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Dynamic Programming:
Matrix-Chain Multiplication

Given: a “chain” of matrices(A1; A2; : : : An), with Ai having dimensionpi�1 � pi.
Goal: compute the productA1 �A2 � � �An as fast as possible

Clearly, time to multiply two matrices depends ondimensions

Does theorder of multiplication (=parenthesization) matter?

Example:n = 4. Possible orders:(A1(A2(A3A4)))(A1((A2A3)A4))((A1A2)(A3A4))((A1(A2A3))A4)(((A1A2)A3)A4)
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SupposeA1 is 10� 100, A2 is 100� 5, A3 is 5� 50, andA4 is 50� 10

Assume that multiplication of a(p� q)-matrix and a(q � r)-matrix takespqr steps (a straightforward algorithm)

Order 2:(A1((A2A3)A4))100 � 5 � 50 + 100 � 50 � 10 + 10 � 100 � 10 = 85; 000

Order 5:(((A1A2)A3)A4)10 � 100 � 5 + 10 � 5 � 50 + 10 � 50 � 10 = 12; 500
Seems it might be a good idea to find a “good” order
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How many orders are there? Can we just check all of them?

( we look only at fully parenthesized matrix products)

Let P (n) be the number of orders of a sequence ofn matrices

Clear,P (1) = 1 (only one matrix)

If n � 2, a matrix product is the product of two matrix subproducts. Split

may occur betweenk-th and(k + 1)-st position, for anyk = 1; 2; : : : ; n� 1 (“top-level multiplication”)

Thus P (n) = 8<: 1 if n = 1Pn�1k=1 P (k) � P (n� k) if n � 2
Unfortunately,P (n) = 
(4n=n3=2), and thus (easier to see)P (n) = 
(2n)

Thus “brute-force approach” (check all parenthesization)is no good
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Assignment Problem 11.1.(deadline: July 29, 5:30pm)

Show that the number of full parenthesizations of a product of n matrices,P (n) is in
(2n).
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We will use theDynamic programming approach tooptimally solve this

problem.

The four basic steps when designing Dynamic programming algorithm:

1. Characterize the structureof an optimal solution

2. Recursivelydefine the valueof an optimal solution

3. Compute the valueof an optimal solution in a bottom-up fashion

4. Construct an optimal solution from computed information
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1. Characterizing structure

LetAi;j = Ai � � �Aj for i � j.
If i < j, then any parenthesization ofAi;j must split product at somek,i � k < j, i.e., computeAi;k, Ak+1;j , and thenAi;k �Ak+1;j .
Hence, for somek, the cost of computingAi;j is� the cost of computingAi;k plus� the cost of computingAk+1;j plus� the cost of multiplyingAi;k andAk+1;j .
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Optimal substructure:� Suppose that optimal parenthesization ofAi;j splits the product

betweenAk andAk+1.� Then, parenthesizations ofAi;k andAk+1;j within this optimal

parenthesization must be also optimal

(otherwise, substitute the opt. parenthesization ofAi;k (resp.Ak+1;j)
to current parenthesization ofAi;j and obtain a better solution —

contradiction)

Useoptimal substructure to construct an optimal solution:

1. split into two subproblems (choosing an optimal split),

2. find optimal solutions to subproblem,

3. combine optimal subproblem solutions.
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2. A recursive solution

Letm[i; j℄ denote minimum number of scalar multiplications needed to

computeAi;j = Ai �Ai+1 � � �Aj (full problem:m[1; n℄).
Recursive definition ofm[i; j℄:� if i = j, thenm[i; j℄ = m[i; i℄ = 0 (Ai;i = Ai, no multiplication

needed).� if i < j, assume optimal split atk, i � k < j. Since each matrixAi

is pi�1 � pi, Ai;k is pi�1 � pk andAk+1;j is pk � pj ,m[i; j℄ = m[i; k℄ +m[k + 1; j℄ + pi�1 � pk � pj
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� We do not know optimal value ofk. There arej � i possibilities,k = i; i+ 1; : : : ; j � 1, hence
m[i; j℄ = 8>><>>: 0 if i = jmini�k<jfm[i; k℄ +m[k + 1; j℄ if i < j+pi�1 � pk � pjg

