
SFU CMPT-307 2008-2 1 Lecture: Week 10

SFU CMPT-307 2008-2 Lecture: Week 10

Ján Maňuch

E-mail: jmanuch@sfu.ca

Lecture on July 15, 2008, 5.30pm-8.20pm

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 2 Lecture: Week 10

BST summary

BST property: for each nodev with keyk,� nodes in left subtree have keys� k� nodes in right subtree have keys� k
BST operations: Search, Minimum, Maximum, Predecessor, Successor,

Insert, Delete

all takeO(h) time, whereh is the height of BST

OK if BST is balanced, thenh = O(log n)
Bad but if BST isdegenerated, thenh =
(n)
How to take care that BST doesnot degenerate when inserting or

deleting?

Many approaches, we’re going to seered-black trees

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 3 Lecture: Week 10

Red-black trees

Simple change:a red-black tree is an ordinary BST withone extra bit of
storage per node: itscolor, red or black

Constraining how nodes can be colored makes the tree approximately balanced

Assumption:if either parent, left child, or right child does not exist,
pointer to NULL

Regard NULLs as external nodes (leaves) of tree, thus all normal nodes
are internal

Red-black property: A BST is a red-black tree if

(RB1) every node is either red or black

(RB2) the root is black

(RB3) every leaf (NULL) is black

(RB4) red nodes have black children

(RB5) for all nodes, all paths from node to descendant leavescontain the
same number of black nodes

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 4 Lecture: Week 10

Representations

1. red-black tree according to definition(useful when dealing with
boundary conditions)

2. single sentinel— replace NULLs with single “sentinel” NULL(T)

(saves memory)

NULL(T)

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 5 Lecture: Week 10

3. normal drawing style(no NULL leaves or sentinel are shown), but

sentinelis still there (just not shown)

Definition: theblack-height of nodev, bh(v), is the number of black

nodes on any (!) path fromv to a leaf,not includingv
Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 6 Lecture: Week 10

Lemma. A red-black tree withn internal nodes has height at most2 log(n+ 1).
Proof. First we show that a subtree rooted at any nodex contains at least2bh(x) � 1 internal nodes

By induction on height ofx
Base case(height=0)x is a leaf (NULL(T)), subtree rooted atx contains2bh(x) � 1 = 20 � 1 = 1� 1 = 0 internal nodes

Inductive step Supposex has positive height and two children. Each

child has black-height of either bh(x) (if red) or bh(x)� 1 (if black)

Height of children is less than height ofx, thus can apply hypothesis:

subtrees rooted in children contain at least2bh(x)�1 � 1 internal

nodes each

Thus subtree rooted inx contains at least2 � (2bh(x)�1 � 1) + 1 = 2bh(x) � 2 + 1 = 2bh(x) � 1 internal nodes

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 7 Lecture: Week 10

Now leth be height of tree

Property (RB4): at least half the nodes on any simple path from root to a

leaf, not including root, must be black

Thus black-height of root is at leasth=2, andn � 2bh(root)�1 � 2h=2 � 1, n+ 1 � 2h=2, log(n+ 1) � h=2, h � 2 log(n+ 1)
Very nice property, since now trivially Search, Minimum, Maximum,

Successor, Predecessor work inO(log n) time!

But what about Insert, Delete?

How to modify them so that theymaintain the red-black properties?

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 8 Lecture: Week 10

Assignment Problem 10.1.(deadline: July 22, 5:30pm)

What is the largest possible number of internal nodes in a red-black tree

with black-heightk? What is the smallest possible number?

Example:

If k = 1, the smallest possible number of internal nodes is 1 and the

largest possible number is 3:

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 9 Lecture: Week 10

Rotations

– useful local operations:preserve the BST property

left andright rotations

Assumptions:

left-rotation onx: right child not NULL

right-rotation ony: left child not NULL

B

yA

B
C

left rotation

right rotation

A y

x

x

y

A B

C

C

x

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 10 Lecture: Week 10

y

x

Left−Rotate(T,x)

y

x

18

17

149

7

4

3 6

2

7

4

3 6

2

11

189

14

12 17

19

22

20

20

22

1911

12

Exercise: Show

thatLeft-Rotate()
preserves the BST

property.

