SFU CMPT-307 2008-2 1 Lecture: Week 10

SFU CMPT-307 2008-2 Lecture: Week 10

Jan Manuch

E-mail: jmanuch@sfu.ca

Lecture on July 15, 2008, 5.30pm-8.20pm

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 2 Lecture: Week 10

BST summary

BST property: for each node with key £k,

e nodes in left subtree have keysk
e nodes in right subtree have keysk

BST operations Search, Minimum, Maximum, Predecessor, Successor,
Insert, Delete

all takeO(h) time, whereh is the height of BST
OK if BST is balanced thenh = O(log n)
Bad but if BST isdegenerated thenh = Q(n)

How to take care that BST doest degenerate when inserting or
deleting?

Many approaches, we're going to seel-black trees

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 3 Lecture: Week 10

Red-black trees

Simple changea red-black tree is an ordinary BST witime extra bit of
storage per node: itolor, red or black

Constraining how nodes can be colored makes the tree apmpatedy balanced

Assumptionif either parent, left child, or right child does not exist,
pointer to NULL

Regard NULLs as external nodes (leaves) of tree, thus athabnodes
are internal

Red-black property: A BST is a red-black tree if

(RB1) every node is either red or black
(RB2) the root is black

(RB3) every leaf (NULL) is black
(RB4) red nodes have black children

(RB5) for all nodes, all paths from node to descendant leewatain the

same number of black nodes
Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 4 Lecture: Week 10

Representations

1. red-black tree according to definitiquseful when dealing with
boundary conditions)

2. single sentinel— replace NULLs with single “sentinel” NULLT")
(saves memory)

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 5 Lecture: Week 10

3. normal drawing styldno NULL leaves or sentinel are shown), but
sentinelis still there (just not shown)

Definition: the black-height of nodewv, bh(v), is the number of black
nodes on any (!) path fromto a leaf,not includingv

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 6 Lecture: Week 10

Lemma. A red-black tree with: internal nodes has height at most
2log(n +1).

Proof. First we show that a subtree rooted at any nedentains at least
obh=) _ 1 internal nodes

By induction on height of

Base case(height=0)
z is a leaf (NULL(T")), subtree rooted at contains
obN(z) _ 1 =920 1 =11 =0internal nodes

Inductive step Supposer has positive height and two children. Each
child has black-height of either bh) (if red) or bnz) — 1 (if black)
Height of children is less than height of thus can apply hypothesis:
subtrees rooted in children contain at [e€2f¥=)—1 _ 1 internal
nodes each
Thus subtree rooted incontains at least
2. (2PN@)-1 _ 1) 4 1 = 2bN@) _ 94 1 = 9bN@) _ 1 internal nodes

Last modified: Wednesday 6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 7 Lecture: Week 10

Now let h be height of tree

Property (RB4): at least half the nodes on any simple path fimot to a
leaf, not including root, must be black

Thus black-height of root is at leakf2, and
n > 2bh(root)—1 > 2h/2 1
&S n+1> oh/2
& log(n+1) > h/2
& h<2log(n+1)

Very nice property, since now trivially Search, Minimum, X&aum,
Successor, Predecessor worllog n) time!

But what about Insert, Delete?

How to modify them so that theyaintain the red-black properties?

Last modified: Wednesday 6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 8 Lecture: Week 10

Assignment Problem 10.1.(deadline: July 22, 5:30pm)

What is the largest possible number of internal nodes in dlack tree
with black-heightt? What is the smallest possible number?

Example:

If £ = 1, the smallest possible number of internal nodes is 1 and the
largest possible number is 3:

N\

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 9 Lecture: Week 10

Rotations

— useful local operationgireserve the BST property
left andright rotations

Assumptions:
left-rotation onz: right child not NULL
right-rotation ony: left child not NULL

left rotation

-

right rotation

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 10 Lecture: Week 10

Exercise: Show
Left-Rotate(T) that Left-Rotate()
preserves the BST

property.

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 11 Lecture: Week 10

Assignment Problem 10.2.(deadline: July 22, 5:30pm)

Prove that at most — 1 right rotations suffice to transform amynode
binary search tree into a right-going chain.

Argue that this implies that any-node binary search tree can be
transformed into any other-node binary search tree usidfn)
rotations (left and right).