We also keep track of optimal splits:s[i; j℄ = k , m[i; j℄ = m[i; k℄ +m[k + 1; j℄ + pi�1 � pk � pj

(s[i; j℄ is a value ofk at which we split the productAi;j to obtain an

optimal parenthesization)
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This can be used to write a recursive algorithm:

Recursive-Matrix-Chain(p; i; j)

1: if i = j then
2: return 0
3: end if
4: m[i; j℄ 1
5: for k  i to j � 1 do
6: q  RECURSIVE-MATRIX -CHAIN(p; i; k)+

RECURSIVE-MATRIX -CHAIN(p; k + 1; j) + pi�1pkpj

7: if q < m[i; j℄ then
8: m[i; j℄ q

9: end if
10: end for
11: return m[i; j℄
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Running time analysis:T (1) � 1T (n) � 1 + n�1Pk=1(T (k) + T (n� k) + 1) for n > 1

rewrite:T (n) � 2 n�1Pi=1 T (i) + n

This is still exponential inn:
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we prove thatT (n) � 2n�1 by induction onn

T (n) � 2 n�1Xi=1 2i�1 + n
= 2 n�2Xi=0 2i + n= 2(2n�1 � 1) + n= 2n + n� 2� 2n�1

Hence,T (n) = 
(2n).
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3. Computing the optimal costs

Want to computem[1; n℄, minimum cost for multiplyingA1 �A2 � � �An.

Recursively, it would take
(2n) steps: the same subproblems are

computed over and over again.

However, if we compute in a bottom-up fashion, we can reduce running

time to polynomial inn.

The recursive equation shows that costm[i; j℄ (product ofj � i+ 1

matrices) depends only on smaller subproblems:

for k = 1; : : : ; j � 1,� Ai;k is a product ofk � i+ 1 < j � i+ 1 matrices,� Ak+1;j is a product ofj � k < j � i+ 1 matrices.

Algorithm should fill tablem in order of increasing lengths of chains.
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Matrix-Chain-Order (p)

1: n length[p℄� 1
2: for i 1 to n do
3: m[i; i℄ 0
4: end for
5: for ` 2 to n do
6: for i 1 to n� `+ 1 do
7: j  i+ `� 1
8: m[i; j℄ 1
9: for k  i to j � 1 do

10: q  m[i; k℄ +m[k + 1; j℄ + pi�1 � pk � pj
11: if q < m[i; j℄ then
12: m[i; j℄ q

13: s[i; j℄ k

14: end if
15: end for
16: end for
17: end for
18: return m ands
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Example.

Six matrices: A1 (30� 35) A2 (35� 15)A3 (15� 5) A4 (5� 10)A5 (10� 20) A6 (20� 25)

Recall: multiplyingA (p� q) andB (q � r) takesp � q � r scalar

multiplications.

4
i

j

1 2 3 5 6

6

2

3

4

5

1 0

0

0

0

0

0
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15,125

i

j

1 2 3 4 5 6

6

2

3

4

5

1

9,375

7,125

5,375

11,875

10,500

15,750

2,625

750

1,000

5,000

7,875

4,375

2,500

3,500

0

0

0

0

0

0

4. Constructing an optimal solution

Simple with arrays[i; j℄: s[℄ shows us an optimal split point for every
subproblem.
Here is a recursive procedure to print an optimal parenthesization in linear
time:
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Print-Optimal-Parenthesization(s; i; j)

1: if i = j then
2: print “Ai”
3: else
4: print “(”
5: PRINT-OPTIMAL -PARENTHESIZATION(s; i; s[i; j℄)

6: PRINT-OPTIMAL -PARENTHESIZATION(s; s[i; j℄ + 1; j)

7: print “)”
8: end if
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Assignment Problem 11.2.(deadline: July 29, 5:30pm)

Consider a variant of the matrix-chain multiplication problem in which

the goal is to parenthesize the sequence of matrices so as to maximize,

rather than minimize, the number of scalar multiplications. Perform all 4

steps to design a Dynamic Programming algorithm.
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Time complexity

We have three nested loops:

1. `, length,O(n) iterations

2. i, start,O(n) iterations

3. k, split point,O(n) iterations

Body of loops: constant complexity.

