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Greedy algorithms

The Greedy strategy is (just like Divide&Conqguer or Dynamic
Programming) alesign paradigm

Basic idea: Greedy algorithms always make choices that “look best at the
moment” —l|ocally optimal solutions.

This does not always yield@obally optimal solution, but in many cases
it does (and if not, then we are often “pretty close” to optima

The running time is very good (often linear).
Activity selection problem

Consider:

A set ofn activities S = {ag, ..., a,} Sharing a common resource. Each
activity a; has astar time s; and afinish time f;, where

0<s; < fi <oc.

Example Activities = lectures. A common resource = lecture room.
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Activities a; anda,; arecompatible if the intervals[s;, f;) and|[s;, f;) do
not overlap, I.e., if eithes; > f; ors; > f;.

Activity selection problem: select a maximume-size subset®bDf
mutually compatible activities.

We will assume that the activities aserted in monotically increasing
order of finish time:

<< fn

Example.
We have 6 lectures:

a1 from8till 11 ao from 10 till 12
a3 from 14 till 15 ays from 11 till 14
as from 12 till 14 ag from 15 till 16

But only one lecture room. We want to choose as many lectuneswado
not overlap as possible.
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Dynamic programming approach.

1. The optimal substructure

subproblems:
Sij ={ar €55 fi < sk < fu <85}
.e., .5;; contains all activities which are compatible with
e all activities that finish no later thany (a1, ... a;)

o all activities that start no earlier than

subproblem §;; is to find a maximal-size subset of pairwise compatible
activities of S

add activitieszy anda,, 11 such thatfy = 0 ands,, . ;1 = oo; then the main
problem is equal t&y ,, 1.
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Property.if i > j, thenS;; =0

Proof: Suppose that > j and that there exists, € S;;.

Sincei > j, fi > f;-

Sinceay, € S@'j, fz < 81 < fk < S; < fj.

A contradiction.

Hence, ousspace of subproblemgontainsS;; forall0 <: < j <n+ 1.
optimal substructure:

Let A;; C S;; Is an optimal solution for subprobles);. Assume that
ar € A;;. ThenA,;; contains solutions!;;, = A;; N S;; and
Ar; = Ai; N Sk; to Si andSy;, respectively.

These subsolutions aoptimal Again: use “cut-and-paste” argument.
For instance, if4;;, has a better solutioA;, for S;x, then we can replace
A with A}, in A;; forming a better solution fo§; ;.
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Hence, if we know that a solutiod;; of S;; containsa, thenA,; can be
obtained as

Aij = Azk U {&k} U Akj
2. A recursive solution

Consider amy, € A;;, whereA,; is an optimal solution oF;,. Then
fi<fe<fpiek=i+1,...,5—1.

We don’t know whichay is in A;;, So we have to consider all possibilities.

Let c|i, 7] be the maximal number of pairwise compatible activitie$in
Then

0 it S;; =0,

cli,j] =
max;<k<jiclt, k| + 1+ clk,j]} otherwise.

Now, it's easy to make Dynamic Programming algorithm wogkiim
O(n?) time.
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Greedy properties

Consider a nonempty; ;. Leta,, be the first activity inS;; in our order,
l.e., the one with the earliest finish time:

fm = min{fk; ap € Sz]}

Then
1. The sets;,, is empty. So, the subproblenss,, is trivial.
2. There is a maximum-size solution to the subproblémsontaining
Ao, -
Proof.

1. Suppose thai;,, Is non-empty, I.e., there exisig € 5;,,. Then
fi < sp < fr < s,,. By the definition ofa,,,, f;, < fr. A
contradiction:f. < s,,, < fin < f%.

2. LetA;; be an optimal solution t§;;. If it containsa,,, we are done.
Otherwise, lety;, be the first activity in4;; (the one with the earliest
finish time).
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2. (continued)
Now, let’s replace:; with a,,:

Ai; = Aij — {ax} U{an}.

