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CMPT 307 — Data Structures and Algorithms

Instructor: Jan (Jano) Miauch (jmanuch@sfu.ca)

TA: Louisa Harutyunyan (Iha22@fas.sfu.ca)

Homepage:www.cs.sfu.ca/CC/307/jmanuch

check for lecture notes, assignments, solutions, impbdates!!
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Organization of lectures

e Option 1. 50 minutes lecture + 10 minutes break + 50 minutes
lecture + 10 minutes break + 50 minutes lecture

e Option 2. 75 minutes lecture + 10 minutes break + 75 minutes
lecture

e Option 3. 150 minutes lecture

e Option X. Other suggestions?

Last modified: Tuesday'BMay, 2008, 22:07 2008 &n Maiuch



SFU CMPT-307 2008-2 4 Lecture: Week 1

Content

e Mathematical preliminaries (asymptotic notation, reenges)
e Sorting and selecting

e Dictionaries

e Search trees

e Greedy algorithms

e Dynamic programming

e Approximation algorithms

Textbook:

e Introduction to Algorithmg2nd edition), T.H. Cormen, C.E.
Leiserson, R.L. Rivest, McGraw Hill
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Analysing Algorithms

Usually interested imunning time (but sometimes also memory
requirements).

Example: One of he simplest simplest sorting algorithms
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SELECTION-SORT
Input: n numbers in array (1], ..., A[n]

1: fori < 1ton—1do

2:  [*3-10: find min inA[z], ..., An] */
3:  smelem<«+ Al

4:  SMPOS<— i

5. forj< i+ 1tondo

6: If A[j] < smelemthen
7: smelem<— A|j]

8: SM.POS<— j

o: end if

10:  end for
11: swapA[:] and A[smpos
12: end for

Last modified: Tuesday'BMay, 2008, 22:07 2008 &n Maiuch



SFU CMPT-307 2008-2

Lecture: Week 1

Example: n =6, A = [14,13,12,15,16, 11]

| | smelem | sm.pos “new” Al]

1 11 6 11,13,12,15,16, 14
2 12 3 11,12,13,15, 16, 14]
3 13 3 11,12, 13,15, 16, 14]
4 14 6 11,12, 13,14, 16, 15]
5 15 6 11,12,13, 14,15, 16]
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Correctness

the loop invariant: after ¢-th loop,

the elementsA[l] ... A[:] are sorted SELECTION-SORT
Input: numbers in arra
and are all smaller than the ele- P ! d
Al),..., An]
mentsAli + 1]... A[n] 1 for i < 1ton — 1 do
initialization: after1st stepA[1] con- 2 /3-10:find min inAld], ..., Aln] *f
tains the minimal element=- Ll s 3 smelemc Afi
true 4:  SMPOS<— i
: p ey ) i 5. forj<+<i+1tondo
maintenanceif it Is true after:-th it- . if A[j] < sm.elemthen
eration, it remains true aft¢i+1)-th 7. smelem«— A[j]
iteration o SMPOSTJ
9: end if

termination: after (n — 1)-th loop 10:  end for

A[1]...A[n — 1] are sorted and all 1t swap4li]andAlsmpog
12: end for

smaller thamA|n|
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Maintenance

the loop invariant:after i-th loop, the elementsA|[1] ... A[:] are sorted
and are all smaller than the elementsA[i + 1]... A[n]

maintenanceif it is true afteri-th iteration, it remains true after
(¢ + 1)-th iteration
Proof.

e before(: + 1)-th loop, A[1] ... A[:] are sorted and all smaller than the elements
Ali +1]... A[n]

e inthe(z + 1)-th loop, we find the smallest elementiq: + 1] . . . A[n] and put it to the position
Ali + 1]

e since, this element was greater than any elemeAt/inn . . . A[é], A[1]... At + 1] is still sorted
e obviously,A[1] ... A[z] are still smaller thamA [z 4 2] . .. A[n]

e since,A[: + 1] is at the end of thé: + 1)-th loop the smallest elementiaf: + 1] ... A[n],
A[l]... Al[i + 1] are smallerthad[: + 2] ... A[n]

e hence, the loop invariant holds after+ 1)-th loop as well.
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Assignment 1

