
SFU CMPT-307 2008-2 1 Lecture: Week 1

SFU CMPT-307 2008-2 Lecture: Week 1

Ján Maňuch

E-mail: jmanuch@sfu.ca

Lecture on May 6, 2008, 5.30pm-8.20pm

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 2 Lecture: Week 1

CMPT 307 – Data Structures and Algorithms

Instructor: Jan (Jano) Mǎnuch (jmanuch@sfu.ca)

TA: Louisa Harutyunyan (lha22@fas.sfu.ca)

Homepage:www.cs.sfu.ca/CC/307/jmanuch

check for lecture notes, assignments, solutions, important dates!!

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

mailto:jmanuch@sfu.ca
mailto:lha22@fas.sfu.ca

SFU CMPT-307 2008-2 3 Lecture: Week 1

Organization of lectures

� Option 1. 50 minutes lecture + 10 minutes break + 50 minutes

lecture + 10 minutes break + 50 minutes lecture� Option 2. 75 minutes lecture + 10 minutes break + 75 minutes

lecture� Option 3. 150 minutes lecture� Option X. Other suggestions?

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 4 Lecture: Week 1

Content
� Mathematical preliminaries (asymptotic notation, recurrences)� Sorting and selecting� Dictionaries� Search trees� Greedy algorithms� Dynamic programming� Approximation algorithms

Textbook:� Introduction to Algorithms(2nd edition), T.H. Cormen, C.E.

Leiserson, R.L. Rivest, McGraw Hill

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 5 Lecture: Week 1

Analysing Algorithms

Usually interested inrunning time (but sometimes also memory

requirements).

Example: One of he simplest simplest sorting algorithms

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 6 Lecture: Week 1

SELECTION-SORT

Input: n numbers in arrayA[1]; : : : ; A[n]

1: for i 1 to n� 1 do
2: /* 3–10: find min inA[i]; : : : ; A[n] */

3: sm elem A[i]
4: sm pos i
5: for j i+ 1 to n do
6: if A[j] < sm elemthen
7: sm elem A[j]
8: sm pos j
9: end if

10: end for
11: swapA[i] andA[sm pos]

12: end for

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 7 Lecture: Week 1

Example: n = 6, A = [14; 13; 12; 15; 16; 11]

i sm elem sm pos “new” A[]

1 11 6 [11; 13; 12; 15; 16; 14]

2 12 3 [11; 12; 13; 15; 16; 14]

3 13 3 [11; 12; 13; 15; 16; 14]

4 14 6 [11; 12; 13; 14; 16; 15]

5 15 6 [11; 12; 13; 14; 15; 16]
Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 8 Lecture: Week 1

Correctness

the loop invariant: after i-th loop,
the elementsA[1] : : : A[i] are sorted
and are all smaller than the ele-
mentsA[i+ 1] : : : A[n]
initialization: after1st stepA[1] con-

tains the minimal element=) LI is

true

maintenance:if it is true afteri-th it-

eration, it remains true after(i+1)-th
iteration

termination: after (n � 1)-th loopA[1] : : : A[n � 1] are sorted and all

smaller thanA[n]
SELECTION-SORT

Input: n numbers in arrayA[1]; : : : ; A[n]

1: for i 1 to n� 1 do
2: /* 3–10: find min inA[i]; : : : ; A[n] */

3: sm elem A[i]

4: sm pos i

5: for j i+ 1 to n do
6: if A[j] < sm elemthen
7: sm elem A[j]

8: sm pos j

9: end if
10: end for
11: swapA[i] andA[sm pos]

12: end for

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 9 Lecture: Week 1

Maintenance

the loop invariant:after i-th loop, the elementsA[1] : : : A[i] are sorted
and are all smaller than the elementsA[i+ 1] : : : A[n]

maintenance:if it is true afteri-th iteration, it remains true after(i+ 1)-th iteration
Proof.� before(i+ 1)-th loop,A[1] : : : A[i] are sorted and all smaller than the elementsA[i+ 1] : : : A[n]� in the(i+ 1)-th loop, we find the smallest element inA[i+ 1] : : : A[n] and put it to the positionA[i+ 1]� since, this element was greater than any element inA[1] : : : A[i],A[1] : : : A[i+1] is still sorted� obviously,A[1] : : : A[i] are still smaller thanA[i+ 2] : : : A[n]� since,A[i+ 1] is at the end of the(i+ 1)-th loop the smallest element inA[i+ 1] : : : A[n],A[1] : : : A[i+ 1] are smaller thanA[i+ 2] : : : A[n]� hence, the loop invariant holds after(i+ 1)-th loop as well.

