CMPT 307-08-2 Assignment 5

(From lecture on June 3, 2008)

Deadline: June 10, 5:30pm

Problem 5.1. Show that expected running time of **Randomized-Quicksort** is $\Omega(n \log n)$. In fact it's enough to show that $E[X] = \Omega(n \log n)$.

Hint: From the lecture notes we note that

• $E[X] = \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}$; and

•
$$H_n \ge \ln n$$
.

Use these two facts to show that for some c > 0 and n_0 , $E[X] \ge c.n \ln n$, for all $n \ge n_0$.

Problem 5.2. Show by mathematical induction that for any n and events A_1, A_2, \ldots, A_n we have the equality:

$$P(A_1 \cap A_2 \cap \dots \cap A_n) =$$

$$P(A_1) \cdot P(A_2 | A_1) \cdot P(A_3 | A_2 \cap A_1) \cdots$$

$$P(A_n | A_{n-1} \cap \dots \cap A_2 \cap A_1)$$

Problem 5.3. Prove that in the array \mathcal{P} in procedure **Permute-By-Sorting**, the probability that all elements (priorities) are unique is exactly

$$\prod_{i=1}^{n} (1 - \frac{i-1}{n^3})$$

Then prove that this formula is greater than 1 - 1/n. Hints:

• Define the events

 E_i is the event that $\mathcal{P}[i]$ is different from $\mathcal{P}[1], \ldots, \mathcal{P}[i-1]$

In fact, we are looking for probability $P(E_1 \cap \cdots \cap E_n)$. Use the same technique as on the lecture, to compute this probability.

• For the second part, first show that the product is larger than $(1 - 1/n^2)^n$ and then use Binomial Theorem.

Problem 5.4. Consider the following procedure for generating a uniform random permutation: **Permute-By-Cyclic**(A[1...n])

1: $offset \leftarrow \mathbf{Random}(1, n)$ 2: for $i \leftarrow 1$ to n do

Show that each element A[i] has a 1/n probability of being permuted to any particular position in B. Is the resulting permutation (of the procedure) uniformly random?