Assignment Problem 1.1.(deadline: May 13, 5:25pm)
Consider the following sorting algorithm:

BUBBLE-SORT
Input: n numbers in array (1}, ..., A[n]

1: for s« 1ton do

2: for j + ndowntos + 1do
3 if A[j — 1] > A[j] then
4: swapAlj — 1] andA[j]
5 end if

6: end for

7: end for

Find a loop invariant of the main loop and use it to prove thgd@thm is
correct!
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Running time

Clearly depending on (loops depend on)

— Body of outer loop (over) is executed

n — 1 times

— Each increment takes constant time, say ‘IfsjthT'O:'Sﬁf;Lers n amay
— Lines 3 and 4 both take constant time, say 4.4l

1. fori+ 1ton—1do

C2 22 [* 3-10: find min in
3 : N Afi), ..., Aln] ¥
Body of inner loop (over) is executed 5 smeleme Al
n — 1 times 4:  SMPOS<— i
. . ) 5. forj«i+1tondo
- Aga|n, eaCh |ncrement takeS t|mﬁ 6: if A[j] < sm.elemthen
— Suppose comparison in line 6 takes con- 7 Smeleme Al
8 SM.PoS<— j
stant timecs o endif
. . 10:  end for
— If condition is true, then anothér c,, oth- 11: swapAli] and Afsmpog
12: end for

erwise0
— Thus lines 6-9 take at mosf + 2 - ¢
— Swap in line 11 takes constant time, ggy
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Putting everything together: (the worst case)

n—l_ n 1
c1+2-co+ ch—|—03—|—2-02 + ¢4
i=1 | j=i+1 ]

that’s rather ugly for such a trivial algorithm. ..
Let’s simplify this expression a bit:

Letdi =c1+2-¢co+ ¢y
Letdy, =c1 +c3+2-co

Note: d; andd, are constants

Now we have

di + Z do

1 j=i+1

i
[

)

NOtethatZ_H_l (n—i)'dzzn'dz—i'dg
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This results in

n—1

Z(d1—|—nd2—zd2)

1=1

But we're not quite done: termé& andn - d; do not depend on so this

IS equal to
n—1
(n_l)'d1+(n—1)-n-d2—d2.zi
1=1
We know that
k
k-(k+1
Y i=1+243+ - +k= (2+)
1=1
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Thus “our” expression becomes

n—1)-di+(n—-1)-n-dy—ds- (n—21)-n
(n—1)-n
2

= n-dy—d;+n°-do/2—n-dy/2
= n?-dy/2+n-(d —d/2) — dy

= (n—l)-dl—l—d2-

With e; = d2/2 andey = dy — do /2 (NoOte:e; andes are constants) we
obtain

e1-n’+eyp-n—dq

Now, that was rather...cumbersome

Sinceeq, e2, andd; are constants, the statement here seems to be that the
running time dependguadratically onn (modulo some “smaller terms”)

This is the idea behindsymptotic analysis we don’t care about
constants (either multiplicative or additive), or abowés-order terms.

Last modified: Tuesday'BMay, 2008, 22:07 2008 &n Maiuch
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Somewhat more formal:

If T'(n) is some algorithm’sunning time function, i.e., given input of
sizen, it runsT'(n) steps, we are interested in

asymptotic behaviour
(read: as approaches infinity)

rather than
theexact functions

We want compare thgrowth of T'(n) with the growth of some simple
function f(n).

In example: the running time function oESECTION-SORT grows pretty
much liken?.

We're going to formalise this notion in the following.