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 10 Lecture: Week 1

Assignment 1

Assignment Problem 1.1.(deadline: May 13, 5:25pm)

Consider the following sorting algorithm:

BUBBLE-SORT

Input: n numbers in arrayA[1]; : : : ; A[n]
1: for i 1 to n do
2: for j n downto i+ 1 do
3: if A[j � 1] > A[j] then
4: swapA[j � 1] andA[j]
5: end if
6: end for
7: end for

Find a loop invariant of the main loop and use it to prove that algorithm is

correct!

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 11 Lecture: Week 1

Running time
Clearly depending onn (loops depend onn)

– Body of outer loop (overi) is executedn� 1 times

– Each increment takes constant time, sayc1

– Lines 3 and 4 both take constant time, sayc2

– Body of inner loop (overj) is executedn� i times

– Again, each increment takes timec1
– Suppose comparison in line 6 takes con-

stant time,c3

– If condition is true, then another2 � c2, oth-

erwise0

– Thus lines 6–9 take at mostc3 + 2 � c2
– Swap in line 11 takes constant time, sayc4

SELECTION-SORT

Input: n numbers in arrayA[1]; : : : ; A[n]

1: for i 1 to n� 1 do
2: /* 3–10: find min inA[i]; : : : ; A[n] */

3: sm elem A[i]

4: sm pos i

5: for j i+ 1 to n do
6: if A[j] < sm elemthen
7: sm elem A[j]

8: sm pos j

9: end if
10: end for
11: swapA[i] andA[sm pos]

12: end for

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 12 Lecture: Week 1

Putting everything together: (the worst case)n�1Xi=1
24c1 + 2 � c2 +0@ nXj=i+1 c1 + c3 + 2 � c21A+ c435

that’s rather ugly for such a trivial algorithm. . .

Let’s simplify this expression a bit:

Let d1 = c1 + 2 � c2 + c4
Let d2 = c1 + c3 + 2 � c2
Note:d1 andd2 are constants

Now we have n�1Xi=1
24d1 +0@ nXj=i+1 d2
1A35

Note that

Pnj=i+1 d2 = (n� i) � d2 = n � d2 � i � d2
Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 13 Lecture: Week 1

This results in n�1Xi=1 (d1 + n � d2 � i � d2)

But we’re not quite done: termsd1 andn � d2 do not depend oni, so this

is equal to (n� 1) � d1 + (n� 1) � n � d2 � d2 � n�1Xi=1 i

We know that kXi=1 i = 1 + 2 + 3 + � � �+ k = k � (k + 1)2
Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 14 Lecture: Week 1

Thus “our” expression becomes(n� 1) � d1 + (n� 1) � n � d2 � d2 � (n� 1) � n2= (n� 1) � d1 + d2 � (n� 1) � n2= n � d1 � d1 + n2 � d2=2� n � d2=2= n2 � d2=2 + n � (d1 � d2=2)� d1

With e1 = d2=2 ande2 = d1 � d2=2 (note:e1 ande2 are constants) we

obtain e1 � n2 + e2 � n� d1
Now, that was rather. . . cumbersome

Sincee1, e2, andd1 are constants, the statement here seems to be that the

running time dependsquadratically onn (modulo some “smaller terms”)

This is the idea behindasymptotic analysis: we don’t care about

constants (either multiplicative or additive), or about lower-order terms.

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 15 Lecture: Week 1

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 1e+08

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

x
100*x

1000*x
x*x

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 16 Lecture: Week 1

-20000

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 5 10 15 20 25 30 35 40 45 50

x
2*x*x + 8*x - 5
5*x*x - 3*x - 3

x*x*x

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 17 Lecture: Week 1

Somewhat more formal:

If T (n) is some algorithm’srunning time function , i.e., given input of

sizen, it runsT (n) steps, we are interested in

asymptotic behaviour
(read: asn approaches infinity)

rather than

theexact functions.