Last modified: Wednesday 6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 12 Lecture: Week 10

Insertion

Can be done i@ (log n) time
Suppose we insert new node

First,ordinary BST insertion of z according to key value (walk down
from the root as when searching for the element and then asdhaode
Instead of NULL-leaf)

Tree-Insert(T, z) 11: parenfz| <y
-y NULL 12 if y — NULL then Then, colorz red
2 z + roofT] 13 rootf] < = T May haveviolated red-black
3: while z # NULL do was empty */
4 Yo 14: else if key[z] < keyly] property
5. if key|z] < key[z] then then . .
6 x4 left] 15 leftfy] « - (e.g.,z’s parent is red)
noelse 16: else Finally, call afixup procedure
8: x <+ right[z] 17: rightly] < z
o endif 18: end if (restores red-black property)

10: end while

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 13 Lecture: Week 10

What can have gone wrong?

Reminder:
(RB1) every node is either red or black
(RB2) the root is black
(RB3) every leaf (NULL) is black
(RB4) red nodes have black children

(RB5) for all nodes, all paths from node to descendant leawatain the
same number of black nodes

(RB1) and(RB3) certainly still hold

(RB5) as well, since: replaces (black) sentinel, ands red with sentinel
as children

(RB2) and(RB4) may be violated (becausas red);
(RB2) if z is root, and (RB4) if:'s parent is red

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2

14

Lecture: Week 10

RB-Insert-Fixup (T, z)
1: while color{parentz]] = REDdo

2:

N o o AW

o

10:
11:

if parentz] = left[parenfparentz]]]
then
y < right[parenfparentz||]
if colorly] = REDthen
color[parentz]] + BLACK
colory| < BLACK
[

colorparenfparenfz]]] —

RED
z <— parentparentz]]
else
If z = right[parentz]] then
z < pareniz]

Last modified: Wednesday T6July, 2008, 00:34

12: Left-Rotaté T, z)

13: end if

14: color{parentz]] + BLACK

15: color{parentparentz|] —
RED

16: Right-RotatéT, parenfparentz|])

17: end if

18: else

19: same aghen with left and right

exchanged
20: end if
21: end while

22: colorroofT’|] <~ BLACK

2008 &n Maiuch

SFU CMPT-307 2008-2 15 Lecture: Week 10

Assignment Problem 10.3.(deadline: July 22, 5:30pm)

Consider a red-black tree formed by insertingodes withRB-Insert

Into an initially empty tree. Argue that# > 1, the tree has at least one
red node. What is the minimal number of red nodes of a redklifae
with 5 elements? What is the minimal number of red nodes oflebfack
tree with 5 elements obtained by calling 5 tinkB-Insert on an empty
tree?

Last modified: Wednesday 6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 16 Lecture: Week 10

Loop invariant

atstart of each iteration owhile loop:
(1) nodez is red,
(2) if parentz] is the root, then parep is black,

(3) if there is a violation of RB properties, there is at mas¢ @iolation,
and it's either property (RB2) or (RB4):

e If property (RB2), therx is the root and is red
e if property (RB4), therx and parent| are both red

(1) and (2) for better understanding, (3) is important

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 17 Lecture: Week 10

Initialization

Prior to first iteration, we had OK red-black tree, then ithséred node
1. when RB-Insert-Fixup is called,is the red node that was added

2. if parentz] is the root, then parent was black and did not change
prior to call of RB-Insert-Fixup

3. Properties (RB1), (RB3), and (RB5) hold in any case

If (RB2) is violated (“root is black”), then root is newly add z, the
only internal node in tree

Also, parent and children af are the (black) sentinel, thu®
violation of (RB4) (“red nodes have black children”), andB& is
only violation

If (RB4) violated, thermust be that both: and parent| are red (tree
was OK, and red has black children (sentinel))
pareniz| red implies that it’s not the root, thus (RB2) is not violated

Last modified: Wednesday 6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 18 Lecture: Week 10

Termination

Nothing to show here, just see what we actughyfrom the invariant

Terminationonly because parent is black

Property (RB4) not violated:[red, parent] black],
hence (RB2) is only possible problem.

Note:if z is root, then parent] is sentinel NULLT"), which is black

Line 22 restores property (RB2), thus after terminatiohreal-black
properties hold

Now, it's enough to show the maintenance.

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 19 Lecture: Week 10

Maintenance

Actually six cases, but three are symmetric to other threpedding on
whether parent]| is left or right child of its parent (line 2)

Question:Can we assume that pargydrentz|| exists?

Answer:part (2) of the invariant: if parept] is the root, then paren is
black. However, we entavhile loop only if parentz] is red, thus
pareniz| cannotbe the root, and paregparentz|] must exist.