We will prove thatA; is a solution taS;; (and hence also an optimal

solution we are looking for).

It's enough to check that the activity,, is compatible with other

activities inA; .

Takeaq; € A;j —{am} = A;; —{ar}. Since,A;; is a solutiong;

anda; are compatible: eithef; < sp < fi (not possible) orf, < s;

(ok). Thenf,, < fr < s, 1.e.,a,, anda; are also compatible.
Consider the recursive solution:

0 it S;; =0,

cli, j] =
max;<k<jiclt, k| + 1+ clk,j]} otherwise.

Now, we know that we can take= m (by 2.). And in such a case, the
first subproblens;,, is trivial, i.e.,c|i, m] = 0 (by 1.).
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j — 1 — 1 choices— 1 choice 2 subproblems— 1 subproblem

The algorithm:
— choose the first,,, in S;; (locally optimal solution: leave as much
space for the remaining activities as possible)
— A;; = A U {an} is an optimal solution t&; ;, whereA,,,; is an
optimal solution taS,,, ;.
_C[Zaj] — C[m7j] + 1.
Recursive algorithm:
Recursive-Activity-Selector(s, f, 7, j)
1. m<+«—1+1
2: [*find the first activity inS;; */
3: while m < 5 ands,, < f; do
4 m<+—m-+1
5: end while
6: if m < j then
7. return {a.,} URAS(s, f,m,j)
8: else
9

return ()
10: end if

Last modified: Tuesday 39July, 2008, 14:07 2008 &n Maiuch



SFU CMPT-307 2008-2 10 Lecture: Week 12

Note.Indexj never changes. Hence, if we start with the probleéins.
In the beginning, and try to solve the problem recursivep{to-bottom
fashion), then we only encounter the subprobl&yswvith j = n + 1.

We can writaterative version of the algorithm working in linear time.

Greedy-Activity-Selector(s, f) 5. if s, > f; then
6: A<+ AUA{an}
1: n < length(s) 7. i —m
2: A+ {a} 8: endif
3141 9: end for
4: for m «+ 2tondo 10: return A

Explanations:

— the first activity InSg 41 1S a1

— ¢ = Index of latest addition td, i.e., we are solving the subproblem
Sin+1

—the loop finds the first,, in S; 11

—and adds it tA
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Assignment Problem 12.1.(deadline: August 5, 5:30pm)

Suppose that instead of always selecting the first actigifinish, we
select the last activity to start froi$} ;. Describe the greedy properties of
this approach, and prove that it yields an optimal solutivinite an
iterative version of the new algorithm.

Assignment Problem 12.2.(deadline: August 5, 5:30pm)

Show on an example, that the greedy approach of selectiracthaty of
least duration fronbd;; does not work.
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Designing a greedy algorithm

e Find a recursive description of the problem in which aftekmg a
choice we have only 1 subproblem to solve.

e Prove that there is an optimal solution that makes the grekdice
(a choice that seems locally optimal, e.g., selecting valewith the
earliest end; or selecting the shortest interval).

e Prove that an optimal solution to subproblem combined vinéh t
greedy choice gives an optimal solution to the original pgob
(“optimal substructure”).
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Huffman codes

Used for compressing data (typically saving26% to 90%).
Data is considered to be a sequence of characters.

Huffman’s greedy algorithm

e computes frequency of occurrence of characters, and

e assigns binary strings to characters: the more frequerdiacter,
the shorter the string

Results in a binary character code (“code”).
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Comparingvariable length codewith afixed length code

Consider file of lengtii 00, 000, containing only characters a,b,c,d,e,f,
and the following frequencies (in thousands).

a b ¢ d e f
45 13 12 16 9 5

With fixed length codesexact code of each character does not matter
(w.r.t. length). For six characters, we need three bits paracter, a total
of 300, 000 bits.

