
SFU CMPT-307 2008-2 1 Lecture: Week 12

SFU CMPT-307 2008-2 Lecture: Week 12

Ján Maňuch

E-mail: jmanuch@sfu.ca

Lecture on July 29, 2008, 5.30pm-8.20pm

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 2 Lecture: Week 12

Greedy algorithms

The Greedy strategy is (just like Divide&Conquer or Dynamic
Programming) adesign paradigm.

Basic idea:Greedy algorithms always make choices that “look best at the
moment” —locally optimal solutions.

This does not always yield agloballyoptimal solution, but in many cases
it does (and if not, then we are often “pretty close” to optimal).

The running time is very good (often linear).

Activity selection problem

Consider:
A set ofn activities S = fa1; : : : ; ang sharing a common resource. Each

activity ai has astar time si and afinish time fi, where0 � si < fi <1.

Example.Activities = lectures. A common resource = lecture room.

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 3 Lecture: Week 12

Activities ai andaj arecompatible if the intervals[si; fi) and[sj ; fj) do

not overlap, i.e., if eithersi � fj or sj � fi.
Activity selection problem: select a maximum-size subset ofS of

mutually compatible activities.

We will assume that the activities aresorted in monotically increasing

order of finish time: f1 � f2 � � � � � fn
Example.

We have 6 lectures:a1 from 8 till 11 a2 from 10 till 12a3 from 14 till 15 a4 from 11 till 14a5 from 12 till 14 a6 from 15 till 16
But only one lecture room. We want to choose as many lectures which do

not overlap as possible.

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 4 Lecture: Week 12

Dynamic programming approach.

1. The optimal substructure

subproblems: Sij = fak 2 S; fi � sk < fk � sjg

i.e.,Sij contains all activities which are compatible with� all activities that finish no later thanai (a1; : : : ai)� all activities that start no earlier thanaj
subproblemSij is to find a maximal-size subset of pairwise compatible

activities ofSij

add activitiesa0 andan+1 such thatf0 = 0 andsn+1 =1; then the main

problem is equal toS0;n+1.
Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 5 Lecture: Week 12

Property.if i � j, thenSij = ;

Proof: Suppose thati � j and that there existsak 2 Sij .
Sincei � j, fi � fj .
Sinceak 2 Sij , fi � sk < fk � sj < fj .
A contradiction.

Hence, ourspace of subproblemscontainsSij for all 0 � i < j � n+ 1.

optimal substructure:

LetAij � Sij is an optimal solution for subproblemSij . Assume thatak 2 Aij . ThenAij contains solutionsAik = Aij \ Sik andAkj = Aij \ Skj to Sik andSkj , respectively.

These subsolutions areoptimal. Again: use “cut-and-paste” argument.

For instance, ifAik has a better solutionA0ik for Sik, then we can replaceAik with A0ik in Aij forming a better solution forSij .
Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 6 Lecture: Week 12

Hence, if we know that a solutionAij of Sij containsak, thenAij can be

obtained as Aij = Aik [fakg [Akj

2. A recursive solution

Consider anak 2 Aij , whereAij is an optimal solution ofSij . Thenfi < fk < fj , i.e.,k = i+ 1; : : : ; j � 1.

We don’t know whichak is inAij , so we have to consider all possibilities.

Let [i; j℄ be the maximal number of pairwise compatible activities inSij .
Then

[i; j℄ = 8<:0 if Sij = ;,maxi<k<jf[i; k℄ + 1 + [k; j℄g otherwise.

Now, it’s easy to make Dynamic Programming algorithm working inO(n3) time.

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 7 Lecture: Week 12

Greedy properties

Consider a nonemptySij . Let am be the first activity inSij in our order,
i.e., the one with the earliest finish time:fm = minffk; ak 2 Sijg:

Then

1. The setSim is empty. So, the subproblemsSim is trivial.

2. There is a maximum-size solution to the subproblemsSij containingam.

Proof.

1. Suppose thatSim is non-empty, i.e., there existsak 2 Sim. Thenfi � sk < fk � sm. By the definition ofam, fm � fk. A
contradiction:fk � sm < fm � fk.

2. LetAij be an optimal solution toSij . If it containsam, we are done.
Otherwise, letak be the first activity inAij (the one with the earliest
finish time).