Total complexity: O(n3)
(compared to
(2n) for brute-force approach).

In many cases, Dynamic programming approaches are more efficient than

simple Divide&Conquer.
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DP: Longest common subsequence

— biologists often need to find out how similar are 2 DNA sequences

— DNA sequences are strings ofbases: A, C, T andG

— how to define similarity?� one is a substring of another� number of changes (mutations) needed to change one string to

another� the longest common subsequenceof two stringsS1 andS2: a longest

sequenceS3 appearing in each ofS1 andS2 (in the same order, but

necessarily consecutively)

Definition.Z = z1z2 : : : zk is asubsequenceof S = s1s2 : : : sn if there

exists an increasing sequence of indexes:1 � i1 < i2 < � � � < ik � n
such thatzj = sij
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Example.

S= G G C A C T G T A C# # # #

Z= G C C AZ = GCCA is a subsequence ofS = GGCACTGTAC

Definition.Z is a common subsequenceof X andY if its a subsequence

of bothX andY .

A longest suchZ is calleda longest common subsequence— LCS.

Example.Consider X = GGCACTGTACY = CATGTCACGG
ThenATAC andGCAG are a common subsequences ofX andY . The

longest common subsequence isCATGTAC.
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“brute-force approach”: list all subsequences ofX and for each test if it’s
subsequence ofY
if X has a lengthm, there are2m subsequences ofX

exponential time

“dynamic programming approach”:

1. Characterizing structure

consider a stringS = s1s2 : : : sn, then for every1 � i � j � n, we
define asubstring Si;j of S as followsSi;j = sisi+1 : : : sj�1sj
space of subproblems:

— inspired by “matrix-chain multiplication problem” we could consider
the following subproblems: longest common subsequences ofsubstringsXi;j andYk;l for i � j andk � l

— “thumb rule”: keep the space of subproblems as small as possible

— class of subproblems: LCS’s of prefixesX1;i andY1;j
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Assignment Problem 11.3.(deadline: July 29, 5:30pm)

Give anO(n+m) time algorithm deciding whether a sequenceX = x1 : : : xn is a subsequence ofY = y1 : : : ym. Remember to explain

how you algorithm works!

Note: A DP algorithm for this problem would work in timeO(n:m). You

will only get a half of the points for such a solution.
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optimal substructure of LCS

Claim. LetZ = z1 : : : zk be a LCS ofX = x1 : : : xm andY = y1 : : : yn.

Then

1. if xm = yn, thenzk = xm = yn andZ1;k�1 is an LCS ofX1;m�1

andYn�1;
2. if xm 6= yn andzk 6= xm, thenZ is an LCS ofX1;m�1 andY ;

3. if xm 6= yn andzk 6= yn, thenZ is an LCS ofX andY1;n�1.
Proof.

1. � if zk 6= xm = yn, thenZxm is a common subsequence ofX andY longer thanZ, a contradiction� clearly,Z1;k�1 is a common subsequence ofX1;m�1 andY1;n�1� if not a longest one: letW be an LCS ofX1;m�1 andY1;n�1;
thenWzk is a common subsequence ofX andY , again a

contradiction (“cut-and-paste”)
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2. clearly, sincezk 6= xm, Z is a common subsequence ofX1;m�1 andY ;

if not a longest one: use “cut-and-paste” technique again

3. similarly as in case 2.

Hence, an LCS of two sequences contains within it an LCS of prefixes of

these two sequences:optimal substructure property.