With variable length codes assignmentioesmatter. Consider following
code.

a b C d e f
O 101 100 111 1101 1100

Resulting length (in bits) now is

(45-14+13-3+12-3+16-34+9-4+5-4)-1,000 = 224,000
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Prefix codes
We only consideprefix codes no codeword is a prefix of some other
codeword.

Encodingis simple: just concatenate codewords. Using

a b C d e f
O 101 100 111 1101 1100
the code for “deaf” i1s 111110101100.

Prefix codes simpliffdecoding No codeword is prefix of any other, so
codewords are unambiguous (they parse uniquely).

We need convenient representation for prefix codes.
Usebinary tree:

e leaves represent characters,

e interpret binary codeword for a character as path from ot t
corresponding leaf; 0 means “left”, 1 means “right”.
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Example:fixed length code

character

frequency

45

codeword 000

b C
13 12

d
16

e f
9 5

001 010 011 100 101

a:45 b:13

-

f:5

Leaves are labeled with its character and its frequenastnat vertices
with the sum of frequencies of leaves in its sub-tree.
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Example:variable length code
character a b C d e f

frequency 45 13 12 16 9 5
codeword O 101 100 111 1101 1100

a:45
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Given a tre€l’ corresponding to a prefix code, we can compute the
number of bits to encode a file as follows. Foe C, f(c) denotes its
frequency, and(c) denotes its depth i’ (hencedr(c) is also the
length of the code of).
The cost ofl" is

B(T) =Y f(e) - dr(0

ceC

Optimal code for a file is always represented bydl binary tree , every
non-leaf node has two children.

The fixed-length example is therefore non-optimal (obvipuse already
have seen better one).

Full binary trees—=> if C' is our alphabet, then the tree 4§ leaves and
|C'| — 1 internal vertices.
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Assignment Problem 12.3.(deadline: August 5, 5:30pm)
Show that a full binary tree with leaves has — 1 internal vertices.

Hint; use induction.
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Min-priority queues

Huffman’s algorithm uses a min-priority queue (implemeh&s a heap).
Recall the operations:

Bui | d- M n- Heap: constructs the heap; takégn) for n items.

Extract - M n: finds the minimal item and removes it from heap; takes
O(logn) per operation.

| nsert: insert a new item into queue; tak&glog n).

|ldea of Huffman’s algorithm is as follows.

e Tree is built bottom-up

e Begin with|C| leaves, then deC'| — 1 merging operations to create a
final tree.

e |In each merger, extract two least-frequent objects to meegealt is a
new object whose frequency is the sum of frequencies of twgede
objects.
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Huffman’s greedy algorithm

1: n <+ |C|

2: Q+ C [*Bui | d- M n- Heap*/
3:fore<1ton—1do

4. allocate a new node

5. left]z] «+ z <+ Extract-M n(Q)
6: rightlz] < y < Extract-M n(Q)
7 fla] < fla] + fly]

8: Insert(Q,z)

9: end for

— the algorithm is building a tree
— z Is a new internal node created by the merger ahdy, which are
now its children

Running time:

Initialization takesO(n).
Each heap operation in loop tak@slog n).
Total running time is therefor@®(nlogn).
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Example
f:5 e:9 c:12| | b:13| | d:16| | a:45
@ c:12| | b:13| | d:16| | a:45

0 1

f:5 e:9
d:16| | a:45
a:45
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Assignment Problem 12.4.(deadline: August 5, 5:30pm)
Prove that the total cog8(7") of a treeT” can be computed as the sum of
frequencies of all internal nodes (assigned by the algnith
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Correctness

Lemma 1. (Greedy choice property)

Let C' be alphabet, each character C has a frequency|c|. Letz andy
two characters i’ with the lowest frequency. Then there is an optimal
prefix code forC' in which the codewords far andy are thesibling
leaves(have the same length and differ only in the last bit).

In other words:building up an optimal tree can, without loss of generality,
begin with the greedy choice of merging two lowest-freqyecttaracters.