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 8 Lecture: Week 12

2. (continued)
Now, let’s replaceak with am:A0ij = Aij � fakg [famg:

We will prove thatA0ij is a solution toSij (and hence also an optimal
solution we are looking for).
It’s enough to check that the activityam is compatible with other
activities inA0ij .
Takeal 2 A0ij � famg = Aij � fakg. Since,Aij is a solution,al

andak are compatible: eitherfl � sk < fk (not possible) orfk � sl

(ok). Thenfm � fk � sl, i.e.,am andal are also compatible.

Consider the recursive solution:[i; j℄ = 8<:0 if Sij = ;,maxi<k<jf[i; k℄ + 1 + [k; j℄g otherwise.

Now, we know that we can takek = m (by 2.). And in such a case, the
first subproblemSim is trivial, i.e.,[i;m℄ = 0 (by 1.).

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 9 Lecture: Week 12j � i� 1 choices�! 1 choice 2 subproblems�! 1 subproblem

The algorithm:

— choose the firstam in Sij (locally optimal solution: leave as much

space for the remaining activities as possible)

— Aij = Amj [famg is an optimal solution toSij , whereAmj is an

optimal solution toSmj .
— [i; j℄ = [m; j℄ + 1.

Recursive algorithm:
Recursive-Activity-Selector(s; f; i; j)

1: m i+ 1

2: /* find the first activity inSij */

3: while m < j andsm < fi do
4: m m+ 1

5: end while
6: if m < j then
7: return famg [RAS(s; f;m; j)

8: else
9: return ;

10: end if

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 10 Lecture: Week 12

Note.Indexj never changes. Hence, if we start with the problemsS0;n+1

in the beginning, and try to solve the problem recursively (top-to-bottom

fashion), then we only encounter the subproblemsSij with j = n+ 1.

We can writeiterative version of the algorithm working in linear time.

Greedy-Activity-Selector(s; f)
1: n length(s)
2: A fa1g
3: i 1

4: for m 2 to n do

5: if sm � fi then
6: A A [famg

7: i m

8: end if
9: end for

10: return A
Explanations:

– the first activity inS0;n+1 is a1
– i = index of latest addition toA, i.e., we are solving the subproblemSi;n+1

– the loop finds the firstam in Si;n+1
– and adds it toA

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 11 Lecture: Week 12

Assignment Problem 12.1.(deadline: August 5, 5:30pm)

Suppose that instead of always selecting the first activity to finish, we

select the last activity to start fromSij . Describe the greedy properties of

this approach, and prove that it yields an optimal solution.Write an

iterative version of the new algorithm.

Assignment Problem 12.2.(deadline: August 5, 5:30pm)

Show on an example, that the greedy approach of selecting theactivity of

least duration fromSij does not work.

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 12 Lecture: Week 12

Designing a greedy algorithm

� Find a recursive description of the problem in which after making a

choice we have only 1 subproblem to solve.� Prove that there is an optimal solution that makes the greedychoice

(a choice that seems locally optimal, e.g., selecting interval with the

earliest end; or selecting the shortest interval).� Prove that an optimal solution to subproblem combined with the

greedy choice gives an optimal solution to the original problem

(“optimal substructure”).

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 13 Lecture: Week 12

Huffman codes

Used for compressing data (typically savings of20% to 90%).

Data is considered to be a sequence of characters.

Huffman’s greedy algorithm� computes frequency of occurrence of characters, and� assigns binary strings to characters: the more frequent a character,

the shorter the string

Results in a binary character code (“code”).

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 14 Lecture: Week 12

Comparingvariable length codewith afixed length code.

Consider file of length100; 000, containing only characters a,b,c,d,e,f,
and the following frequencies (in thousands).

a b c d e f

45 13 12 16 9 5

With fixed length codes, exact code of each character does not matter
(w.r.t. length). For six characters, we need three bits per character, a total
of 300; 000 bits.

With variable length codes, assignmentdoesmatter. Consider following
code.

a b c d e f

0 101 100 111 1101 1100

Resulting length (in bits) now is(45 � 1 + 13 � 3 + 12 � 3 + 16 � 3 + 9 � 4 + 5 � 4) � 1; 000 = 224; 000
Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 15 Lecture: Week 12

Prefix codes

We only considerprefix codes: no codeword is a prefix of some other
codeword.

Encoding is simple: just concatenate codewords. Using

a b c d e f

0 101 100 111 1101 1100

the code for “deaf” is 111110101100.

Prefix codes simplifydecoding. No codeword is prefix of any other, so
codewords are unambiguous (they parse uniquely).

We need convenient representation for prefix codes.

Usebinary tree:� leaves represent characters,� interpret binary codeword for a character as path from root to
corresponding leaf; 0 means “left”, 1 means “right”.