We want compare thegrowth of T (n) with the growth of some simple

functionf(n).
In example: the running time function of SELECTION-SORT grows pretty

much liken2.

We’re going to formalise this notion in the following.

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 18 Lecture: Week 1

Theta-notation

For a given functiong(n), �(g(n)) denotes the set�(g(n)) = ff(n) : there exist positive constantsc1; c2; n0 such thatc1 � g(n) � f(n) � c2 � g(n)

for all n � n0g
Intuition: f(n) belongs to the family�(g(n)) if 9 constantsc1; c2 s.t.f(n) can fit betweenc1 � g(n) andc2 � g(n), for all n sufficiently large.

Correct notation:f(n) 2 �(g(n))
Usually used:f(n) = �(g(n)).
We also say that “f(n) is in �(g(n))”.

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 19 Lecture: Week 1

Examples of�-notation:f(n) = 2n2 = �(n2)
because withg(n) = n2 andc1 = 1 andc2 = 2 we have0 � c1g(n) � f(n) = 2 � n2 � c2 � g(n).f(n) = 8n5 + 17n4 � 25 = �(n5)
becausef(n) � 7 � n5 for n large enoughn 8n5 + 17n4 � 25 n5 7n51 8 � 1 + 17 � 1� 25 = 0 1 72 8 � 32 + 17 � 16� 25 = 503 32 224
andf(n) � 8n5 + 17n5 = 25n5, thusc1 = 7, c2 = 25 andn0 = 2 are

good enough.

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 20 Lecture: Week 1

More intuition: for all n � n0, the functionf(n) is equal tog(n) to

within a constant factor.

We say thatg(n) is anasymptotically tight bound for f(n).
Back to sorting example

We had running timeT (n) = e1 � n2 + e2 � n� d1. Now we can say:T (n) = �(n2),
we have formal means to “get rid” of lower-order terms and constant

coefficients.

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 21 Lecture: Week 1

Why is this true?

Must find positivec1; c2; n0 such thatc1n2 � e1n2 + e2n� d1 � c2n2

for all n � n0.

Dividing by n2 gets us c1 � e1 + e2n � d1n2 � c2
Supposee1; e2; d1 are positive (other cases similar).

Obviously, forn � e2 we havee2=n � 1 and thuse1 + e2=n� d1=n2 � e1 + 1 and thusc2 = e1 + 1 andn0 = e2 does the

job for the right-hand inequality.

Also, forn2 � d1 , n � pd1 we haved1=n2 � 1 and thuse1 + e2=n� d1=n2 � e1 � 1 and thereforec1 = e1 � 1 is sufficient.

With n0 = maxfe2; pd1g both conditions are fulfilled simultaneously.

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 22 Lecture: Week 1

Exercise 1.1.Recall the formula for Selection-Sort:n�1Xi=1
24c1 + 2 � c2 +0@ nXj=i+1 c1 + c3 + 2 � c21A+ c435

(a) Assume that in Selection-Sort algorithm,c1 = 2, c2 = 3, c3 = 5 andc4 = 4 machine cycles. Find the exact formula for the running time

(upper bound) of the algorithm.

(b) Show that the above running timesT (n) (with fixed c1; c2; c3; c4

above) is in�(n2): find positive constants�1; �2; n0 such that�1:n2 � T (n) � �2:n2,

for all n � n0.

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 23 Lecture: Week 1

Theta notation respects the main term

However, n3 6= �(n2)
Recall: forn3 = �(n2) we would have to find constantsc1; c2; n0 with0 � c1n2 � n3 � c2n2

for n � n0.

Intuition: there’s a factor ofn between both functions, thus wecannot
find a constantc2!

Suppose, for purpose of contradiction, that thereare constantsc2 andn0

with n3 � c2 � n2 for n � n0.

Dividing by n2 yieldsn � c2, which cannot possibly hold for arbitrarily

largen (c2 must be a constant).