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 11 Lecture: Week 10

Assignment Problem 10.2.(deadline: July 22, 5:30pm)

Prove that at mostn� 1 right rotations suffice to transform anyn-node

binary search tree into a right-going chain.

Argue that this implies that anyn-node binary search tree can be

transformed into any othern-node binary search tree usingO(n)

rotations (left and right).

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 12 Lecture: Week 10

Insertion

Can be done inO(log n) time

Suppose we insert new nodez
First,ordinary BST insertion of z according to key value (walk down

from the root as when searching for the element and then add new node

instead of NULL-leaf)

Tree-Insert(T; z)

1: y NULL
2: x root[T ℄

3: while x 6= NULL do
4: y x

5: if key[z℄ < key[x℄ then
6: x left[x℄

7: else
8: x right[x℄

9: end if
10: end while

11: parent[z℄ y
12: if y = NULL then
13: root[T ℄ z /* T

was empty */

14: else if key[z℄ < key[y℄
then

15: left[y℄ z

16: else
17: right[y℄ z

18: end if

Then, colorz red
May haveviolated red-black
property
(e.g.,z’s parent is red)

Finally, call afixup procedure

(restores red-black property)

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 13 Lecture: Week 10

What can have gone wrong?

Reminder:

(RB1) every node is either red or black

(RB2) the root is black

(RB3) every leaf (NULL) is black

(RB4) red nodes have black children

(RB5) for all nodes, all paths from node to descendant leavescontain the

same number of black nodes

(RB1) and(RB3) certainly still hold

(RB5) as well, sincez replaces (black) sentinel, andz is red with sentinel

as children

(RB2) and(RB4) may be violated (becausez is red);

(RB2) if z is root, and (RB4) ifz’s parent is red

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 14 Lecture: Week 10

RB-Insert-Fixup(T; z)
1: while color[parent[z℄℄ = REDdo
2: if parent[z℄ = left[parent[parent[z℄℄℄

then
3: y right[parent[parent[z℄℄℄
4: if color[y℄ = RED then
5: color[parent[z℄℄ BLACK

6: color[y℄ BLACK

7: color[parent[parent[z℄℄℄
RED

8: z parent[parent[z℄℄
9: else

10: if z = right[parent[z℄℄ then
11: z parent[z℄

12: Left-Rotate(T; z)

13: end if
14: color[parent[z℄℄ BLACK

15: color[parent[parent[z℄℄℄

RED

16: Right-Rotate(T; parent[parent[z℄℄)

17: end if
18: else
19: same asthen with left and right

exchanged

20: end if
21: end while
22: color[root[T ℄℄ BLACK

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 15 Lecture: Week 10

Assignment Problem 10.3.(deadline: July 22, 5:30pm)

Consider a red-black tree formed by insertingn nodes withRB-Insert
into an initially empty tree. Argue that ifn > 1, the tree has at least one

red node. What is the minimal number of red nodes of a red-black tree

with 5 elements? What is the minimal number of red nodes of a red-black

tree with 5 elements obtained by calling 5 timesRB-Insert on an empty

tree?

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 16 Lecture: Week 10

Loop invariant

atstart of each iteration ofwhile loop:

(1) nodez is red,

(2) if parent[z℄ is the root, then parent[z℄ is black,

(3) if there is a violation of RB properties, there is at most one violation,

and it’s either property (RB2) or (RB4):� if property (RB2), thenz is the root and is red� if property (RB4), thenz and parent[z℄ are both red