Why is this a greedy choiceBy Homework 12.4, the total cost equals to
the sum of costs of mergers (cost = frequeligyHence, we are choosing
a merger with the minimal cost at each step.
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Proof. LetT' be any optimal tree. Let andb be two characters that are
sibling leaves of maximum depth iR. Without loss of generality,

fla] < flb] and fx] < fly|. Recall thatf|x] and f|y| are two lowest
frequencies (in order)f[a] and f[b] are arbitrary frequencies (also in
order). Thusflx] < fla] andfly] < f|b].

Now exchange positions afandz (— 1") and then idl” exchange
positions ofb andy (— T").

T T

a b X b X y

T" is a tree we are looking for, codewords foandy have the same
length and differ only in the last bit. But we have to provettlia an
optimal tree.

Last modified: Tuesday 39July, 2008, 14:07 2008 &n Maiuch



SFU CMPT-307 2008-2 26 Lecture: Week 12

B(T) - B(I") =
= Y fleldr(c) — Z fleldr(c)

ceC ceC
= flzldr(z) + flaldr[a] — f[z]dr (z) — fla]ldr ()
= flz]dr(z) + flaldr[a] — f[x]dr(a) — fla]ldr(x)
= (fla] = flz]) - (dr(a) — dr(z))

becausef|a] — flz] > 0 anddr(a) — dr(z) > 0.

Similarly, B(T") — B(T"") > 0. Therefore, B(T") < B(T") < B(T) and
(T is optimal) B(T') < B(T").

Thus,B(T) = B(T"), andT" is optimal, withx andy as sibling leaves
of maximum depth.

We are done.
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Lemma 2. (optimal substructure property)

Given an alphabet’ with frequenciesf|c| for c € C. Letx, y be two
characters i’ with minimal frequencies. Lef = C — {z,y} U {z} be
a new alphabet with the same frequencie€'axceptf[z] = f[z] + f[y].
Let T be any tree representing an optimal prefix codefor

ThenT, obtained fromil” by replacing leat with the internal vertex
havingz andy as children, represents an optimal prefix code(for

construction

T = T

cO0DO0® O chhhg&h

The lemma shows the optimality of Huffman’s algorithm, bywing that
each step of the algorithm is optimal:

— merge two characters with lowest frequencies (greedycehoi

— compute optimal solution faf'

— combine the above
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Proof of Lemma 2.

Let's compare the cost &f for C' and the cost of for C. For each
charactex € C' — {z,y}, dr(c) = d¢(c), hencef|c|dr(c) = flc|ds(c).
Hence we need only compare whaty in 7" andz in T contribute to the
COst.

Sincedr(x) = dr(y) = d7(z) + 1 (we have replaced a leafwith an
Internal vertex withe andy as its children). Hence,

flzldr(z) + flyldr(y)
= [flz] - (dp(2) +1) + fly] - (dp(2) + 1)
= (flz] + fly]) - (dp(2) + 1)
= (flz]+ fly]) - dp(2) + flz] + fly]
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Hence,

|
&h
=
'ﬂ
&h
e

=2 flddr(e) + fla] + f[y]
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We have

< B(T)=B(T) - flz] - flyl

Now, it's easy to prove Lemma 2 by contradiction.

Supposé’ doesnotrepresent an optimal prefix code 6t ThendT"’ for
C' with B(T") < B(T).

By Lemma 1, we can assume th@ hasz, y assibling leavesLetT’ be
T" with the common parent of, y replaced by a leaf with

flz] = fle] + flyl. Then,
B(T")

I
s
=
|
~~
B
|
—
S

||
g
=

Note thatT” is a tree forC, i.e., we have @ontradictionsinceT was
assumed to be optimal!
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Assignment Problem 12.5.(deadline: August 5, 5:30pm)

Suppose a data file contains a sequencelmf characters such that all
256 characters are about as common: the maximum charaageiefncy
IS less than twice the minimum character frequency. ProateHiffman
coding in this case is no more efficient than using an ordiganit
fixed-length code.
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Another example: Scheduling

e We want to optimally schedule jobs on a single machine
e Comes down to defining tharder in which jobs are processed
e Different objectives possible

¢ In this case, we want tminimize the average time jobs spend in the

system
Given: njobsj, ..., j, (arriving at the same time), with service times
ti, .. tn.