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 24 Lecture: Week 1

Also: n 6= �(n2)
Same idea. . .

Suppose it’s true, i.e., there are constantsc1 andn0 such thatc1n2 � n, c1n � 1, n � 1=c1

Once more:�-notation is aboutasymptotic equality
(“disregarding” lower-order terms and constant coefficients by choosing

suitablec1; c2; n0)

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 25 Lecture: Week 1

We’ve just seen one of themost important (and sometimes most

annoying) gaps between theory and practice:

In theory a factor of 1,000 doesn’t make one bit of a difference (just

choose yourc2 accordingly),

whereas inpractice it does (there, even a factor of 2 may decide on

whether the graphics run smoothly or not).

There’s this nice saying:
“In theory, practice and theory are the same. In practice, they’re

not.”

(source unknown)

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 26 Lecture: Week 1

Exercise 1.2.Consider positive functionsf(n), g(n) andh(n). Prove

that

(a) f(n) 2 �(f(n));
(b) if f(n) 2 �(g(n)) theng(n) 2 �(f(n));
(c) if f(n) 2 �(g(n)) andg(n) 2 �(h(n)) thenf(n) 2 �(h(n)).

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 27 Lecture: Week 1

Assignment 1 (continued)

Assignment Problem 1.2.(deadline: May 13, 5:25pm)

Show that for any real constantsa andb, whereb > 0,

(a) bn+a 2 �(bn);
(b) (n+ a)b 2 �(nb).

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 28 Lecture: Week 1

Big-O-notation

We’ve seen:�-notation asymptotically boundsfrom above and below.

When we’re interested inasymptotic upper boundsonly, we useO-notation (read: “big-O”).

For given functiong(n), defineO(g(n)) (read: “big-O of g of n” or also
“order g of n”) as follows:O(g(n)) = ff(n) : there exist positive constantsc; n0 such thatf(n) � c � g(n)

for all n � n0g
We writef(n) = O(g(n)) to indicate thatf(n) is member of setO(g(n)).
Obviously,f(n) = �(g(n)) impliesf(n) = O(g(n)); we just drop the
left inequality in the definition of�(g(n)).

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 29 Lecture: Week 1

Back to oursorting examplewith running timeT (n) = e1n2 + e2n� d1, we can sayT (n) = O(n2).
This means:
the running time of SELECTION-SORT is asymptotically at mostn2, i.e.,

the “real” running time of SELECTION-SORT is at most a constant factor

greater thann2.

Also: now we have, e.g.,n = O(n2) becausen � 1 � n2 for all n (thusc = n = 1 does the job).

Intuition: O-notation is used to denote upper bounds on running times,

memory requirements, etc.

Saying “the running time isO(n log n)” means: the running time is not

greater thann log n times some constant factor, forn large enough.

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 30 Lecture: Week 1

Computing upper bound

SELECTION-SORT

Input: n numbers in arrayA[1]; : : : ; A[n]

1: for i 1 to n� 1 do
2: /* 3–10: find min inA[i]; : : : ; A[n] */

3: sm elem A[i]
4: sm pos i
5: for j i+ 1 to n do
6: if A[j] < sm elemthen
7: sm elem A[j]
8: sm pos j
9: end if

10: end for
11: swapA[i] andA[sm pos]

12: end for

– lines 3–4:O(1)

– lines 6–9:O(1)

– lines 5–10:O(n) timesO(1), which isO(n)
– lines 3–11:O(1) +O(n) +O(n) = O(n)
– the whole algorithms:O(n) timesO(n), which isO(n2)

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 31 Lecture: Week 1

Assignment 1 (continued)

Assignment Problem 1.3.(deadline: May 13, 5:25pm)

Doesf(n) 2 O(g(n)) implies

(a) g(n) 2 O(f(n))?
(b) 1g(n) 2 O(1f(n))?
If does prove it, if does not, show an example of two functionsf(n) andg(n) which satisfyf(n) 2 O(g(n)), but do not satisfy the condition (a)

(respectively, (b)).

