containingv).

Time complexity depends on the actual implementation of Disjoint-set

data structure. Implementation described in Section 21.3-4 of the

textbook requires�(n) time, wheren is the number of elements and� is

a very slowly growing function, hence,�(n) = O(log n).
Last modified: Tuesday 5th August, 2008, 13:23 2008 J́an Mǎnuch
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Given: graphG = (V;E), weight functionw onE

MST-Kruskal (G;w)
1: A ;
2: for each vertexv 2 V [G℄ do
3: Make-Set(v)
4: end for
5: sort edges ofE into nondecreasing order by weightw

6: for each edge(u; v) 2 E, taken in the orderdo
7: if Find-Set(u) 6= Find-Set(v) then
8: A A [ f(u; v)g
9: Union(u; v)

10: end if
11: end for
12: return A

— in the loop 6–11, for each edge we check whether it belongs tothe

same component (tree); if not: it’s a cheapest edge (= save edge)

connecting 2 components (edges are sorted, hence all consecutive edges

have a weight at least the weight of the current edge)
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Running time

We assume that allDisjoint-Set operations, can be done inO(log jV j) time� initializing A takesO(1)� sorting edges takesO(jEj log jEj); sincejEj � jV j2, we havelog jEj = O(log jV j); hence sorting takes:O(jEj log jV j)� the initialization loop performsjV j Make-Set operation;

the mainfor loop performsO(E) Find-Set andUnion

operations;

together it takesO((jV j+ jEj) log jV j)� sinceG is connected,jEj � jV j � 1, soDisjoint-Set operations

takeO(jEj � log jV j)� the total running time isO(jEj log jV j)
Last modified: Tuesday 5th August, 2008, 13:23 2008 J́an Mǎnuch
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Exercise 2.
Show that for each minimum spanning treeT of G, there is a way to sort

the edges ofG in Kruskal’s algorithm so that the algorithm returnsT .

Remark:Do not assume that all weight edges are distinct.
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Prim’s algorithm
� Like Kruskal’s, a special case of the generic algorithm.� The setA always forms asingle tree(as opposed to a forest in

Kruskal’s).� The tree starts from a single (arbitrary) vertexr (root) and grows

until it spans all ofV .� At each step, a light edge is added to treeA that connectsA to

isolated vertex ofGA = (V;A) (a cheapest edge crossing the cut(A; V �A)).� By corollary, this adds only edges safe forA, hence on termination,A is an MST.� Strategy is greedy, always pick a cheapest possible edge.
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SFU CMPT-307 2008-2 18 Lecture: Week 13

The crucial point isefficiently selecting new edges. In this
implementation, we store all vertices that arenot in the tree, in a
min-priority queueQ. We have to assign priorities (keys) to vertices:

Forv 2 V ,� key[v℄ is

the minimum weight of any edge connectingv to a

vertex in treeA
key[v℄ =1 if there is no such edge.� �[v℄ is the parent ofv in tree.

During the algorithm, the setA from generic algorithm is kept implicitly
as A = f(v; �[v℄) : v 2 V � frg �Qg
When the algorithm terminates, the min-priority queueQ is empty, henceA contains an MST forG:A = f(v; �[v℄) : v 2 V � frgg

Last modified: Tuesday 5th August, 2008, 13:23 2008 J́an Mǎnuch



SFU CMPT-307 2008-2 19 Lecture: Week 13

Given: graphG = (V;E), weight functionw, root vertexr 2 V

MST-Prim (G;w; r)
1: for eachu 2 V do
2: key[u℄ 1
3: �[u℄ NIL

4: end for
5: key[r℄ 0
6: Q V /* Build-Min-Heap */

7: while Q 6= ; do
8: u Extract-Min(Q)
9: for eachv 2 adj[u℄ do

10: if v 2 Q andw(u; v) < key[v℄ then
11: �[v℄ u

12: key[v℄ w(u; v) /* Decrease-Key */

13: end if
14: end for
15: end while

Last modified: Tuesday 5th August, 2008, 13:23 2008 J́an Mǎnuch
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Lines 1–6� set the key of each vertex to1 (except rootr whose key is set to0 so

that it will be processed first)� set parent of each vertex to NIL� initialize min-priority queueQ (all vertices)

Last modified: Tuesday 5th August, 2008, 13:23 2008 J́an Mǎnuch
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Algorithm maintains the followingloop invariant :

1. A = f(v; �[v℄) : v 2 V � frg �Qg

2. Vertices already placed into MST are those inV �Q

3. For allv 2 Q, if �[v℄ 6= NIL, then key[v℄ <1 and key[v℄ is the

weight of a light edge(v; �[v℄) connectingv to some vertex already

placed into MST

Line 8 identifiesu 2 Q incident to a light edge crossing cut(V �Q;Q),
expect in first iteration, in whichu = r due to line 5.

Removingu fromQ adds it to setV �Q of vertices in the tree, adding(u; �[u℄) toA.