(1) and (2) for better understanding, (3) is important

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 17 Lecture: Week 10

Initialization

Prior to first iteration, we had OK red-black tree, then inserted red nodez

1. when RB-Insert-Fixup is called,z is the red node that was added

2. if parent[z℄ is the root, then parent[z℄ was black and did not change

prior to call ofRB-Insert-Fixup

3. Properties (RB1), (RB3), and (RB5) hold in any case

If (RB2) is violated (“root is black”), then root is newly addedz, the

only internal node in tree

Also, parent and children ofz are the (black) sentinel, thusno
violation of (RB4) (“red nodes have black children”), and (RB2) is

only violation

If (RB4) violated, thenmust be that bothz and parent[z℄ are red (tree

was OK, and redz has black children (sentinel))

parent[z℄ red implies that it’s not the root, thus (RB2) is not violated

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 18 Lecture: Week 10

Termination

Nothing to show here, just see what we actuallyget from the invariant

Terminationonly because parent[z℄ is black

Property (RB4) not violated [z red, parent[z℄ black],

hence (RB2) is only possible problem.

Note: if z is root, then parent[z℄ is sentinel NULL(T), which is black

Line 22 restores property (RB2), thus after termination, all red-black

properties hold

Now, it’s enough to show the maintenance.

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 19 Lecture: Week 10

Maintenance

Actually six cases, but three are symmetric to other three, depending on

whether parent[z℄ is left or right child of its parent (line 2)

Question:Can we assume that parent[parent[z℄℄ exists?

Answer:part (2) of the invariant: if parent[z℄ is the root, then parent[z℄ is

black. However, we enterwhile looponly if parent[z℄ is red, thus

parent[z℄ cannotbe the root, and parent[parent[z℄℄ must exist.

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 20 Lecture: Week 10

Three cases, corresponding to lines 5–8, 11–12, and 14–16 (cases 2 and 3

are combined)
1: while color[parent[z℄℄ = REDdo
2: if parent[z℄ = left[parent[parent[z℄℄℄

then
3: y right[parent[parent[z℄℄℄
4: if color[y℄ = RED then
5: color[parent[z℄℄ BLACK

6: color[y℄ BLACK

7: color[parent[parent[z℄℄℄
RED

8: z parent[parent[z℄℄

9: else
10: if z = right[parent[z℄℄ then
11: z parent[z℄

12: Left-Rotate(T; z)

13: end if
14: color[parent[z℄℄ BLACK

15: color[parent[parent[z℄℄℄

RED

16: Right-Rotate(T; parent[parent[z℄℄)

17: end if
18: else
19: same asthen with left and right

exchanged

20: end if
21: end while
22: color[root[T ℄℄ BLACK

Case 1 clearly distinguished from 2 and 3 by color ofz’s parent’s sibling

(calledz’s “uncle”)

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 21 Lecture: Week 10

Line 3 pointsy to z’s uncle right[parent[parent[z℄℄℄ (recall:

parent[z℄ = left[parent[parent[z℄℄℄)
Test in line 4: ify, the uncle, is red, then case 1, otherwise control passes

to cases 2 and 3.

In any case,z’s grandparent parent[parent[z℄℄ is black since parent[z℄ is

red, and (RB4) can be violatedonly betweenz and parent[z℄

(if parent[parent[z℄℄ were red, then parent[z℄ would have to be black,

which it is not)

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 22 Lecture: Week 10

Case 1:z’s uncley is red

4

15

z

14

4

85

71

2

11

y

red

black

15

z

y

prop (4) violated
uncle red, thus case 1

11

2

1 7

5 8

14

3: y right[parent[parent[z℄℄℄

4: if color[y℄ = REDthen
5: color[parent[z℄℄ BLACK

6: color[y℄ BLACK

7: color[parent[parent[z℄℄℄ RED

8: z parent[parent[z℄℄

9: else
10: . . .

11: end if

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 23 Lecture: Week 10

Case 1 executed when parent[z℄ andy are red

We know parent[parent[z℄℄ is black, thus can recolor both parent[z℄ andy

black

This solves problem ofz and parent[z℄ both being red

Also, can color parent[parent[z℄℄ red, maintaining (RB5) [“all paths the

same number of black nodes”]

Repeatwhile loop with parent[parent[z℄℄ as new nodez (pointerz moves

two levels up)

Main question:Why does this maintain loop invariant at start of next
iteration?

