SFU CMPT-307 2008-2 1 Lecture: Week 11

SFU CMPT-307 2008-2 Lecture: Week 11

Jan Manuch

E-mail: jmanuch@sfu.ca

Lecture on July 22, 2008, 5.30pm-8.20pm

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 2 Lecture: Week 11

Dynamic Programming:
Matrix-Chain Multiplication

Given: a “chain” of matriceg A;, A, ... A,), with A; having dimension
Pi—1 X Di.

Goal: compute the producd; - A, - - - A,, as fast as possible

Clearly, time to multiply two matrices depends dimensions

Does theorder of multiplication (=parenthesizationmatter?

Example:n = 4. Possible orders:

A1 (A2(A3A4))
Aq((AxA3)Ay)
(A1A2)(A3A4)
(A1(A243))Aq
(

(
(
(
(
(((A1A42)A3) A4

)
)
)
)
)

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 3 Lecture: Week 11

Supposed; is10 x 100, A5 is100 x 5, A3i1sb5 x 50, and A4 is 50 x 10

Assume that multiplication of & x ¢)-matrix and aq x r)-matrix takes
pqr steps (a straightforward algorithm)

Order 2(A1((A2A3)A4))
100-5-504100-50-10+ 10 - 100 - 10 = 85,000
Order 5(((A1A2)A3)A4)

10-100-5+10-5-50 + 10 - 50 - 10 = 12, 500

Seems it might be a good idea to find a “good” order

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 4 Lecture: Week 11

How many orders are there? Can we just check all of them?
(we look only at fully parenthesized matrix products)

Let P(n) be the number of orders of a sequence ohatrices
Clear,P(1) = 1 (only one matrix)

If n > 2, a matrix product is the product of two matrix subproducigitS
may occur betweeh-th and(k + 1)-st position, for any
k=1,2,...,n— 1 (“top-level multiplication™)

Thus
1 fn=1

Pl = Z;ll Pk)-Pn—k) ifn>2

Unfortunately,P(n) = Q(4™/n3/2), and thus (easier to see)
P(n) = Q(2)

Thus “brute-force approach” (check all parenthesizatismo good

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 5 Lecture: Week 11

Assignment Problem 11.1.(deadline: July 29, 5:30pm)
Show that the number of full parenthesizations of a prodtiet matrices,
P(n)isin(2").

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 6 Lecture: Week 11

We will use theDynamic programming approach tmptimally solve this
problem.

The four basic steps when designing Dynamic programmingy ihgn:
1. Characterize the structure of an optimal solution
2. Recursivelydefine the valueof an optimal solution

3. Compute the valueof an optimal solution in a bottom-up fashion
4. Construct an optimal solution from computed information

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 7 Lecture: Week 11

1. Characterizing structure

LetAi’j :AlA] for ¢ < 7.

If + < 7, then any parenthesization 4f ; must split product at somke
i <k <j, le.,computed; p, Axs1 5, and thend; , - Apyq ;.

Hence, for someé, the cost of computingl; ; IS
e the cost of computing!; plus
e the cost of computingl,; ; plus

o the cost of multiplying4; » and A4 ;.

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 8 Lecture: Week 11

Optimal substructure:

e Suppose that optimal parenthesizatior4gf; splits the product
betweenAd; and Ay ;.

e Then, parenthesizations df; , and A ; within this optimal
parenthesization must be also optimal
(otherwise, substitute the opt. parenthesizatiod of (resp.Ax11 ;)
to current parenthesization df; ; and obtain a better solution —
contradiction)

Useoptimal substructure to construct an optimal solution:
1. split into two subproblems (choosing an optimal split),

2. find optimal solutions to subproblem,
3. combine optimal subproblem solutions.

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 9 Lecture: Week 11

2. A recursive solution

Let m|¢, j] denote minimum number of scalar multiplications needed to
computed; ; = A; - A;41--- A; (full problem: m|[1, n)).