Example.CATGTAC is an LCS ofX = GGCACTGTAC andY = CATGTCACGG

by 3.,CATGTAC is an LCS ofX = GGCACTGTAC andY1;9 = CATGTCACG
by 3.,CATGTAC is an LCS ofX = GGCACTGTAC andY1;8 = CATGTCAC
by 1.,CATGTA is an LCS ofX1;9 = GGCACTGTA andY1;7 = CATGTCA
etc.
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2. A recursive solution

by above, to find an LCS ofX = x1 : : : xm andY = y1 : : : yn:� if xm = yn, then find an LCS ofX1;m�1 andY1;n�1 and appendxm = yn to it� if xm 6= yn, then find an LCS ofX andY1;n�1 and an LCS ofX1;m�1 andY , and take the longer of these two

let [i; j℄ be the length of an LCS ofX1;i andY1;j
recursive formula:

[i; j℄ = 8>><>>:0 if i = 0 or j = 0,[i� 1; j � 1℄ + 1 if i; j > 0 andxi = yj ,max([i; j � 1℄; [i� 1; j℄) if i; j > 0 andxi 6= yj .
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3. Computing

a recursive algorithm based on recursive formula would be again

exponential, however there are only(m+ 1)(n+ 1) subproblems

(“overlapping-subproblems property”)

entries of table[0 : : :m; 0 : : : n℄ are filled in “row-major order ”:

the first row from left to right

the second row from left to right

etc

tableb[1 : : :m; 1 : : : n℄ - contains the information to construct the optimal

solution (shows adirectionfrom where we got the minimal value of the

length of an LCS:

“ ” — [i; j℄ = [i; j � 1℄,
“"” — [i; j℄ = [i� 1; j℄, or

“�” — [i; j℄ = [i� 1; j � 1℄ + 1.
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LCS-Length(X;Y )
1: m length[X℄
2: n length[Y ℄
3: for i 1 to m do
4: [i; 0℄ 0
5: end for
6: for i 1 to n do
7: [0; i℄ 0
8: end for
9: for i 1 to m do

10: for j  1 to n do
11: if xi = yj then
12: [i; j℄ [i� 1; j � 1℄ + 1

13: b[i; j℄ “�”
14: else
15: if [i� 1; j℄ � [i; j � 1℄ then
16: [i; j℄ [i� 1; j℄

17: b[i; j℄ “"”
18: else
19: [i; j℄ [i� 1; j℄

20: b[i; j℄ “ ”

21: end if
22: end if
23: end for
24: end for
25: return  andb

Time complexity: O(mn)
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Example.

j 1 2 3 4 5 6 7 8 9 10

i G G C A C T G T A C

1 C ",0 ",0 �,1  ,1 �,1  ,1  ,1  ,1  ,1 �,1
2 A ",0 ",0 ",1 �,2  ,2  ,2  ,2  ,2 �,2  ,2

3 T ",0 ",0 ",1 ",2 ",2 �,3  ,3 �,3  ,3  ,3

4 G �,1 �,1 ",1 ",2 ",2 ",3 �,4  ,4  ,4  ,4

5 T ",1 ",1 ",1 ",2 ",2 �,3 ",4 �,5  ,5  ,5

6 C ",1 ",1 �,2 ",2 �,3 ",3 ",4 ",5 ",5 �,6
7 A ",1 ",1 ",2 �,3 ",3 ",3 ",4 ",5 �,6 ",6
8 C ",1 ",1 �,2 ",3 �,4  ,4 ",4 ",5 ",6 �,7
9 G �,1 �,2 ",2 ",3 ",4 ",4 �,5 ",5 ",6 ",7
10 G �,1 �,2 ",2 ",3 ",4 ",4 �,5 ",5 ",6 ",7

Last modified: Tuesday 22nd July, 2008, 23:54 2008 J́an Mǎnuch
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4. Constructing an LCS

recursive procedure:
Print-LCS (b;X; i; j)

1: if i = 0 or j = 0 then
2: return
3: end if
4: if b[i; j℄ = “�” then
5: Print-LCS(b;X; i� 1; j � 1)
6: print xi

7: else
8: if b[i; j℄ = “"” then
9: Print-LCS(b;X; i� 1; j)

10: else
11: Print-LCS(b;X; i; j � 1)
12: end if
13: end if

Time complexity: O(m+ n) — in each step at least one ofi andj is
decreased by 1
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Assignment Problem 11.4.(deadline: July 29, 5:30pm)