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 16 Lecture: Week 12

Example:fixed length code
character a b c d e f

frequency 45 13 12 16 9 5

codeword 000 001 010 011 100 101

1

100

86 14

58 28 14

a:45 b:13 c:12 d:16 e:9 f:5

0 1

0

0

1

1 0

0

1 0

Leaves are labeled with its character and its frequency, internal vertices

with the sum of frequencies of leaves in its sub-tree.

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 17 Lecture: Week 12

Example:variable length code
character a b c d e f

frequency 45 13 12 16 9 5

codeword 0 101 100 111 1101 1100

3030

1

0

0 1 0 1

0 1

1

0

14

100

55

25

d:16

a:45

c:12

f:5 e:9

b:13

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 18 Lecture: Week 12

Given a treeT corresponding to a prefix code, we can compute the

number of bits to encode a file as follows. For 2 C, f() denotes its

frequency, anddT () denotes its depth inT (hence,dT () is also the

length of the code of).
The cost ofT is B(T) =X2C f() � dT ()

Optimal code for a file is always represented by afull binary tree , every

non-leaf node has two children.

The fixed-length example is therefore non-optimal (obviously, we already

have seen better one).

Full binary trees=) if C is our alphabet, then the tree hasjCj leaves andjCj � 1 internal vertices.

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 19 Lecture: Week 12

Assignment Problem 12.3.(deadline: August 5, 5:30pm)

Show that a full binary tree withn leaves hasn� 1 internal vertices.

Hint: use induction.

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 20 Lecture: Week 12

Min-priority queues

Huffman’s algorithm uses a min-priority queue (implemented as a heap).
Recall the operations:

Build-Min-Heap: constructs the heap; takesO(n) for n items.

Extract-Min: finds the minimal item and removes it from heap; takesO(log n) per operation.

Insert: insert a new item into queue; takesO(log n).
Idea of Huffman’s algorithm is as follows.� Tree is built bottom-up� Begin withjCj leaves, then dojCj � 1 merging operations to create a

final tree.� In each merger, extract two least-frequent objects to merge; result is a
new object whose frequency is the sum of frequencies of two merged
objects.

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 21 Lecture: Week 12

Huffman’s greedy algorithm

1: n jCj
2: Q C /*Build-Min-Heap*/

3: for i 1 to n� 1 do
4: allocate a new nodez
5: left[z℄ x Extract-Min(Q)

6: right[z℄ y Extract-Min(Q)
7: f [z℄ f [x℄ + f [y℄
8: Insert(Q; z)
9: end for

— the algorithm is building a tree

— z is a new internal node created by the merger ofx andy, which are

now its children

Running time:

Initialization takesO(n).
Each heap operation in loop takesO(log n).
Total running time is thereforeO(n log n).

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 22 Lecture: Week 12

Example

a:45

f:5 e:9 c:12 b:13

f:5 e:9

d:16

c:12 b:13

2514

30

f:5 e:9

d:1614

30

c:12 b:13

25

a:45

55

f:5 e:9

d:1614

30

c:12 b:13

25

a:45

a:45

f:5 e:9 c:12 b:13 d:16 a:45

c:12 b:13 d:16 a:45

f:5 e:9

d:16

0

14 25

55

100

0

0 0

0 0

0

0 0

0

0

0

0 0

0

1

1 1

1

1 1

1

1

1

1

1

1

1 1

1

14

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 23 Lecture: Week 12

Assignment Problem 12.4.(deadline: August 5, 5:30pm)

Prove that the total costB(T) of a treeT can be computed as the sum of

frequencies of all internal nodes (assigned by the algorithm).

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 24 Lecture: Week 12

Correctness

Lemma 1. (Greedy choice property)

LetC be alphabet, each character 2 C has a frequencyf [℄. Letx andy

two characters inC with the lowest frequency. Then there is an optimal

prefix code forC in which the codewords forx andy are thesibling
leaves(have the same length and differ only in the last bit).

In other words:building up an optimal tree can, without loss of generality,

begin with the greedy choice of merging two lowest-frequency characters.

Why is this a greedy choice?By Homework 12.4, the total cost equals to

the sum of costs of mergers (cost = frequencyf). Hence, we are choosing

a merger with the minimal cost at each step.