Recursive definition ofn |, j]:

o if i = j,thenmli, 5] = ml:, i = 0 (4;; = A;, no multiplication
needed).

e If 7 < 5, assume optimal split &t, : < £ < j. Since each matrid;
ISpi—1 X Diy Ai g 1ISPp;—1 X pr and Ay 41 ;IS pr X pj,

mli, j] = mli, k] + m[k + 1, 5] + pi—1 - pr - p;

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 10 Lecture: Week 11

e \We do not know optimal value df. There arg — ¢ possibilities,
k=14,1+1,...,5 —1, hence

y

0 if i =
mli, j] = < min;<p<;{mli, k] + mlk +1,5] ifi<y

| TDi—1 " Dk ¥23;
We also keep track of optimal splits:

(s[¢, 7] is a value oft at which we split the product,; ; to obtain an
optimal parenthesization)

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 11 Lecture: Week 11

This can be used to write a recursive algorithm:

Recursive-Matrix-Chain(p, i, j)
1: If 1 = j then
return 0
- end if

. for k+1toj —1do
q < RECURSIVEMATRIX-CHAIN (p, i, k)+
RECURSIVEMATRIX-CHAIN (p, k + 1,7) + pi—1PkD;
7. if ¢ < mli, j] then

2
3
4: mli, j] < o0
5
6

8: mli, j| < q
9: endif
10: end for

11: return mlz, j]

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 12 Lecture: Week 11

Running time analysis:

T(l) > 1
n—1

Tn)>14+ > (T'(k)+T(n—k)+1)forn >1
k=1

rewrite:

T(n) > 2 ng_jl T() +n

This is still exponential im:

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 13 Lecture: Week 11

we prove thafl'(n) > 2"~ by induction om

n—1
T(n)>2) 27 +n
1=1

n—2
:2Z2i—l—n

1=0
=22t — 1) +n
=2"+n—2

> gn—1

Hence/I'(n) = Q(2™).

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 14 Lecture: Week 11

3. Computing the optimal costs

Want to computen|1, n|, minimum cost for multiplyingd; - As - - - A,,.

Recursively, it would také€)(2") steps: the same subproblems are
computed over and over again.

However, if we compute in a bottom-up fashion, we can redunaing
time to polynomial inn.

The recursive equation shows that coest, ;] (product ofj — 7 + 1
matrices) depends only on smaller subproblems:
fork=1,...,7 —1,

o A;isaproductok —i+ 1< j— ¢+ 1 matrices,
o A, isaproductoff —k < j — i+ 1 matrices.

Algorithm should fill tablem in order of increasing lengths of chains.

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 15 Lecture: Week 11

Matrix-Chain-Order (p)

1: n < lengthp] — 1
2: for i1 + 1tondo
3 mli, i) <0

4: end for

5. for £ < 2to n do

6: fore<«1ton—/¢+1do
7: j—i+L0—1

8: mli, j] + oo

9: for k<« 1t0oj—1do
10: q < mli, k] +mlk+ 1,51+ pi—1-pr - pj
11: If ¢ < m, 7] then
12: mli, j] < q

13: sli, j] < k

14: end if

15: end for

16: end for

17: end for

18: return m ands

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 16 Lecture: Week 11

Example.

Six matrices:
A7 (30 x 35) As (35 x 15)
As (15 x) Ay (5 x 10)

Recall: multiplyingA (p x q) andB (g x r) takesp - g - r scalar
multiplications.

1 0

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2

17

Lecture: Week 11

1 2 3 4 5 6
15,125 | 10,500| 5,375 | 3,500 | 5,000 0
11,875 | 7,125 | 2,500 1,000 0
9,375 | 4,375 750 0
7,875 | 2,625 0
2 15,750 0
1 0

4. Constructing an optimal solution

Simple with arrays|i, j]: s|[] shows us an optimal split point for every
subproblem.

Here is a recursive procedure to print an optimal parerdh@ien in linear
time:

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 18 Lecture: Week 11

Print-Optimal-Parenthesization(s, i, j)

1: If ¢ = 5 then

2: print“A;”

3: else

4. print“(”
5. PRINT-OPTIMAL-PARENTHESIZATION(S, 4, §|, j])
6: PRINT-OPTIMAL-PARENTHESIZATION(s, sli, j] + 1, 7)
7. print*)”
8: end if

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 19 Lecture: Week 11

Assignment Problem 11.2.(deadline: July 29, 5:30pm)

Consider a variant of the matrix-chain multiplication plera in which
the goal is to parenthesize the sequence of matrices so asximine,
rather than minimize, the number of scalar multiplicatidaerform all 4
steps to design a Dynamic Programming algorithm.

