
Exercise 1-1 Exercises (Page 57) 3-1, 3-2, 3-3, 3-4.

3-1.

1. Let c =
∑

i ai, then ∀n > 0, p(n) ≤ cnk if k ≥ d. Hence p(n) = O(nk).

2. Let c = mini ai, then ∀n > 0, p(n) ≥ cnk if k ≤ d. Hence p(n) = Ω(nk).

3. Let c1 =
∑

i ai, c2 = mini ai, then ∀n > 0, c1n
k ≥ p(n) ≥ c2n

k if k = d. Hence p(n) = Θ(nk).

4. For any constant c > 0, note that ∀n >

(
∑

i
ai

c

)1/(k−d)

, p(n) < cnk if k > d. Hence

p(n) = o(nk).

5. For any constant c > 0, note that ∀n >
(

c
ad

)1/(d−k)

, p(n) > cnk if k < d. Hence p(n) = ω(nk).

3-2.

yes yes no no no
yes yes no no no
no no no no no
no no yes yes no
yes no yes no yes
yes no yes no yes

3-3.

22n+1

= Ω(22n

), 22n

= Ω((n + 1)!), (n + 1)! = Ω(n!), n! = Ω(en) , en = Ω(n · 2n), n · 2n =
Ω(2n), 2n = Ω((3/2)n), (3/2)n = Ω((lgn)lgn), (lgn)lgn = Ω(nlglgn), nlglgn = Ω((lgn)!), (lgn)! =
Ω(n3), n3 = Ω(n2), n2 = Θ(4lgn), 4lgn = Ω(nlgn), nlgn = Θ(lg(n!)), lg(n!) = Ω(2lgn), 2lgn =

Θ(n), n = Ω((
√

2)lgn), (
√

2)lgn = Ω(2
√

2lgn), 2
√

2lgn = Ω(lg2n), lg2n = Ω(lnn), lnn = Ω(
√

lgn),√
lgn = Ω(ln lnn), ln lnn = Ω(2lg∗n), 2lg∗n = Ω(lg∗n), lg∗N = Ω(lg(lg∗n)), lg(lg∗n) = Ω(lg∗(lgn)),

lg∗(lgn) = Ω(n1/lgn), n1/lgn = Ω(1)

An example: f(n) = (ln lnn)2.

3-4.

a. false. example: f(n) = n, g(n) = n2.
b. false. example: f(n) = n2, g(n) = n.
c. true.
d. true.
e. false. example: f(n) = 1/n
f. true.
g. false. example: f(n) = 2n.
h: true.

Exercise 1-2 Exercises (Page 85) 4-1, 4-2, 4-3, 4-4 (a,b,c,d,e,f), (page 75) 4.3-2.

4-1.

a. Θ(n3).
b. Θ(n).
c. Θ(n2 log n).
d. Θ(n2).
e. Θ(nlog 7).
f. Θ(

√
n log n).

1

g. Θ(n2).
h. Θ(log log n).

4-2.

We first count the number of 1s at the first bit. If the number of 1s (or 0s) is n/2, then we know
the first bit of the missing integer must be 0 (or 1). We can discard all the numbers starting with
1 (or 0) and consequently the problem size is reduced by half. Repeating this procedure for all the
rest bits we can detect the missing integer.

Let T (n) be the total runtime. We have T (n) = T (n/2) + Θ(n) and hence T (n) = Θ(n).

4-3.

a.

1. T (n) = T (n/2) + Θ(1). T (N) = Θ(log N).

2. T (n) = T (n/2) + Θ(N). T (N) = Θ(N log N).

3. T (n) = T (n/2) + Θ(n). T (N) = Θ(N).

b.

1. T (n) = 2T (n/2) + Θ(n). T (N) = Θ(N log N).

2. T (n) = 2T (n/2) + Θ(N). T (N) = Θ(N2).

3. T (n) = 2T (n/2) + Θ(n). T (N) = Θ(N log N).

4-4.

a. Θ(nlog(3/2)).
b. Θ(n log log n).
c. Θ(n2

√
n).

d. Θ(n log n).
e. Θ(n log log n).
f. Θ(n).
g. Θ(n2).