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 25 Lecture: Week 12

Proof. Let T be any optimal tree. Leta andb be two characters that are

sibling leaves of maximum depth inT . Without loss of generality,f [a℄ � f [b℄ andf [x℄ � f [y℄. Recall thatf [x℄ andf [y℄ are two lowest

frequencies (in order).f [a℄ andf [b℄ are arbitrary frequencies (also in

order). Thus,f [x℄ � f [a℄ andf [y℄ � f [b℄.
Now exchange positions ofa andx (! T 0) and then inT 0 exchange

positions ofb andy (! T 00).
T’’

a b

x

y

y

a a

b

b

x x

T T’

y

T 00 is a tree we are looking for, codewords forx andy have the same

length and differ only in the last bit. But we have to prove that it’s an

optimal tree.

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 26 Lecture: Week 12

B(T)�B(T 0) ==X2C f [℄dT ()�X2C f [℄dT 0()= f [x℄dT (x) + f [a℄dT [a℄� f [x℄dT 0(x)� f [a℄dT 0(a)= f [x℄dT (x) + f [a℄dT [a℄� f [x℄dT (a)� f [a℄dT (x)= (f [a℄� f [x℄) � (dT (a)� dT (x))� 0

becausef [a℄� f [x℄ � 0 anddT (a)� dT (x) � 0.

Similarly,B(T 0)�B(T 00) � 0. Therefore,B(T 00) � B(T 0) � B(T) and

(T is optimal)B(T) � B(T 00).
Thus,B(T) = B(T 00), andT 00 is optimal, withx andy as sibling leaves

of maximum depth.

We are done.

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 27 Lecture: Week 12

Lemma 2. (optimal substructure property)

Given an alphabetC with frequenciesf [℄ for 2 C. Letx; y be two
characters inC with minimal frequencies. Let�C = C � fx; yg [fzg be
a new alphabet with the same frequencies asC exceptf [z℄ = f [x℄ + f [y℄.
Let �T be any tree representing an optimal prefix code for�C.
ThenT , obtained from�T by replacing leafz with the internal vertex
havingx andy as children, represents an optimal prefix code forC.

x y

construction

z C

T�T

�C

The lemma shows the optimality of Huffman’s algorithm, by showing that
each step of the algorithm is optimal:
– merge two characters with lowest frequencies (greedy choice)

– compute optimal solution for�C

– combine the above
Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 28 Lecture: Week 12

Proof of Lemma 2.

Let’s compare the cost ofT for C and the cost of�T for �C. For each

character 2 C � fx; yg, dT () = d �T (), hencef [℄dT () = f [℄d �T ().
Hence we need only compare whatx; y in T andz in �T contribute to the

cost.

SincedT (x) = dT (y) = d �T (z) + 1 (we have replaced a leafz with an

internal vertex withx andy as its children). Hence,f [x℄dT (x) + f [y℄dT (y)= f [x℄ � (d �T (z) + 1) + f [y℄ � (d �T (z) + 1)= (f [x℄ + f [y℄) � (d �T (z) + 1)= (f [x℄ + f [y℄) � d �T (z) + f [x℄ + f [y℄= f [z℄d �T (z) + f [x℄ + f [y℄
Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 29 Lecture: Week 12

Hence, B(T) =X2C f [℄dT ()= X2C�fx;yg f [℄dT () + f [x℄dT (x) + f [y℄dT (y)= X2 �C�fzg f [℄d �T () + f [z℄d �T (z) + f [x℄ + f [y℄

=X2 �C f [℄d �T () + f [x℄ + f [y℄= B(�T) + f [x℄ + f [y℄

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 30 Lecture: Week 12

We have B(T) = B(�T) + f [x℄ + f [y℄() B(�T) = B(T)� f [x℄� f [y℄

Now, it’s easy to prove Lemma 2 by contradiction.

SupposeT doesnot represent an optimal prefix code forC. Then9T 0 forC with B(T 0) < B(T).
By Lemma 1, we can assume thatT 0 hasx; y assibling leaves. Let �T 0 beT 0 with the common parent ofx; y replaced by a leafz withf [z℄ = f [x℄ + f [y℄. Then,B(�T 0) = B(T 0)� f [x℄� f [y℄< B(T)� f [x℄� f [y℄= B(�T)
Note that�T 0 is a tree for�C, i.e., we have acontradictionsince �T was
assumed to be optimal!

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 31 Lecture: Week 12

Assignment Problem 12.5.(deadline: August 5, 5:30pm)

Suppose a data file contains a sequence of8-bit characters such that all

256 characters are about as common: the maximum character frequency

is less than twice the minimum character frequency. Prove that Huffman

coding in this case is no more efficient than using an ordinary8-bit

fixed-length code.