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 20 Lecture: Week 11

Time complexity

We have three nested loops:

1. ¢, length,O(n) iterations

2. 1, start,O(n) iterations

3. k, split point,O(n) iterations
Body of loops: constant complexity.

Total complexity: O(n?)
(compared td2(2™) for brute-force approach).

In many cases, Dynamic programming approaches are moregfftban
simple Divide&Conquer.

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 21 Lecture: Week 11

DP: Longest common subsequence

— biologists often need to find out how similar are 2 DNA sea#&sn
— DNA sequences are stringslofises A, C', T'andG

— how to define similarity?
e One is a substring of another

e number of changes (mutations) needed to change one string to
another

e the longest common subsequentewno stringsS; andSs,: a longest
seguence; appearing in each &f; andS; (in the same order, but
necessarily consecutively)

Definition. Z = z1z9 ... 2z IS asubsequenc®f S = sys5 ... s, If there
exists an increasing sequence of indeXesi i1 <io < - < ip <n
such that; = s;,

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 22 Lecture: Week 11

Example.

S= 6 G C A C T GG T A C

(R l }
/= G C C A

Z = GCCAis asubsequence 6f= GGCACTGTAC

Definition. Z isa common subsequencef X andY if its a subsequence

of both X andY'.
A longest sucl¥ is calleda longest common subsequence- LCS.

Example.Consider

X =GGCACTGTAC
Y = CATGTCACGG

Then AT AC andGC AG are a common subsequencesiondY . The
longest common subsequence&idTGT AC.

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 23 Lecture: Week 11

“brute-force approach™: list all subsequencesXofind for each test if it’s

subsequence df
If X has a lengthn, there ar&™ subsequences of
exponential time

“dynamic programming approach”:
1. Characterizing structure

consider a stringg = sy1ss...s,, thenforevernyl < <j5 <n,we
define asubstring S; ; of S as follows

S@"j = S5iSi+1---5j—-15;

space of subproblems:

— inspired by “matrix-chain multiplication problem” we clouconsider
the following subproblems: longest common subsequencsslastrings
X, ; andYy; fori < jandk </

— “thumb rule”: keep the space of subproblems as small asigess

— class of subproblems: LCS'’s of prefix&s ; andY ;

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 24 Lecture: Week 11

Assignment Problem 11.3.(deadline: July 29, 5:30pm)
Give anO(n + m) time algorithm deciding whether a sequence

X =x1...x, IS asubsequence 6f = y; ...y,,. Remember to explain
how you algorithm works!

Note: A DP algorithm for this problem would work in tim@(n.m). You
will only get a half of the points for such a solution.

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 25 Lecture: Week 11

optimal substructure of LCS

Clam.LetZ =z, ...z bealLCSofX =x;...2,, andY = y;1...y,.
Then

1. if xp, = yn, thenzy = x,,, = y, andZ; 1 iIsan LCS ofX, ,,,_
andY,,_{;

2. if z,, # y, andzy # z,,,, thenZ is an LCS ofX; ,,,_; andY’;
3. if z,,, # y, andzy # y,, thenZ is an LCS ofX andY ,,_;.
Proof.

1. e if z; # x,, = yn, thenZzx,, Isa common subsequence.bfand
Y longer thanZ, a contradiction
e clearly,Z; _; Is a common subsequenceX®f ,,_; andY; ,,_;

¢ if not a longest one: leW” be an LCS ofX, ,,_; andY; ,,_1;
thenW z, iIs a common subsequenceXfandY’, again a
contradiction (“cut-and-paste”)

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 26 Lecture: Week 11

2. clearly, sincey, # z,,, Z IS a common subsequenceXf ,,_; and
Y,
If not a longest one: use “cut-and-paste” technigue again

3. similarly as in case 2.

Hence, an LCS of two sequences contains within it an LCS dixa® of
these two sequencegptimal substructure property.

ExampleCATGTAC is an LCS of
X =GGCACTGTAC andY = CATGTCACGG

by 3.,CATGTAC is an LCS of
X = GGCACTGTAC andY; g = CATGTCACG

by 3.,CATGTAC is an LCS of
X =GGCACTGTAC andY; s = CATGTCAC

by 1.,CATGTA s an LCS of
X19=GGCACTGTA andY; = CATGTCA

etc.
Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 27 Lecture: Week 11

2. A recursive solution

by above,tofindan LCS ok =z ...x,,, andY = y1 ... yn:

e if x,, = yn, then find an LCS o, ,,—; andY; ,,_; and append
Ty = Yn tOIL

o if z,, # y,, then find an LCS ok andY; ,,_; and an LCS of
X1m—1 andY’, and take the longer of these two

let c[¢, j] be the length of an LCS oX; ; andY]

recursive formula:

2

0 ifi=0o0rj =0,
cli,jl=q¢cli—1,5-1]+1 if 4,7 > 0 andz; = y,,
| max(cli, j — 1],c[i — 1,7]) if 4,57 > 0andz; # y;.