The for loop of lines 9–14updates thekeyand� fields of every vertexv

adjacent tou butnot in the tree. This maintains the third part of the loop

invariant.
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Running time

Depends on how the min-priority queueQ is implemented. If asa binary

min-heap, then� can useBuild-Min-Heap for initialization, timeO(jV j)� body of thewhile loop is executedjV j times, eachExtract-Min

takesO(log jV j), hence total time for all calls toExtract-Min isO(jV j log jV j)� for loop in lines 9–14 is executedO(E) times altogether, since sum
of lengths of all adjacency lists is2jEj� test for membership inQ on line 10, can be implemented in constant
timeO(1) (keeping a membership bit for every vertex)� line 12 performsDecrease-Key operation, each takesO(log jV j)

time, hence the total time spent here isO(jEj log jV j)� the total time: O(jV j log jV j+ jEj log jV j) = O(jEj log jV j)
However, when usingFibonacci heapsimplementation of the min-priority

queue (Chapter 20), we get running timeO(jEj+ jV j log jV j).
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Approximation algorithms

Intuitive definition 1. A problem is in P if there is a polynomial time

algorithm to solve it (optimally, in case of optimization problems).

Intuitive definitio 2. A problem is NP-complete(hard) if it is “very

unlikely” that there is a polynomial time algorithm to solveit (optimally,

in case of optimization problems) but it’s solvable in exponential time.

Plus: the corretness of the solution can be verified in polynomial time.

Approximation algorithms computenear-optimal solutions.

Consider anoptimization problem.

Each potential solution has apositive cost.

Last modified: Tuesday 5th August, 2008, 13:23 2008 J́an Mǎnuch
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Algorithm has anapproximation ratio of �, if for any input the costC of

its solution iswithin the factor � of cost of optimal solutionC�, i.e.:

For maximization problems,0 < C � C�, thus we requireC�=C � �.

For minimization problems,0 < C� � C, thus we requireC=C� � �.

Approximation ratio isnever less than one.

An algorithm with guaranteed approximation ration of� is called a�-approximation algorithm .

Last modified: Tuesday 5th August, 2008, 13:23 2008 J́an Mǎnuch
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The traveling-salesman problem

Problem: given complete, undirected graphG = (V;E) with

non-negative integer cost(u; v) for each edge, find cheapest Hamiltonian

cycle ofG.

Consider two cases: with and withouttriangle inequality . satisfies triangle inequality, if it is always cheapest to godirectly from

someu to somew; going by way of intermediate vertices can’t be less

expensive.

Finding an optimal solution is NP-complete in both cases.

Last modified: Tuesday 5th August, 2008, 13:23 2008 J́an Mǎnuch
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TSP with triangle inequality

We compute aminimum spanning tree whose weight is lower bound for

length of optimal TSP tour.

We use function MST-PRIM(G; ; r), which computes an MST forG and

weight function, given some arbitrary rootr.
Input:G = (V;E),  : E ! R
APPROX-TSP-TOUR

1: Select arbitraryv 2 V to be “root”

2: Compute MSTT for G and from rootr using

MST-PRIM(G; ; r)

3: LetL be list of vertices visited in pre-order tree walk ofT
4: Return the Hamiltonian cycle that visits the vertices in theorderL

Last modified: Tuesday 5th August, 2008, 13:23 2008 J́an Mǎnuch
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Theorem. APPROX-TSP-TOUR is a polynomial time 2-approximation

algorithm for the TSP problem with triangle inequality.

Proof. Polynomial running time obvious, simple MST-PRIM takes�(V 2), computing preorder walk takes no longer.

Correctness obvious, preorder walk is always a tour.

LetH� denote an optimal tour for given set of vertices.

Deleting any edge fromH� gives a spanning tree.

Thus, weight ofminimum spanning tree is lower bound on cost of

optimal tour: (T ) � (H�)
A full walk of T lists vertices when they arefirst visited, and also when

they arereturned to, after visiting a subtree.

Example:a,b,c,b,h,b,a,d,e,f,e,g,e,d,a

Last modified: Tuesday 5th August, 2008, 13:23 2008 J́an Mǎnuch
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Full walkW traverses every edgeexactly twice, thus(W ) = 2(T )

Together with(T ) � (H�), this gives(W ) = 2(T ) � 2(H�)

We want to find connection between cost ofW and cost of “our” tour.

Problem: W is in generalnot a proper tour, since vertices may be visited
more than once. . .

But: using thetriangle inequality , we candeletea visit to any vertex
fromW and cost doesnot increase.

Deleting a vertexv from walkW between visits tou andw means going
from u directly tow, without visitingv.

This way, we can consecutively remove all multiple visits toany vertex.

Example:

full walk a,b,c,b,h,b,a,d,e,f,e,g,e,d,a becomes a,b,c,h,d,e,f,g.

Last modified: Tuesday 5th August, 2008, 13:23 2008 J́an Mǎnuch
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This ordering (with multiple visits deleted) isidentical to that obtained
by preorder walk ofT (with each vertex visited only once).

It certainly is a Hamiltonian cycle. Let’s call itH.H is just what is computed by APPROX-TSP-TOUR.H is obtained by deleting vertices fromW , thus(H) � (W )

Conclusion: (H) � (W ) � 2(H�)

Done.

Although factor 2 looks nice, there are better algorithms.

There’s a3=2 approximation algorithm by Christofedes (with triangle
inequality).

The general TSP

Now  does no longer satisfy triangle inequality.

Theorem. If P 6= NP, then for any constant� � 1, there is no
polynomial time�-approximation algorithm for the general TSP.
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