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 24 Lecture: Week 10

Let z be the currentz, and letz0 be parent[parent[z℄℄, newz in the next

iteration

1. We color parent[parent[z℄℄ red, thusz0 is red at start of next iteration

2. Node parent[z0℄ is parent[parent[parent[z℄℄℄ in this current iteration,

and we don’t change its color. If it’s the root, it was black prior to this

iteration, and it remains black

3. We already know case 1 maintains property (RB5), and obviously it

doesn’t affect (RB1) or (RB3).
If z0 is root at start of next iteration, then case 1 corrected onlyviolation of

(RB4) in this iteration. z0 is red and the root, thus (RB2) is the only one

violated in the next iteration, and this is due toz0.
Otherwise (z0 not root), the case 1 has not violated (RB2), but fixed (RB4)

violation that existed at start of iteration. It madez0 red and left parent[z0℄

alone. If that one was black, no violation of (RB4). If parent[z0℄ was red,

then coloringz0 red created violation of (RB4) betweenz0 and parent[z0℄.
Case 1 is OK!

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 25 Lecture: Week 10

Case 2:z’s uncley is black andz is right child

Case 3:z’s uncley is black andz is left child

Idea: transform case 2 into case 3 and then go from there

10: if z = right[parent[z℄℄ then
11: z parent[z℄
12: Left-Rotate(T; z)
13: end if

Case 3Case 2

y
D

A

B C

D
1

2

3

z 1

2

3

A B

Cz

y

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 26 Lecture: Week 10

In case 2,z is right child

Case 3Case 2

y
D

A

B C

D
1

2

3

z 1

2

3

A B

Cz

y

Use left rotation to turn it into left child, and then apply case 3 (lines
14–16)

Bothz and parent[z℄ are red, so neither black-heights nor (RB5) are
affected

at the endz’s uncley is still black (otherwise we’d be in case 1)

Also, parent[parent[z℄℄ exists (has existed when lines 2–3 were executed),
and movingz up in line 11 and down in line 12 doesn’t change its
position in the tree)

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 27 Lecture: Week 10

In case 3, we change colors and right-rotate; which preserves property

(RB5)
14: color[parent[z℄℄ BLACK

15: color[parent[parent[z℄℄℄ RED

16: Right-Rotate(T; parent[parent[z℄℄)
2

31

Case 3

y
D

1

2

3

A B

Cz A B C D

z
1

2

3

Now, no longer two red adjacent nodes) done; body of thewhile loop is

not executed another time (since parent[z℄ is black)

Remark: there is no violation to (RB4) between node 3 and he uncley,

sincey is black (otherwise it would be Case 1).

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 28 Lecture: Week 10

Assignment Problem 10.4.(deadline: July 22, 5:30pm)

Suppose that the black-height of the root of each of the subtreesA;B;C;D in the left most tree in the figure bellow isk. Label each node

in each tree with its black-height to verify that property(RB5) is

preserved by the transformations.

2

31

Case 3Case 2

y

1

2

3

z 1

2

3

A B

Cz

CB

A B C DA

D zyD

2

31

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 29 Lecture: Week 10

Again, why do these operations maintain loop invariant?

1. Case 2 makesz point to parent[z℄, which is red

2. Case 3 turns parent[z℄ black. If parent[z℄ is root at start of next

iteration, we’re fine.

3. � Similar to case 1, properties (RB1), (RB3), and (RB5) hold� newz is not the root in cases 2 and 3, thus no violation of (RB2).� Cases 2 and 3 don’t introduce any violation of (RB2), because

only node made red becomes child of black node by rotation in

case 3� Cases 2 and 3 correct the only violation of (RB4), and they don’t

introduce new violation

we’re done!

Running time: Insert takesO(log n). Fixup loops only if case 1 is

executed, and therez moved two levels up in each iterations. Thus, fixup

alsoO(log n).
Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 30 Lecture: Week 10

Deletion

Can be done inO(log n) time

Suppose we delete a nodez from the tree.

First, call slightly modifiedBST deletiononz according to key value.