Last modified: Tuesday'BMay, 2008, 22:07 2008 &n Maiuch
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Theta-notation

For a given functiory(n), ©(g(n)) denotes the set

©(g(n)) = {f(n): there exist positive constants

c1, c2, g Such that

c1-g(n) < f(n) <cz-g(n)
foralln > ng}

Intuition: f(n) belongs to the family(g(n)) if 3 constants;, ¢ S.t.
f(n) can fit betweemn; - g(n) andcs - g(n), for all n sufficiently large.

Correct notation;f(n) € O(g(n))
Usually used:f(n) = O(g(n)).
We also say thatf(n) isin©O(g(n))”.

Last modified: Tuesday'BMay, 2008, 22:07 2008 &n Maiuch
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Examples of®-notation:

f(n) =202 = ©(n?)

because witly(n) = n? andc; = 1 andc, = 2 we have

0<cig(n) < f(n)=2-n2<cy-g(n).

f(n) = 8n® + 17n* — 25 = O(n°)
becausef(n) > 7 - n® for n large enough

n 8n° +17n* — 25 n® | Tnd
1 8. 14+17-1-25=0 7
218-32+17-16 —25 =503 | 32 | 224

andf(n) < 8n® + 17n® = 25n°, thusc; = 7, ca = 25 andny = 2 are

good enough.

Last modified: Tuesday'BMay, 2008, 22:07
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More intuition: for all n > ng, the functionf (n) is equal tog(n) to
within a constant factor.

We say thay(n) is anasymptotically tight bound for f(n).

Back to sorting example

We had running timé&’(n) = e; - n? + e3 - n — d;. Now we can say:
T(n) = ©(n?),

we have formal means to “get rid” of lower-order terms andstant
coefficients.

Last modified: Tuesday'BMay, 2008, 22:07 2008 &n Maiuch
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Why is this true?
Must find positivec, co, ng such that

cin® < en® + eon — dy < con’

for all n > nyg.
Dividing by n? gets us

ex di
c1ler+———5 e
noon

Suppose, e, d; are positive (other cases similar).

Obviously, forn > e, we havee; /n < 1 and thus
e1 +ea/n —di/n? < e +1andthus, = e; + 1 andng = e, does the
job for the right-hand inequality.

Also, forn? > dy & n > +/d; we haved; /n? < 1 and thus
e1 + ea/n —dy/n® > e; — 1 and therefore; = e; — 1 is sufficient.

With ng = max{es, v/d;} both conditions are fulfilled simultaneously.

Last modified: Tuesday'BMay, 2008, 22:07 2008 &n Maiuch
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Exercise 1.1.Recall the formula for Selection-Sort:

n—1 i n |
Cl—|-2'62—|- 261+C3+2'62 + C4
=1 i J=1+1 i

(a) Assume that in Selection-Sort algorithen,= 2, ¢ = 3, ¢c3 = 5 and
c4s = 4 machine cycles. Find the exact formula for the running time
(upper bound) of the algorithm.

(b) Show that the above running timé&én) (with fixed cy, co, c3, c4
above) is inO(n?): find positive constanta, as, ng such that

a1.n? < T(n) < as.n?

for all n > nyg.

Last modified: Tuesday'BMay, 2008, 22:07 2008 &n Maiuch
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Theta notation respects the main term

However, n3 # ©(n?)

Recall: forn® = ©(n?) we would have to find constants, ¢y, ng with
0 < cin? < n® < can?

for n > nyp.

Intuition: there’s a factor of. between both functions, thus wannot
find a constant,!

Suppose, for purpose of contradiction, that themeeconstants:; andng
with n3 < ¢y - n? forn > ny.

Dividing by n? yieldsn < ¢, which cannot possibly hold for arbitrarily
largen (co must be a constant).

Last modified: Tuesday'BMay, 2008, 22:07 2008 &n Maiuch
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Also: n # ©(n?)
Same idea. ..