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 28 Lecture: Week 11

3. Computing

a recursive algorithm based on recursive formula would lagnag
exponential, however there are ority. + 1)(n + 1) subproblems
(“overlapping-subproblems propef}y

entries of table:[0...m,0...n] are filled in row-major order "
the first row from left to right

the second row from left to right

etc

tableb[1...m,1...n] - contains the information to construct the optimal
solution (shows alirectionfrom where we got the minimal value of the
length of an LCS:

T — i, j] = i, g — 1],

I —cli, jl =cli — 1, 7], or

"V —cfi,jl =i — 1,7 — 1]+ 1.

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 29

Lecture: Week 11

LCS-Length(X,Y)

1:

e e
A

m <— length X]

n < lengthY]

for i +— 1tom do
cli,0] + 0

end for

for i <+ 1ton do
cl0,i] < 0

end for

for 1 < 1tom do
for j «+ 1tondo

if z; = y; then
cli,jl«cli—1,j—1+1

Time complexity: O(mn)

Last modified: Tuesday 22 July, 2008, 23:54

13: bli, j] «+ “ "

14: else

15: if ¢[i —1,4] > c[i,j — 1] then
16: cli, j] < cli — 1, 7]
17: bli, j] < “1”

18: else

19: cli, j] < cli — 1,]
20: bli, j] « “<"

21: end if

22: end if

23: end for

24: end for

25: return ¢ andb

2008 &n Maiuch

SFU CMPT-307 2008-2 30 Lecture: Week 11
Example.

] 1 2 3 4 5 6 7 8 9 10

| G| G| C A C T G T A C
1 C| 10|10 91«1 951 | «<1]|«<1]|«+1|«,1] 71
2 A|1T0|1 10| M1 9,2 | <2 +2| 2| «2]| 92 | <,2
3 T|t0{t0| 12 12| 12| 9,3 | <«,3] 9,3 | <+,3]|<«,3
4 G191t 2 12 13| N4 4|+~ 4) 4
5 T|t1/+t1 |11 1t2) 12 1,83 14| 95 |<+,5]<«,5
6 C|t1 |11 92| 12| 93 |t 3| t4 |15 15| 9,6
7 At1| 1|2 93t 3t 3 1t4 15 16| 1,6
g C|t1|t1|92 13| 94 |«4| 14| 15| 16| 9,7
O G| 91| 92|12 13| t4 | 1t4) S| 15 16| N
10 G691 1%2 (12 3| 1t4 |14 95| 05| 1,6 | 1,7

Last modified: Tuesday 22 July, 2008, 23:54

2008 &n Maiuch

SFU CMPT-307 2008-2 31

Lecture: Week 11

4. Constructing an LCS

recursive procedure:
Print-LCS (b, X, 1, j)

12:
13:

if s =0o0rj =0then
return
end if
if b[i, 7] = "7 then
Print-LCSb, X, — 1,5 — 1)
print x;
else
if b[i,j] ="“1" then
Print-LCSb, X,i — 1, 7)
else
Print-LCSb, X,i,7 — 1)
end if
end if

Time complexity: O(m + n) — in each step at least one0&ndj is
decreased by 1

Last modified: Tuesday 22 July, 2008, 23:54

2008 &n Maiuch

SFU CMPT-307 2008-2 32 Lecture: Week 11

Assignment Problem 11.4.(deadline: July 29, 5:30pm)
Give anO(n?) time algorithm to find the longest monotonically
Increasing subsequence of a sequencedktinct numbers.