Differences:� NULL replaced byNULL[T ℄� line 11: before we performed this operation only ifx was not NULL;

now,NULL[T ℄ is a regular node, so we can set its parent to parent ofy — a node which is removed from the tree

we will use this information later in fixup� if removed node wasBLACK, we call fixup procedure

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 31 Lecture: Week 10

Tree-Delete(T; z)
1: if left[z℄ = NULL [T ℄ or

right[z℄ = NULL [T ℄ then
2: y z
3: else
4: y Tree-Successor(z)
5: end if

6: if left[y℄ 6= NULL [T ℄ then
7: x left[y℄

8: else
9: x right[y℄

10: end if

11: parent[x℄ parent[y℄

12: if parent[y℄ = NULL [T ℄ then

13: root[T ℄ x

14: else ify = left[parent[y℄℄ then
15: left[parent[y℄℄ x

16: else
17: right[parent[y℄℄ x

18: end if

19: if y 6= z then
20: key[z℄ key[y℄

21: copyy’s data intoz

22: end if
23: if color[y℄ = BLACK then
24: RB-Delete-Fixup(T; x)
25: end if
26: returny

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 32 Lecture: Week 10

Recall: Three cases.

1. z hasno children: At parent[z℄, just replace link toz with NULL [T ℄

2. z hasone child: remove nodez, make a new link between thez’s

parent and thez’s child

3. z hastwo children: removez’s successory (which has no left child,

as seen fromHomework 9.3), and replacez’s key and data with they’s key and data

Recall:� y is a node which is removed from the tree� x is a child ofy (remembery has at most one child);x can be

NULL [T ℄� whetherx is NULL[T ℄ or not, parent[x℄ points at the former parent ofy (will be used in theFixup procedure)

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 33 Lecture: Week 10

Delete Fixup

Removing nodey may haveviolated red-black property.

Example:if y wasBLACKand not the root, then a path going from a leaf

to the root previously containingy will have 1 black node less than other

paths: property(RB5) is violated.

What can have gone wrong?

(RB1) (red or black) and(RB3) (NULL is black) certainly still hold

2 cases:

Case RED:color[y℄ = RED— no violation:� no black-height in the tree has changes,(RB5) is ok!� no red nodes have been made adjacent,(RB4) is ok!� y couldn’t be the root, so the root remains black,(RB2) is ok!

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 34 Lecture: Week 10

Case BLACK:color[y℄ = BLACK— all three above can be violated:� (RB5): as above, violated for any ancestor ofy� (RB4): if both parent[y℄ = parent[x℄ andx areRED� (RB2): if y was the root, then its childx has become a new root;
if color[x℄ is RED, we have a violation

Fixing (RB5):
markx with an “extra black”

x

z

y

x

y

z

3 20

10 13 1810 13 18 23

6

7

23

123

16

7

5

6

20

15 15

5 16

12

but nowx is either “doubly black” or “red-and-black”: we have a
violation to(RB1)

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 35 Lecture: Week 10

The idea of fixing(RB1):
let x be the node with “extra black”; movex up the tree until

– x is “red-and-black”, simply color itBLACK

– x is the root, we can forget about “extra black”

– suitable rotations and recolorings can be performed

Fixing (RB2):x is the root and isRED

the procedure just colorsx black and terminated which fixes the problem

Note: violation (RB2) implies there is no other violation

Fixing (RB4):x and parent[x℄ are bothRED, sox is “red-and-black”

the procedure just colorsx black and terminates which fixes(RB4) and

also(RB1)

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 36 Lecture: Week 10

RB-Delete-Fixup(T; x)
1: while x 6= root[T ℄ and color[x℄ = BLACK do
2: if x = left[parent[x℄℄ then

3: w right[parent[x℄℄ /* sibling */

4: /* Case 1: */

5: if color[w℄ = REDthen
6: color[w℄ BLACK

7: color[parent[x℄℄ RED

8: Left-Rotate(T; parent[x℄)
9: w right[parent[x℄℄

10: end if

11: /* Case 2: */

12: if color[left[w℄℄ = BLACK and color[right[w℄℄ = BLACK then

13: color[w℄ RED

14: x parent[x℄

15: else

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 37 Lecture: Week 10

16: /* Case 3: */

17: if color[right[w℄℄ = BLACK then
18: color[left[w℄℄ BLACK

19: color[w℄ RED

20: Right-Rotate(T;w)
21: w right[parent[x℄℄
22: end if
23: /* Case 4: */

24: color[w℄ color[parent[x℄℄
25: color[parent[x℄℄ BLACK

26: color[right[w℄℄ BLACK

27: Left-Rotate(T; parent[x℄)
28: x root[T ℄
29: end if
30: else
31: same asthen with “left” and “right” exchanged