4.3-2.

49.

Problem 1-1 Show the following using the recursion tree method:

• (a). If T (1) = c and T (n) ≤ T (n/2)+d for every n ≥ 2 that is a power of 2, T (n) ≤ d log2 n+c
whenever n is a power of 2.

Summing over all levels we obtain T (n) ≤ d log2 n + c.

• (b). If T (1) = 1 and T (n) = 4T (n/2) + n2 for every n ≥ 2 that is a power of 2, T (n) ∈
Θ(n2 log2 n) whenever n is a power of 2. Is the above result correct if the recurrence relation
is replaced by T (1) = 1 and T (n) ≤ 4T (n/2) + n2? Justify.

Note that the value in the first level is equal to which in the last level, hence T (n) = n2 ·(log n+1)
and clearly it is both upper and lower bound. Yet, the above result is not correct if the recurrence
relation is replaced by T (1) = 1 and T (n) ≤ 4T (n/2)+n2. In fact, we can only show the upperbound
result, that is, T (n) = O(n2 log n). The lowerbound result does not hold, for example, it will not
violate the given condition if T (n) = O(1).

2

 log n+1

d log n + cTotal:

cT(1)

...

d

d

d

...

T(2)

T(n/2)

T(n)

Figure 1: The recursion tree (a)

T(n)

T(n/2) T(n/2)T(n/2) T(n/2)

......

n^2

(n/2)^2 * 4 = n^2

T(1) T(1) T(1) n^2......

Total: Θ(n^2 log n)

log n + 1

Figure 2: The recursion tree (b)

3

Problem 1-2 (Problem taken from the algorithm text of Kleinberg and Tardos)
You are interested in analyzing some hard-to-obtain data from two separate databases. Each
database contains n numerical values - so there are 2n values total - and you may assume that
no two values are the same. You would like to determine the median of this set of 2n values, which
we will define to be the nth smallest value. However, the only way you can access these values
is through queries to the databases. In a single query, you can specify a value k to one of the
databases and the chosen database will return the kth smallest value that it contains. Since queries
are expensive, you would like to compute the median using as few queries as possible.

Given an algorithm that finds the median value using at most O(log2 n) queries.
Note: Organize your answer into the following three parts. First clearly state your algorithm (in

English or in pseudocode). Second, briefly argue why your algorithm is correct. And third, analyze
its running time (in terms of the number of database queries that it uses). You can assume that n
is a power of 2.

DB2DB1

> 45

DB2DB1

< 75

Figure 3: Left: left median > right median Right: left median < right median. In the diagram,
both databases are sorted in ascending order.

Let DB1, DB2 be the two databases. Our algorithm is as follows:

Algorithm 1 Median finding algorithm for joint databases

1: p1 = p2 = n/2 (//two query pointers)
2: for i = 2 to log n do

3: m1 = QueryDB(DB1, p1) // get the median of DB1
4: m2 = QueryDB(DB2, p2) // get the median of DB2
5: if m1 > m2 then

6: p1 ← p1 − n/2i // next time, query the median of the upper half of DB1
7: p2 ← p2 + n/2i // next time, query the median of the lower half of DB2
8: else

9: p1 ← p1 + n/2i

10: p2 ← p2 − n/2i

11: end if

12: end for

13: return min (m1, m2)

In the above algorithm, p1 and p2 are two query pointers for both databases. We first query
the medians of both databases to obtain m1, m2. We show the median of the joint database must
be in between m1 and m2. To see this, observe that there are at least n records in DB1 and DB2
which are smaller than or equal to max(m1, m2). Hence, the median of the joint database is not
greater than max(m1, m2). Similarly we can show the median of the joint database is not smaller
than min(m1, m2). Then we can move the pointers p1 and p2 accordingly. (To visualize, in Figure
3, the shaded parts of both databases can actually be discarded.) By the end of the loop, m1, m2

are the nth and the (n + 1)th smallest numbers of the joint database, hence we return the smaller
one among m1, m2.

Let T (n) be the total number of queries. As each round we reduce the problem size by half using
two queries, we have T (n) = T (n/2) + 2. Solving this recurrence we obtain T (n) = O(log n).

4