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 33 Lecture: Week 11

All-pairs shortest paths

e Directed graplG = (V, F), weight function
w:E >R, |V|=n
e Assume(contains no negative-weight cycles
e Goal: createn x n matrix of shortest path distancégu, v), u,v € V
e Adjacency-matrix representation of graph:

— n x n adjacency matri¥¥ = (w;,) of edge weights

— assume
(0 if i =

wi; = § weightof(i,j) ifi#£jand(i,j) € E

| o0 if i #j7and(i,j) € £

e Weight of pathp = (vy, v, ..., vg) IS
w(p) = X;2; w(vi,vir1)

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 34 Lecture: Week 11

Shortest paths & matrix multiplication

In the following, we only want to compute lengths of shortesths, not
construct the paths (see the textbook if you are interestednstructing
the paths).

Dynamic programmingpproach, first 3 steps steps:
1. Structure of a shortest path
Subpaths of shortest paths are shortest paths

Lemma. Letp = (vy,v9,...,vr) be a shortest path from to vy, let
pij = (i, Vit1,...,v;) forl < ¢ < j <k be subpath from; to v;.
Then,p;; is shortest path from; to v;.

Proof. Decompos& into

D1i Dij Pjk
U1 ~ Uy ~ U5 ~ Ug.

Then,w(p) = w(p1;) + w(pij) + w(psx). Assume there is cheapglr;

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 35 Lecture: Week 11

from v; to v; with w(p;;) < w(ps;). Then

/
p1i Pij Pjk
U1 Uy ~ U5 ~ Uk

is path fromw; to vx whose weightv(p1;) + w(p;;) + w(p;x) is less than
w(p), a contradiction.

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 36 Lecture: Week 11

2. Recursive solution &
3. Compute opt. value (bottom-up)

Let df;;.”) = weight of shortest path fromto ; that uses at most edges.

Y 0o if i
dg;n) = mkin {dg?_l) + wkj}

at most m-1 edges K's

at most m-1 edges

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 37 Lecture: Week 11

Note: the shortest path fromto ;5 can use at most — 1 edges+ is the
number of vertices).

Hence, we're looking for

5(i,5) = d{}

The algorithm is straightforward, running time@n*) (n — 1 passes,
each computing? d's in ©(n) time)

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 38 Lecture: Week 11

Similar tomatrix multiplication

C = A-B,n x nmatricesg;; = Y., aix - br;
O(n?) operations

Replacing 4" with “ min” and “.” with “ +” gives
Cij = mkin{aik + br; },

very similar to

47 = min{dg" ™" + wys}

HenceD(™) = D(m=1) o W

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 39 Lecture: Week 11

Note: Identity matrix for this “multiplication’® is

(Ooooooo\

x 0 oo o©

|
1

— D) — (dij)(o)
oo oo 0 o

Koooooo())

Why? Replacé (identity for +) in real identity matrix withoo (identity
for min), and replaca (identity for-) in real identity matrix with0
(identity for +).

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 40 Lecture: Week 11

Assignment Problem 11.5.(deadline: July 29, 5:30pm)

Show that the above “multiplication” (witmin instead of sum and
addition instead of multiplication) of matrices is assties i.e., that for
any three matriced, B andC, we have

A9 (B®C)=(A®B)aC.

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 41 Lecture: Week 11

Hence: this “multiplication™ is associative Algebraic structure is
closed semiring(no ring because min has no inverse).

S0, we can use

DY = T

DV — DO W =w

D® = DWeWw =w?

D® = D@ eow=w3
D(n—l) _ D(n—2) ® W = Wn—l

D=1 = (§(i, 7)), so that’s the answer

Time: O(n - n3) = O(n?)
O(n) “multiplications”, each® (n?)

Unfortunately, no better than before. ..

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 42 Lecture: Week 11

Assignment Problem 11.6.(deadline: July 29, 5:30pm)
We are assuming that the graph doesn’t contain a negatighit®ycle.
What happens if we drop this assumption?

1. Show that if a graph contains a negative-weight cycle there are
two vertices with a shortest path distaneec.

2. Use matriceD ... DD to identify that the graph contains a
negative-weight cycle, as well, to find the length (the nundfe
edges) of a smallest such cycle.

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 43 Lecture: Week 11

But, with repeated squaring

W2 =Wn" x W"

Compute
gllog(n—1)]

WW?2 Wt ws, ... W

J/

©(n) sauarings

Note: 2/leg(n—11 > p _ 1

OK to overshoot since product doesn’t change after corvgrm
(0(¢,7))

Time: O(n®logn)

O(log n) squarings, eac®(n?)

There’s something even better. ..