Give anO(n2) time algorithm to find the longest monotonically

increasing subsequence of a sequence ofn distinct numbers.
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All-pairs shortest paths
� Directed graphG = (V;E), weight functionw : E ! R , jV j = n� AssumeG contains no negative-weight cycles� Goal: createn�n matrix of shortest path distancesÆ(u; v), u; v 2 V� Adjacency-matrix representation of graph:

– n� n adjacency matrixW = (wij) of edge weights

– assume

wij = 8>><>>: 0 if i = j
weight of(i; j) if i 6= j and(i; j) 2 E1 if i 6= j and(i; j) 62 E� Weight of pathp = (v1; v2; : : : ; vk) isw(p) =Pk�1i=1 w(vi; vi+1)
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Shortest paths & matrix multiplication

In the following, we only want to compute lengths of shortestpaths, not
construct the paths (see the textbook if you are interested in constructing

the paths).

Dynamic programmingapproach, first 3 steps steps:

1. Structure of a shortest path

Subpaths of shortest paths are shortest paths

Lemma. Let p = (v1; v2; : : : ; vk) be a shortest path fromv1 to vk, letpij = (vi; vi+1; : : : ; vj) for 1 � i � j � k be subpath fromvi to vj .
Then,pij is shortest path fromvi to vj .
Proof. Decomposep intov1 p1i vi pij vj pjk vk:
Then,w(p) = w(p1i) + w(pij) + w(pjk). Assume there is cheaperp0ij
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from vi to vj with w(p0ij) < w(pij). Thenv1 p1i vi p0ij vj pjk vk
is path fromv1 to vk whose weightw(p1i) +w(p0ij) +w(pjk) is less thanw(p), a contradiction.
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2. Recursive solution &
3. Compute opt. value (bottom-up)

Let d(m)ij = weight of shortest path fromi to j that uses at mostm edges.

d(0)ij = 8<: 0 if i = j1 if i 6= jd(m)ij = mink nd(m�1)ik + wkjo
i j

k’sat most m−1 edges

at most m−1 edges
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Note: the shortest path fromi to j can use at mostn� 1 edges (n is the

number of vertices).

Hence, we’re looking for Æ(i; j) = d(n�1)ij
The algorithm is straightforward, running time isO(n4) (n� 1 passes,

each computingn2 d’s in �(n) time)
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Similar tomatrix multiplicationC = A �B, n� n matrices,ij =Pk aik � bkjO(n3) operations

Replacing “+” with “ min” and “�” with “ +” givesij = mink faik + bkjg;
very similar to d(m)ij = mink fd(m�1)ik + wkjg
HenceD(m) = D(m�1) 
W
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Note: Identity matrix for this “multiplication”
 is
�I =

0BBBBB�
0 1 1 11 0 1 11 1 0 11 1 1 0
1CCCCCA = D(0) = (dij)(0)

Why? Replace0 (identity for+) in real identity matrix with1 (identity

for min), and replace1 (identity for �) in real identity matrix with0

(identity for+).
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Assignment Problem 11.5.(deadline: July 29, 5:30pm)

Show that the above “multiplication” (withmin instead of sum and

addition instead of multiplication) of matrices is associative, i.e., that for

any three matricesA, B andC, we haveA
 (B 
 C) = (A
B)
 C:
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Hence: this “multiplication”
 is associative. Algebraic structure is

closed semiring(no ring because min has no inverse).

So, we can use D(0) = �ID(1) = D(0) 
W =WD(2) = D(1) 
W =W 2D(3) = D(2) 
W =W 3

...D(n�1) = D(n�2) 
W = Wn�1D(n�1) = (Æ(i; j)), so that’s the answer

Time: �(n � n3) = �(n4)�(n) “multiplications”, each�(n3)

Unfortunately, no better than before. . .
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Assignment Problem 11.6.(deadline: July 29, 5:30pm)

We are assuming that the graph doesn’t contain a negative-weight cycle.

What happens if we drop this assumption?

1. Show that if a graph contains a negative-weight cycle thenthere are

two vertices with a shortest path distance�1.