Last modified: Wednesday 6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2

20 Lecture: Week 10

Three cases, corresponding to lines 5-8, 11-12, and 14a%69@ and 3

are combined)
1: while colorlpareniz]] = REDdo

2:
3
4
5:
6
7

8:
9:
10:
11:

if parenfz] = left[pareniparentz|||
then
y < rightjparenipareniz]||
if colorly] = REDthen
colorjparentz]] < BLACK
colorfy] < BLACK
[

color[parenfparentz||] —

RED
z < parenipareniz|]
else
if z = right[pareniz]] then
z < parenfz]

12: Left-Rotaté T, z)

13: end if

14: colorparentz]] < BLACK

15: colorpareniparentz||| —
RED

16: Right-Rotaté¢T", parenfparentz]])

17: end if

18: else

19: same aghen with left and right

exchanged
20: endif

21: end while
22: colorfroof{T']] <~ BLACK

Case 1 clearly distinguished from 2 and 3 by coloe'sfparent’s sibling
(calledz’s “uncle”)

Last modified: Wednesday 6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 21 Lecture: Week 10

Line 3 pointsy to z’s uncle rightparentparentz||| (recall:
pareniz| = left|parentpareniz|]|)

Test in line 4: ify, the uncle, is red, then case 1, otherwise control passes
to cases 2 and 3.

In any casez’s grandparent parejparentz|| is black since paref] is
red, and (RB4) can be violatexhly between: and parent|

(if parentpareniz|| were red, then parejnaf would have to be black,
which it is not)

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 22 Lecture: Week 10

Case 1:z's uncley is red

. y < right[parenipareniz|]]

if colorly] = REDthen
colorjparentz]] < BLACK
colorjy] <~ BLACK
color/parentpareniz|]] + RED
z < parenjparentz]]

else

prop (4) violated
uncle red, thus case 1

© © N o g bk~ w

10: .
11: end if

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 23 Lecture: Week 10

Case 1 executed when parenandy are red

We know parenpareniz|| is black, thus can recolor both pargfitandy
black

This solves problem of and parent| both being red

Also, can color parefparentz|| red, maintaining (RB5) [“all paths the
same number of black nodes”]

Repeatvhile loop with parenipareniz|] as new node (pointerz moves
two levels up)

Main question:Why does this maintain loop invariant at start of next
iteration?

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 24 Lecture: Week 10

Let z be the current, and letz’ be parerjparentz]], newz in the next
iteration

1. We color parenparentz|| red, thus:’ is red at start of next iteration

2. Node parent’] is parenfparentparentz]]] in this current iteration,
and we don’t change its color. If it's the root, it was blackopto this
iteration, and it remains black

3. We already know case 1 maintains property (RB5), and ois\yat

doesn't affect (RB1) or (RB3).
If 2’ is root at start of next iteration, then case 1 corrected widiation of

(RB4) in this iteration. 2’ is red and the root, thus (RB2) is the only one
violated in the next iteration, and this is duezto

Otherwise £’ not root), the case 1 has not violated (RB2), but fixed (RB4)
violation that existed at start of iteration. It madered and left pareft’]
alone. If that one was black, no violation of (RB4). If pafefjtwas red,
then coloring:’ red created violation of (RB4) betweehand parernt’].

Case 1is OK!

Last modified: Wednesday 6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 25 Lecture: Week 10

Case 2:2’s uncley is black and is right child
Case 3:z’s uncley is black and is left child

|ldea: transform case 2 into case 3 and then go from there

10: if z = right[parenfz]] then
11: z < pareniz]

12: Left-RotatéT, z)

13: end if

DY D Y
A 5 z C
B C A B
Case 2 Case 3

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 26 Lecture: Week 10

In case 27 is right child

DY D Y
A ” z C
B C A B
Case 2 Case 3

Use left rotation to turn it into left child, and then applysea3 (lines
14-16)

Both z and parent]| are red, so neither black-heights nor (RB5) are
affected

at the end:’s uncley is still black (otherwise we’d be in case 1)

Also, parenfparentz|| exists (has existed when lines 2—-3 were executed),
and movingz up in line 11 and down in line 12 doesn’t change its
position in the tree)

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 27 Lecture: Week 10

In case 3, we change colors and right-rotate; which presgmaperty
(RB5)

14: colorpareniz]] +— BLACK
15: color{parentparentz]]] < RED
16: Right-RotatéT’, parenipareniz|])

Case 3

Now, no longer two red adjacent nodesdone; body of thavhile loop is
not executed another time (since pafejnt black)

Remark: there is no violation to (RB4) between node 3 and he upcle
sincey is black (otherwise it would be Case 1).