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 44 Lecture: Week 11

Floyd-Warshall algorithm

Also Dynamic programming, but faster (factiog n)
AssumeV = {1,2,...,n}.

Definecg;.”) = weight of a shortest path fromto ;5 with intermediate
verticesin {1,2,...,m}.

Thend(z,7) = c(")
Computec(") in terms of smaller oness:(<).

-0

7»]

S <C<m—1> (m=1) 4 (- 1))

wij

7,] 1]) zm

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 45 Lecture: Week 11

(m-1) (m-1)

C(.r'n—l)

intermediate vertices in {1.....m-1}

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 46 Lecture: Week 11

Difference from previous algorithm: we don’t have to checall possible
Intermediate vertices. Shortest path simply either inetud or doesn't.

Pseudocode:
1. CO) W
2: for m+ 1tondo
3: for¢<+ 1tondo
4: for j < 1tondo
5 () Ej)7%1>+(m1))
6 end for
7: end for
8: end for
9: returnC'(™)

< min(c

Superscripts can be dropped: improving the space requirtmé (n?).
Time: ©(n?), simple code

Best algorithm to date i©(n? logn + n|E|)

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 47 Lecture: Week 11

4. Constructing a shortest paths

we need to compute@edecessor matrix
II = (m;;) where

o m;; = NIL, If 2 = j or there is no path fromto j
e m;; = predecessor of on a shortest path frorto 5, otherwise

once we have a predecessor matrix, the algorithm is easy:
Print-Shortest-Path(I1, 7, 5)

1: If + = 5 then

2: prints

3: else

4: if m;; = NIL then

5: print “no path”

6. else

7 Print-Shortest-Path(I1, 4, 7; ;)
8 print j

9: endif

10: end if

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 48 Lecture: Week 11

How to computell?

we can compute the sequencdBf), ... II(™ at the same time as we
are computing the sequeng®? D=1 (the first algorithm), or the
sequenc&€'®) ... C™ (Floyd-Warshall algorithm), respectivelly

— in the case of first algorithm, we cannot wsgiaring technique

— let’s concentrate only oRloyd-Warshall algorithm:

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 49 Lecture: Week 11

Let WZ(;."’) be the predecessor gfon a shortest path fromto ;5 with all

intermedaite vertices in the sgt, 2,...,m}
Initialization:
o _ JNILif i = jorw; = oo
Y i ifi# jandw;; < oo

recursive stepdepends where the minimal weight of a shortest path

comes from
(m—1) .¢ (m—1) (m—1) (m—1)
Y Wﬁnn;_l) If cq(;;n_l) > cgfr:_l) + c%_l)

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 50 Lecture: Week 11

the algorithm:
1. CO) W
2: form+ 1tondo
3: for¢<+ 1tondo

4 for j < 1tondo

5 if Y < m Y g e then
6: CE;-n) YA cz(;n’_l)

7 7T§;-n) Y 7T§;n_1)

8 else

9 cgn) — c%‘” + c%_l)
10: ngm) Y 777(7;7;_1)

11: end if

12: end for

13: end for

14: end for

15: returnC' (™ andII(™

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

SFU CMPT-307 2008-2 51 Lecture: Week 11

Application: Transitive closure of a directed graph

given: a directed grapy = (V, F)

ouput: thetransitive closure = a directed grapl’* = (V, E*), where

(7,j) € E* if thereis apath fromitojin G

Easy to compute using the above algorithm:
e assign weight O to all edges #i (if (¢,5) ¢ E, thenw;; = 00)
e run theFloyd-Warshallalgorithm— C
e (¢,7)isanedgeinE* ifandonlyifc;; =0

Note: only value in matrice€ (™ are0 andoo, which can be interpreted
as boolean values and operatiors ‘and “min” can be replaced by
logical operations AND and OR

Last modified: Tuesday 22 July, 2008, 23:54 2008 &n Maiuch

	Dynamic Programming: Matrix-Chain Multiplication
	1. Characterizing structure
	2. A recursive solution
	3. Computing the optimal costs
	4. Constructing an optimal solution
	Time complexity

	DP: Longest common subsequence
	1. Characterizing structure
	2. A recursive solution
	3. Computing
	4. Constructing an LCS

	All-pairs shortest paths
	Shortest paths & matrix multiplication
	Floyd-Warshall algorithm
	Application: Transitive closure of a directed graph