Suppose it's true, i.e., there are constantandng such that

cnf<necn<len<l/a

Once more:
O-notation is abouasymptotic equality

(“disregarding” lower-order terms and constant coeffitsdsy choosing
suitablecy, cs, ng)

Last modified: Tuesday'BMay, 2008, 22:07 2008 &n Maiuch
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We've just seen one of thmost important (and sometimes most
annoying) gaps between theory and practice:

In theory a factor of 1,000 doesn’t make one bit of a difference (just
choose your:, accordingly),

whereas irpractice it does (there, even a factor of 2 may decide on
whether the graphics run smoothly or not).

There’s this nice saying:
“In theory, practice and theory are the same. In practicesytine

not.”
(source unknown)

Last modified: Tuesday'BMay, 2008, 22:07 2008 &n Maiuch
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Exercise 1.2.Consider positive functiong(n), g(n) andh(n). Prove
that

(@) f(n) € ©(f(n));
(b) if f(n) € ©(g(n)) theng(n) € ©(f(n));
(c) if f(n) € ©(g(n)) andg(n) € ©(h(n)) thenf(n) € O(h(n)).
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Assignment 1 (continued)

Assignment Problem 1.2.(deadline: May 13, 5:25pm)
Show that for any real constanisandb, whereb > 0,

(@) bt € O(b™);
(b) (n+a)® € ©(nd).

Last modified: Tuesday'BMay, 2008, 22:07 2008 &n Maiuch
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Big-O-notation

We've seen®-notation asymptotically boundsom above and below.

When we're interested iasymptotic upper boundsonly, we use
(O-notation (read: “big-O).

For given functiory(n), defineO(g(n)) (read: “big-O of g of ri or also
“order g of ) as follows:

O(g(n)) ={f(n): there exist positive constants
¢, ng such that
f(n) <c-g(n)

foralln > ng}

We write f(n) = O(g(n)) to indicate thatf (n) is member of set
O(g(n)).

Obviously,f(n) = ©(g(n)) implies f(n) = O(g(n)); we just drop the
left inequality in the definition 0B (g(n)).
Last modified: Tuesday'BMay, 2008, 22:07 2008 &n Maiuch
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Back to oursorting examplewith running time
T(n) = e1n? + ean — di, we can say'(n) = O(n?).

This means:

the running time of B8LECTION-SORT is asymptotically at most?, i.e.,
the “real” running time of ELECTION-SORT is at most a constant factor
greater tham?.

Also: now we have, e.gn = O(n?) becauser < 1 - n? for all n (thus
c = n = 1 does the job).

Intuition: (O-notation is used to denote upper bounds on running times,
memory requirements, etc.

Saying “the running time i§(n log n)” means: the running time is not
greater tham log n times some constant factor, fadarge enough.

Last modified: Tuesday'BMay, 2008, 22:07 2008 &n Maiuch



SFU CMPT-307 2008-2 30 Lecture: Week 1

Computing upper bound

SELECTION-SORT
Input: n» numbers in array[1], ..., A[n]

1: fori <~ 1ton —1do
2:  [*3-10: find min inA[i], ..., A[n] */
3:  smelem<« Ali]
4:  SMPOS+ i
5. forj<« i+ 1tondo
6 if A[j] < smelemthen
7 smelem<« A[j]
8 SM.POS+<+ j
9 end if
10:  end for
11:  swapA[i] and A[sm.pog
12: end for
— lines 3—4:0(1)
— lines 6-9:0(1)
— lines 5-10:0(n) timesO(1), which isO(n)
—lines 3-11.0(1) + O(n) + O(n) = O(n)
— the whole algorithms®(n) timesO(n), which isO(n?)
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Assignment 1 (continued)

Assignment Problem 1.3.(deadline: May 13, 5:25pm)
Doesf(n) € O(g(n)) implies

(@ g(n) € O(f(n))?
(b) ey € Ogmy)?