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 32 Lecture: Week 1

Big-Omega-notation

Like O-notation, but for lower bounds

For a given functiong(n),
(n) denotes the set
(g(n)) = ff(n) : there exist positive constantsc; n0 such thatc � g(n) � f(n)
for all n � n0g

SayingT (n) =
(n2) means growth ofT (n) is at least the ofn2.

Clearly,f(n) = �(g(n)) iff f(n) =
(g(n)) andf(n) = O(g(n)).
Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 33 Lecture: Week 1

o-notation

Similar toOf(n) = O(g(n)) means we can upper-bound the growth off by the

growth ofg (up to a constant factor)f(n) = o(g(n)) is the same,exceptwe require the growth off to be

strictly smaller than the growth ofg:

For a given functiong(n), o(n) denotes the seto(g(n)) = ff(n) : for any pos constantc
there exists a pos constantn0
such thatf(n) < c � g(n)
for all n � n0g

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 34 Lecture: Week 1

Intuition: f(n) becomes insignificant relative tog(n) asn approaches

infinity: limn!1 f(n)g(n) = 0

In other words,f is o(something) if there isno constant factor betweenf

and something.

Examples:n = o(n2)log n = o(n)n = o(2n)n1;000 = o(1:0001n)1 = o(log n)

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 35 Lecture: Week 1

omega-notation! is to
 whato is toO:f(n) = !(g(n)) iff g(n) = o(f(n))

For a given functiong(n), !(n) denotes the set!(g(n)) = ff(n) : for any pos constantc

there exists a pos constantn0

such thatc � g(n) < f(n)
for all n � n0g

In other words: limn!1 f(n)g(n) =1
if the limit exists.

I.e.,f(n) becomesarbitrarily large relative tog(n).
Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 36 Lecture: Week 1

Relational properties of asymptotic notation

So we have� �: asymptotically “equal”� O: asymptotically “at most”�
: asymptotically “at least”� o: asymptotically “strictly smaller”� !: asymptotically “strictly greater”

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 37 Lecture: Week 1

Many relational properties of real numbers hold for functions as well.

Transitivity:f(n) = �(g(n)) ^ g(n) = �(h(n))) f(n) = �(h(n))f(n) = O(g(n)) ^ g(n) = O(h(n))) f(n) = O(h(n))f(n) =
(g(n)) ^ g(n) =
(h(n))) f(n) =
(h(n))f(n) = o(g(n)) ^ g(n) = o(h(n))) f(n) = o(h(n))f(n) = !(g(n)) ^ g(n) = !(h(n))) f(n) = !(h(n))

Reflexivity:f(n) = �(f(n))f(n) = O(f(n))f(n) =
(f(n))

Symmetry:f(n) = �(g(n)) iff g(n) = �(f(n))
Transpose symmetry:f(n) = O(g(n) iff g(n) =
(f(n))f(n) = o(g(n) iff g(n) = !(f(n))

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 38 Lecture: Week 1

This implies an analogy between aymptotic comparison of functionsf

andg and comparison of real numbersa andb:f(n) = O(g(n)) � a � bf(n) =
(g(n)) � a � bf(n) = �(g(n)) � a = bf(n) = o(g(n)) � a < bf(n) = !(g(n)) � a > b

Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

SFU CMPT-307 2008-2 39 Lecture: Week 1

Assignment 1 (continued)

Assignment Problem 1.4.(deadline: May 13, 5:25pm)

Prove that

(a) O(g(n)) \
(g(n)) = �(g(n));
(b) o(g(n)) \ !(g(n)) is the empty set.

Assignment Problem 1.5.(deadline: May 13, 5:25pm)

Prove thatn! 2 !(2n) andn! 2 o(nn).
Last modified: Tuesday 6th May, 2008, 22:07 2008 J́an Mǎnuch

	CMPT 307 -- Data Structures and Algorithms
	Organization of lectures
	Content
	Analysing Algorithms
	Correctness
	Maintenance
	Assignment 1
	Running time
	Theta-notation
	Back to sorting example
	Theta notation respects the main term
	Assignment 1 (continued)
	Big-O-notation
	Computing upper bound
	Assignment 1 (continued)
	Big-Omega-notation
	o-notation
	omega-notation
	Relational properties of asymptotic notation
	Assignment 1 (continued)