2. Use matricesD(1); : : : ; D(n�1) to identify that the graph contains a

negative-weight cycle, as well, to find the length (the number of

edges) of a smallest such cycle.
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But, with repeated squaring:W 2n = Wn �Wn

Compute W;W 2;W 4;W 8; : : : ;W 2dlog(n�1)e| {z }�(n) squarings

Note:2dlog(n�1)e � n� 1
OK to overshoot since product doesn’t change after converging to(Æ(i; j))

Time: �(n3 log n)�(log n) squarings, each�(n3)

There’s something even better. . .
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SFU CMPT-307 2008-2 44 Lecture: Week 11

Floyd-Warshall algorithm

Also Dynamic programming, but faster (factorlog n)

AssumeV = f1; 2; : : : ; ng.
Define(m)ij = weight of a shortest path fromi to j with intermediate
vertices in f1; 2; : : : ;mg.
ThenÆ(i; j) = (n)ij

Compute(n)ij in terms of smaller ones,(<n)ij :(0)ij = wij(m)ij = min�(m�1)ij ; (m�1)im + (m�1)mj �
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i j

intermediate vertices in {1,...,m−1}

m c

c

(m−1) (m−1)

(m−1)

im mj

ij

c
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Difference from previous algorithm: we don’t have to checkall possible

intermediate vertices. Shortest path simply either includesm or doesn’t.

Pseudocode:

1: C(0)  W
2: for m 1 to n do
3: for i 1 to n do
4: for j  1 to n do
5: (m)ij  min((m�1)ij ; (m�1)im + (m�1)mj )

6: end for
7: end for
8: end for
9: returnC(n)

Superscripts can be dropped: improving the space requirement to�(n2).
Time: �(n3), simple code

Best algorithm to date isO(n2 log n+ njEj)
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4. Constructing a shortest paths

we need to compute apredecessor matrix:� = (�ij) where� �ij = NIL, if i = j or there is no path fromi to j� �ij = predecessor ofj on a shortest path fromi to j, otherwise

once we have a predecessor matrix, the algorithm is easy:

Print-Shortest-Path(�; i; j)
1: if i = j then
2: print i

3: else
4: if �ij = NIL then
5: print “no path”

6: else
7: Print-Shortest-Path(�; i; �ij)
8: print j

9: end if
10: end if
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How to compute�?

we can compute the sequence of�(0); : : : ;�(n) at the same time as we

are computing the sequenceD(0); : : : ; D(n�1) (the first algorithm), or the

sequenceC(0); : : : ; C(n) (Floyd-Warshall algorithm), respectivelly

– in the case of first algorithm, we cannot usesquaring technique

– let’s concentrate only onFloyd-Warshall algorithm :
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Let �(m)ij be the predecessor ofj on a shortest path fromi to j with all

intermedaite vertices in the setf1; 2; : : : ;mg

initialization:

�(0)ij = 8<:NIL if i = j orwij =1i if i 6= j andwij <1

recursive step:depends where the minimal weight of a shortest path

comes from

�(m)ij = 8<:�(m�1)ij if (m�1)ij � (m�1)im + (m�1)mj�(m�1)mj if (m�1)ij > (m�1)im + (m�1)mj
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the algorithm:

1: C(0)  W
2: for m 1 to n do
3: for i 1 to n do
4: for j  1 to n do
5: if (m�1)ij � (m�1)im + (m�1)mj then

6: (m)ij  (m�1)ij
7: �(m)ij  �(m�1)ij
8: else
9: (m)ij  (m�1)im + (m�1)mj

10: �(m)ij  �(m�1)mj
11: end if
12: end for
13: end for
14: end for
15: returnC(n) and�(n)
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Application: Transitive closure of a directed graph

given: a directed graphG = (V;E)

ouput: thetransitive closure= a directed graphG� = (V;E�), where(i; j) 2 E� if there is a path fromi to j in G

Easy to compute using the above algorithm:� assign weight 0 to all edges inE (if (i; j) =2 E, thenwij =1)� run theFloyd-Warshallalgorithm�! C� (i; j) is an edge inE� if and only if ij = 0
Note: only value in matricesC(m) are0 and1, which can be interpreted

as boolean values and operations “+” and “min” can be replaced by

logical operations AND and OR
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