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 32 Lecture: Week 12

Another example: Scheduling
� We want to optimally schedule jobs on a single machine� Comes down to defining theorder in which jobs are processed� Different objectives possible� In this case, we want tominimize the average time jobs spend in the

system

Given: n jobsj1; : : : ; jn (arriving at the same time), with service timest1; : : : ; tn.

Note that the total time is fixed (
P ti), but not average system time.

Sincen is fixed, problem is equivalent to minimizingT = nXi=1(waiting time for customeri);
which is equal to “n times the average system (waiting) time”.

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 33 Lecture: Week 12

Example

Three customers,t1 = 5, t2 = 10, t3 = 3. There are3! = 6 possible
orders:

order T

1 2 3 5 + (5 + 10) + (5 + 10 + 3) = 38

1 3 2 5 + (5 + 3) + 5 + 3 + 10) = 31

2 1 3 10 + (10 + 5) + (10 + 5 + 3) = 43

2 3 1 10 + (10 + 3) + (10 + 3 + 5) = 41

3 1 2 3 + (3 + 5) + (3 + 5 + 10) = 29 opt

3 2 1 3 + (3 + 10) + (3 + 10 + 5) = 34

Note: in optimal solution, jobs are sorted in order of increasing service
times.

The idea of greedy algorithms is to do whatever seems best at the
moment:

Suppose we already have scheduled the first` jobs. What to do in order to
haveT as small as possible? Pick a “cheapest” job available for the(`+ 1)-st one, so that other jobs don’t have to wait much.

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 34 Lecture: Week 12

Theorem. Greedy algorithm (choosing at each stage a job with the

shortest service time) is optimal.

Proof. Let P = p1; p2; : : : ; pn be any permutation off1; : : : ; ng, letsi = tpi (= the service time of thei-th job with respect toP). ThenT (P) = s1 + (s1 + s2) + (s1 + s2 + s3) + � � �= ns1 + (n� 1)s2 + (n� 2)s3 + � � �= nXk=1(n� k + 1) � sk
SupposeP doesnot arrange jobs in order of increasing service time.

Then there must bea; b with a < b andsa > sb (thea-th job is served

before theb-th job although thea-th needs more service time than theb-th).

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 35 Lecture: Week 12

RecallT (P) =Pnk=1(n� k + 1) � sk:

Now we swap positions ofa-th andb-th jobs, and obtain a new

permutationP 0 (which is same asP but withpa andpb interchanged).T (P 0) = (n� a+ 1)sb + (n� b+ 1)sa +Xk2f1;ng�fa;bg(n� k + 1)sk

(job with sb is in positiona, and vice versa). NowT (P)� T (P 0)= (n� a+ 1)sa + (n� b+ 1)sb �(n� a+ 1)sb � (n� b+ 1)sa= (n+ 1)(sa + sb � sb � sa) + a(sb � sa) + b(sa � sb)= b(sa � sb)� a(sa � sb)= (b� a) � (sa � sb)> 0

sinceb > a andsa > sb.
Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 36 Lecture: Week 12

Conclusion:any scheduleP which doesn’t arrange jobs in order of

increasing service time, is not optimal (T (P 0) < T (P)). Hence, any

optimal schedule arranges jobs inshortest-service-time-firstorder. Such

schedules have the same cost, and so they are all optimal. Done.

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 37 Lecture: Week 12

Extra Assignment Problem 3.(2% added to the overall performance if

solved completely)

Deadline:The final exam.(Note: You get extra points only if your solution is

completely correct. You can submit the solution several times. If it’s not correct, I

will point out the problem(s) in your solution and you can tryagain.)

Consider the following scheduling problem. We have one computer andn

jobsj1; : : : ; jn. Jobji has aservice timeti and arelease timeri. We can

start processing a job only after its release time. The jobs can be

suspended and restarted at a later time! Thecompletion timeof an jobji

is the time elapsed from the release of the job until it’s completely

processed by the computer.

Give an algorithm that schedules the jobs so as to minimize the average

completion time. Prove that your algorithm minimizes the average

completion time, and state the running time of your algorithm.

You can assume that all timesti andri are non-negative integers.

Last modified: Tuesday 29th July, 2008, 14:07 2008 J́an Mǎnuch

	Greedy algorithms
	Activity selection problem
	Dynamic programming approach.
	Greedy properties

	Designing a greedy algorithm
	Huffman codes
	Prefix codes
	Min-priority queues
	Huffman's greedy algorithm
	Correctness

	Another example: Scheduling