Note that the total time is fixed( ¢;), but not average system time.

Sincen is fixed, problem is equivalent to minimizing

T = waiting time for customet),
g
1=1

which is equal to # times the average system (waiting) time”.
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Example

Three customers; = 5, t5 = 10, t3 = 3. There are3! = 6 possible
orders:

order T
123 5+(5+10)0+(5+10+3)=38
132 5+5+3)+5+3+10)=31
213 10+(10+5)+(10+5+3)=43
231 |10+(10+3)+(10+3+5)=41
312 3+(3+5)+(3+5+10)=29 opt
321 3+(83+10)+(83+10+5)=34

Note: in optimal solution, jobs are sorted in order of increasiayge
times.

The idea of greedy algorithms is to do whatever seems bast at t
moment:

Suppose we already have scheduled thefiysbs. What to do in order to
haveTl as small as possible? Pick a “cheapest” job available for the

(£ + 1)-st one, so that other jobs don’t have to wait much.
Last modified: Tuesday 39July, 2008, 14:07 2008 &n Maiuch
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Theorem. Greedy algorithm (choosing at each stage a job with the
shortest service time) is optimal.

Proof. Let P = py, po, . . ., pn, De any permutation ofl, ..., n}, let
s; = tp, (= the service time of théth job with respect ta®). Then

T(P) = s1+(s1+82)+(s1+s2+s3)+--
= ns1+(n—1)so+(n—2)s3+---
k=1

SupposeP doesnot arrange jobs in order of increasing service time.
Then there must be, b with a < b ands, > s (thea-th job is served
before the-th job although the-th needs more service time than the
b-th).
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Recalll'(P)=>,_,(n—k+1)-s.

Now we swap positions af-th andb-th jobs, and obtain a new
permutationP’ (which is same a® but with p, andp, interchanged).

T(P)Y = (n—a+1)sp+(n—>b+1)s, +
Y (n—k+1Ds;

ke{lan}_{a’ab}

(Job with sy IS In positiona, and vice versa). Now
T(P)—1T(P")

= n—a+1)sg+(n—>b+1)sp —
(n—a+1)sp—(n—>b+1)s,

= (n+1)(sq+ 5y — Sp— Sq) +a(sp — Sq) + b(Sq — Sp)

= b(sq — sp) — a(sq — Sp)

= (b—a)-(sa — sp)

> 0

sinceb > a ands, > sy.
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Conclusion:any schedule” which doesn’t arrange jobs in order of
Increasing service time, is not optimdl (P’) < T'(P)). Hence, any
optimal schedule arranges jobssinortest-service-time-firstrder. Such
schedules have the same cost, and so they are all optimag¢. Don [
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Extra Assignment Problem 3.(2% added to the overall performance if
solved completely)

Deadline: The final exam(Note: You get extra points only if your solution is
completely correct. You can submit the solution severagsinif it's not correct, |
will point out the problem(s) in your solution and you cana&gain.)

Consider the following scheduling problem. We have one aasmpandn
jobsjq,...,5,. JObj; has aservice timeg; and arelease timer;. We can
start processing a job only after its release time. The jandoe
suspended and restarted at a later time! ddvapletion timef an joby;
IS the time elapsed from the release of the job until it’s clatgby
processed by the computer.

Give an algorithm that schedules the jobs so as to minimeeavterage
completion time. Prove that your algorithm minimizes therage
completion time, and state the running time of your algonith

You can assume that all timésandr; are non-negative integers.
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