32: end if
33: end while
34: color[x℄ BLACK

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 38 Lecture: Week 10

Fixing (RB1):

Description:x — the node with “extra black”w — sibling ofx� w 6= NULL [T ℄ — otherwise: black-height of parent[x℄ is 1, but a
path going down to a leaf NULL[T ℄ throughx will have at least 2
black nodes

4 cases:

1. lines 5–9:w is RED, converted to the other cases
Note: parent[x℄ must beBLACK

2. lines 12–14:w and both children ofw areBLACK, movex one step
up
Note: when enteringCase 2.from Case 1., newx must beRED, so
the procedure will terminate prior to the next step

3. lines 17–21:w and its right child areBLACK, the left child isRED,
converted toCase 4.

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 39 Lecture: Week 10

4. lines 24–28:w is BLACKand its right child isRED, we can remove

“extra black” node, hence no violation; by settingx to root[T ℄ we

will guarantee that the loop terminates prior to the next step

Note:

As we will see in the moment, execution of the loop continues only in

Case 2.(assuming that “newx” is BLACKand not the root)

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 40 Lecture: Week 10

Case 1.lines 5–9:w is RED, converted to the other cases

Note: parent[x℄ must beBLACK

B

A

C E

Dx w

D

A C

EB

x new w

6: color[w℄ BLACK

7: color[parent[x℄℄ RED

8: Left-Rotate(T; parent[x℄)
9: w right[parent[x℄℄

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 41 Lecture: Week 10

Case 2.lines 12–14:w and both children ofw areBLACK, movex one

step up

Note: when enteringCase 2.from Case 1., newx must beRED, so the

procedure will terminate prior to the next step

B

DA

C E

x w

B

A

C E

D

new x

13: color[w℄ RED

14: x parent[x℄

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 42 Lecture: Week 10

Case 3.lines 17–21:w and its right child areBLACK, the left child is

RED, converted toCase 4.

B

DA

E

F G

C

x w

B

A C

E

F

G

D

x

new w

18: color[left[w℄℄ BLACK

19: color[w℄ RED

20: Right-Rotate(T;w)

21: w right[parent[x℄℄

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 43 Lecture: Week 10

Case 4.lines 24–28:w is BLACKand its right child isRED, we can

remove “extra black” node, hence no violation; by settingx to root[T ℄ we

will guarantee that the loop terminates prior to the next step

B

DA

EC

x w

A

B E

D

C

24: color[w℄ color[parent[x℄℄
25: color[parent[x℄℄ BLACK

26: color[right[w℄℄ BLACK

27: Left-Rotate(T; parent[x℄)
28: x root[T ℄

Note: Black token was removed during transformation.

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 44 Lecture: Week 10

Assignment Problem 10.5.(deadline: July 22, 5:30pm)

Consider all 4 cases of the algorihtmRB-Delete-Fixup(see also Figure

13.7 in the textbook). Verify that all 4 transformation preserve property

(RB5).

Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 45 Lecture: Week 10

Running time analysis.

BST-DeletetakesO(h) time

RB-Delete-Fixup takes alsoO(h) time:

we continue loop only inCase 2.

in Case 2.the height ofx increases by 1

loop terminates whenx is the root or hasRED

hence we iterate at mosth times

since,h = O(log n), procedureRB-Deletetake timeO(h) = O(log n)
Last modified: Wednesday 16th July, 2008, 00:34 2008 J́an Mǎnuch

	BST summary
	Red-black trees
	Representations

	Rotations
	Insertion
	Loop invariant

	Deletion
	Delete Fixup

