CMPT 307-08-2 Assignment 4

(From lecture on May 27, 2008)

Deadline: June 3, 5:30pm

Problem 4.1. Show that the running time of the **Quicksort** presented at the lecture is $\Theta(n^2)$ when the elements of the array A are distinct and sorted

(a) in increasing order;

(b) in decreasing order.

Problem 4.2. Show that the best-case running time of **Quicksort** is $\Omega(n \log n)$, i.e., show that the recurrence

$$T(n) \ge \min_{0 \le q \le n-1} (T(q) + T(n-q-1)) + dn$$

is in $\Omega(n \log n)$.

Hint: You can use the fact that the function $f(x) = x \log x + (n - 1 - x) \log(n - 1 - x)$ achieves its global minimum at point x = (n - 1)/2.

Problem 4.3. Consider a probability space $S = \{1, 2, ..., 8\}$ (outcome of a throw of 8-sided die). Find and example of three events A, B, C of S such that A, B, C are pairwise independent, but events A and $B \cap C$ are not (i.e. $P(A) \cdot P(B \cap C) \neq P(A \cap B \cap C)$).