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 28 Lecture: Week 10

Assignment Problem 10.4.(deadline: July 22, 5:30pm)
Suppose that the black-height of the root of each of the sabtr
A, B,C, D in the left most tree in the figure bellow ks Label each node

In each tree with its black-height to verify that propef®B5) is
preserved by the transformations.

DY DY
A 2 z C A B C D
B C A B
Case 2 Case 3

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 29 Lecture: Week 10

Again, why do these operations maintain loop invariant?

1. Case 2 makespoint to parent], which is red

2. Case 3 turns parent black. If pareniz| is root at start of next
iteration, we're fine.

3. e
[

Similar to case 1, properties (RB1), (RB3), and (RB5) hold
new z is not the root in cases 2 and 3, thus no violation of (RB2).

Cases 2 and 3 don’t introduce any violation of (RB2), because
only node made red becomes child of black node by rotation in
case 3

Cases 2 and 3 correct the only violation of (RB4), and theytdon
Introduce new violation

we're done!

Running time: Insert takeg) (log n). Fixup loops only if case 1 is
executed, and theremoved two levels up in each iterations. Thus, fixup
alsoO(logn).

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 30 Lecture: Week 10

Deletion

Can be done i@ (log n) time
Suppose we delete a noddérom the tree.

First, call slightly modifiedBST deletionon z according to key value.
Differences:

e NULL replaced byNULL|[T]]

e line 11. before we performed this operation onlyrifvas not NULL;
now, NULL[T] is a regular node, so we can set its parent to parent of
y — a node which is removed from the tree
we will use this information later in fixup

e if removed node waBLACK, we call fixup procedure

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2

31

Lecture: Week 10

Tree-Deletd T, z)

1:

10:

11:

12:

If left|z] = NULL |T'] or
right[z] = NULL[T] then
Y <z
else
y < Tree-Successor)
end if

If left|y] # NULL [T’] then
x < lefty]

else
x < righty]

end if

parentz| < parenty]

If parenty] = NULL [T'] then

Last modified: Wednesday £6July, 2008, 00:34

13:
14:
15:
16:
17:
18:

19:
20:
21:
22:
23:
24:
25:
26:

roofT] « x

else ify = left|parenty]|| then
leftparenty]|] < =

else
right[parenty|| < z

end if

If y # z then
key|z] < keyly]
copyy’s data intoz
end if
iIf coloriy] = BLACKthen
RB-Delete-Fixup(T', x)
end if
returny

2008 &n Maiuch

SFU CMPT-307 2008-2 32 Lecture: Week 10

Recall: Three cases.

1. z hasno children At pareniz|, just replace link ta: with NULL |T]

2. z hasone child remove node, make a new link between thés
parent and the’s child

3. z hastwo children removez’s successoy (which has no left child,
as seen frontHomework 9.3, and replace’s key and data with the
y's key and data

Recall:
e y IS a node which is removed from the tree

e x is a child ofy (remembet has at most one child); can be
NULL [T']

e whetherz is NULL[T'] or not, parentr] points at the former parent of
y (will be used in the=ixup procedure)

Last modified: Wednesday 6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 33 Lecture: Week 10

Delete Fixup

Removing nodgy may haveviolated red-black property.

Example:if y wasBLACK and not the root, then a path going from a leaf
to the root previously containingwill have 1 black node less than other
paths: propertyRB5) is violated.

What can have gone wrong?
(RB1) (red or black) andRB3) (NULL is black) certainly still hold
2 cases:

Case REDcolory] = RED— no violation:
e no black-height in the tree has chang@&35) is ok!

e No red nodes have been made adjadétB4) is ok!

e y couldn’t be the root, so the root remains bla@RB2) is ok!

Last modified: Wednesday 6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 34 Lecture: Week 10

Case BLACKcolory] = BLACK— all three above can be violated:
e (RB5): as above, violated for any ancestoryof
e (RB4): if both parenfy] = parenix| andx areRED

e (RB2): if y was the root, then its child has become a new root;
If color[x] is RED, we have a violation
Fixing (RB5):
markx with an “extra black”

but nowz Is either “doubly black” or “red-and-black”. we have a

violation to(RB1)
Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 35 Lecture: Week 10

The idea of fixindRB1):
let 2 be the node with “extra black”; moveup the tree until

— z 1S “red-and-black”, simply color IBLACK
— x Is the root, we can forget about “extra black”
— suitable rotations and recolorings can be performed

Fixing (RB2):

x 1S the root and IRED

the procedure just colotsblack and terminated which fixes the problem
Note: violation (RB2) implies there is no other violation

Fixing (RB4):
x and parent:| are bothRED, sox is “red-and-black”

the procedure just colotsblack and terminates which fix¢RB4) and
also(RB1)