If does prove it, if does not, show an example of two functigfis) and

g(n) which satisfyf(n) € O(g(n)), but do not satisfy the condition (a)
(respectively, (b)).
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Big-Omega-notation

Like O-notation, but for lower bounds

For a given functiory(n), 2(n) denotes the set

Q(g(n)) ={f(n): there exist positive constants

¢, ng such that

c-g(n) < f(n)
forall n > ng}

SayingT'(n) = Q(n?) means growth of'(n) is at least the of?.
Clearly, f(n) = ©(g(n)) it f(n) =€(g(n)) andf(n) = O(g(n)).
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O-notation

SimilartoO

f(n) = O(g(n)) means we can upper-bound the growtlyddy the
growth ofg (up to a constant factor)

f(n) = o(g(n)) is the sameexceptwe require the growth of to be
strictly smaller than the growth af:

For a given functiory(n), o(n) denotes the set

o(g(n)) = {f(n): forany pos constant
there exists a pos constang

such that

f(n) <c-g(n)

forall n > ng}

Last modified: Tuesday'BMay, 2008, 22:07 2008 &n Maiuch



SFU CMPT-307 2008-2 34 Lecture: Week 1

Intuition: f(n) becomes insignificant relative tgn) asn approaches
Infinity:

lim M =0
In other words,f is o(something if there isno constant factor betweeh

and something.

Examples:

n = o(n?)

logn = o(n)

n = o(2™)

nt9% = ©(1.0001™)
1 = o(logn)
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omega-notation

w IS to 2 whato 1s to O:

f(n) = w(g(n)) iff g(n) = o(f(n))

For a given functiory(n), w(n) denotes the set

w(g(n)) ={f(n): foranypos constant
there exists a pos constant
such that
¢-g(n) < f(n)

foralln > ng}

In other words:

lim M = 00
n—oo g(n)

If the limit exists.

l.e., f(n) becomesarbitrarily large relative tgy(n).
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Relational properties of asymptotic notation
So we have

e O: asymptotically “equal”

e (0: asymptotically “at most”

e (). asymptotically “at least”

e 0. asymptotically “strictly smaller”
e w: asymptotically “strictly greater”

Last modified: Tuesday'BMay, 2008, 22:07 2008 &n Maiuch
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Many relational properties of real numbers hold for functions as well.

Transitivity:

f(n) =0©(g(n)) Ag(n) = ©(h(n)) = f(n) = O(h(n))
f(n) = 0(g(n)) A g(n) = O(h(n)) = f(n) = O(h(n))
f(n) =Q(g(n)) A g(n) = Q(h(n)) = f(n) = Q(h(n))
f(n) =o(g(n)) Ag(n) = o(h(n)) = f(n) = o(h(n))
f(n) =w(g(n)) Ag(n) = w(h(n)) = f(n) = w(h(n))
Reflexivity:

f(n) =0O(f(n))

f(n) =0O(f(n))

f(n) =Q(f(n))

Symmetry:

f(n) = 06(g(n)) iff g(n) = O(f(n))
Transpose symmetry:

f(n) = O(g(n) iff g(n) =Q(f(n))
f(n) = o(g(n) iff g(n) = w(f(n))
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This implies an analogy between aymptotic comparison aottions f

andg and comparison of real numberandb:

f(n) =0(g(n)) =
f(n) =Qg(n) =
f(n) =06(g(n)) =
f(n) =o(g(n)) =~
f(n) =w(g(n)) =

a<b
a>b
a=>
a<b
a>b
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Assignment 1 (continued)

Assignment Problem 1.4.(deadline: May 13, 5:25pm)
Prove that

(@) O(g(n)) NQ(g(n)) = O©(g(n));

(b) o(g(n)) Nw(g(n)) is the empty set.
Assignment Problem 1.5.(deadline: May 13, 5:25pm)
Prove that! € w(2") andn! € o(n"™).
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