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 36 Lecture: Week 10

RB-Delete-Fixup(7T, x)
1: while z # roof{T"] and color[z] = BLACK do
2. if x = left|pareniz]] then

3 w < right[parenix]|] /* sibling */
4: [* Case 1: */
5: if colorlw] = REDthen
6: coloffw| < BLACK
7 colorjparenix|] «+— RED
8: Left-Rotaté 7", parengz])
9: w < right[pareniz]]
10: end if
11: [* Case 2: */
12: If color]leftfw]] = BLACK and color{right[w]|] = BLACKthen
13: colorw] < RED
14: x < parentr]
15: else

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 37 Lecture: Week 10

16: [* Case 3: */

17: if color{right{w]] = BLACKthen
18: color]leftfw]] < BLACK

19: colorffw| < RED

20: Right-Rotat€T’, w)

21: w < right[parenix]]

22: end if

23: [* Case 4: */

24: colorfw]| < color{parenix]]

25: color|parentz]] <~ BLACK

26: colorfrightfw]] < BLACK

27: Left-RotatdT’, parenizx])

28: x < roofT]

29: end if

30: else

31: same ashen with “left” and “right” exchanged
32: endif

33: end while

34: color[z] < BLACK

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 38 Lecture: Week 10

Fixing (RB1):

Description:
xr — the node with “extra black”

w — sibling of x

e w # NULL [T] — otherwise: black-height of paremt is 1, but a
path going down to a leaf NULII'| throughx will have at least 2
black nodes

4 cases:

1. lines 59w is RED, converted to the other cases
Note: parentx]| must beBLACK

2. lines 12-14w and both children ofv areBLACK, movex one step

up
Note:when enteringCase 2 from Case 1, newx must beRED, so

the procedure will terminate prior to the next step

3. lines 17-21w and its right child ar&8LACK, the left child iSRED,

converted tadCase 4.
Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 39 Lecture: Week 10

4. lines 24-28w is BLACK and its right child iISRED, we can remove
“extra black” node, hence no violation; by settingo roo{7"| we
will guarantee that the loop terminates prior to the nex ste

Note:
As we will see in the moment, execution of the loop continuayg m
Case 2.(assuming that “new” is BLACK and not the root)

Last modified: Wednesday T6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 40 Lecture: Week 10

Case 1.lines 5-9:w i1s RED, converted to the other cases
Note: parentx]| must beBLACK

coloffw| <— BLACK
colorparentx|] <~ RED
L eft-RotatéT’, pareniz])
w < right|parentz]]

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 41 Lecture: Week 10

Case 2.lines 12—14w and both children ofv areBLACK, movex one
step up

Note:when enteringCase 2 from Case 1, newx must beRED, so the
procedure will terminate prior to the next step

13: colorw] < RED
14: x <— pareniz]

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 42 Lecture: Week 10

Case 3.lines 17-21w and its right child ar&8LACK, the left child is
RED, converted taCase 4.

18: colorleftjw]] + BLACK
19: colonw] <— RED

20: Right-RotatéT’, w)

21: w < right/parentz|]

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 43 Lecture: Week 10

Case 4.lines 24-28w is BLACK and its right child iSRED, we can
remove “extra black” node, hence no violation; by setting root7’] we
will guarantee that the loop terminates prior to the nex ste

24:
25:
206:
27:
28:

colorfw]| <— colorparentz]]
colorjparenix|| <~ BLACK
colorrightjw]|] «<— BLACK
Left-RotatéT’, pareniz])

x < roofT]

Note: Black token was removed during transformation.

Last modified: Wednesday 6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 44 Lecture: Week 10

Assignment Problem 10.5.(deadline: July 22, 5:30pm)
Consider all 4 cases of the algorihRRiB-Delete-Fixup (see also Figure

13.7 in the textbook). Verify that all 4 transformation pFage property
(RB5).

Last modified: Wednesday 6July, 2008, 00:34 2008 &n Maiuch

SFU CMPT-307 2008-2 45 Lecture: Week 10

Running time analysis.

BST-DeletetakesO(h) time
RB-Delete-Fixuptakes alsa@(h) time:

we continue loop only ilCase 2.

In Case 2the height ofr increases by 1
loop terminates whemn is the root or haRkRED
hence we iterate at mohkttimes

since,h = O(logn), procedureRB-Deletetake timeO(h) = O(logn)

Last modified: Wednesday £6July, 2008, 00:34 2008 &n Maiuch

	BST summary
	Red-black trees
	Representations

	Rotations
	Insertion
	Loop invariant

	Deletion
	Delete Fixup

