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Graph Reminder

Vertices and edges

Nodes and arcs

Representation of graphs:

-- adjacency matrix

-- adjacency lists

Degrees of vertices,  indegree, outdegree;  regular graphs

Walks, paths, and cycles;  lengths

Connectivity, connected components

Trees, root, leaves, parent and child, descendant and ancestor
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Graph Traversing

Often we need to visit every vertex of a graph

There are many ways to do that, two are most usual:  breadth first 
search and depth first search

In both cases we start with some vertex  s

For BFS:

- visit neighbors of  s

- then visit neighbors of 

neighbors in turn

- this data structure is 

called a queue 
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Graph Traversing:  BFS

Breadth First Search(G,s)
set Discov[s]:=true and Discov[v]:=false for v≠s
Enqueue(Q,s)

while Q is not empty do

set u:=Dequeue(Q)

for each (u,v)∈E do

if Discov[v]=false then do

set Discov[v]:=true;   

Enqueue(Q,v)

endif

endfor

endwhile
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Example
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Queues Through Array

If we store a queue in an array, we need two pointers to the head and 
to the tail of the queue

7 2 4 6 8

3 9 6 8 5

head tail

tail head
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Enqueue

Enqueue(G,x)
set Q[tail[Q]]:=x

if tail[Q]=length[Q] then

set tail[Q]:=1

else set tail[Q]:=tail[Q]+1

7 2 4 6 8

head tail

x

3 9 6 8 5

tail head

x
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Dequeue

Dequeue(G)
set v:=Q[head[Q]]

if head[Q]=length[Q] then

set head[Q]:=1

else set head[Q]:=head[Q]+1

7 2 4 6 8

head tail

3 9 6 8 5

tail head
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Graph Traversing: DFS

For DFS:

- start with some vertex  s

- visit first neighbor of  s

- then visit neighbors of  that neighbor

- every time consider the neighbors of 

the last vertex visited

- this data structure is 

called a stack
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Graph Traversing:  DFS

Depth First Search(G,s)

set Explor[s]:=true and Explor[v]:=false for v≠s
Push(S,s)

while not Stack-Empty(S) do

set u:=Pop(S)

for each (u,v)∈E do

if Explor[v]=false then do

set Explor[v]:=true;   

Push(S,v)

endif

endfor

endwhile
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Example
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Stacks Through Array

If we store a stack in an array, we need a pointer to the top  of the stack

Stack-Empty(S)
if top[S]=0 then

return true

else return false

7 2 468

top
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Push

Push(S,x)
set top[S]:=top[S]+1

set S[top[S]]:=x

7 2 468

top

x
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Pop

Pop(S)
if Stack-Empty(S) then

error “underflow”

else do

set top[S]:=top[S]-1

return S[top[S]+1]

7 2 468

top

x
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Stacks Through Pointers and Objects

Stacks can also be stored using pointers and objects

Stack-Empty(S)
if top[S]=Nil then

return true

else return false

data pntr data pntr data pntr
dat

a
pntr

NIL
top
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Push and Pop

Push(S,x)
set next[x]:=top[S]

set top[S]]:=x

Pop(S)
set t:=top[S]

set top[S]:=next[top[S]]

return t
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Stacks Through Pointers and Objects

Stacks can also be stored using pointers and objects

Stack-Empty(S)
if top[S]=Nil then

return true

else return false

data pntr data pntr data pntr
dat

a
pntr

NIL
top
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Push and Pop

Push(S,x)
set next[x]:=top[S]

set top[S]:=x

Pop(S)
set t:=top[S]

set top[S]:=next[top[S]]

return t
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Queues Through Pointers and Objects

Queues can also be stored using pointers and objects

pntr data pntr data pntr data pntr data

NIL
tail head
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Enqueue and Dequeue

Enqueue(Q,x)
set next[tail[Q]]:=x

set top[S]:=x

Dequeue(Q)
set x:=head[S]

set head[Q]:=next[head[Q]]

return x
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Doubly Linked Lists

To run, say, insertion sort,  just a list (or queue, or stack) is not enough, 

as we need to move along the list back and forth

A  doubly linked list is used

Operations:

List-Search

List-Insert

List-Delete

prev data next prev data next prev data next

NIL
head

NIL
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Search

List-Search(L,k)
set x:=head[L]

while x≠NIL and data[x]≠k do

set x:=next[x]

return x
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Insert and Delete

List-Insert(L,x)
set next[x]:=head[L]

if head[L]≠NIL then do

set prev[head[L]:=x

set head[L]:=x

set prev[x]:=NIL

List-Delete(L,x)

if prev[x]≠NIL then 

set next[prev[x]]:=next[x]

else

head[L]:=next[x]   

if next[x]≠NIL then 

set prev[next[x]:=prev[x]
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Binary Rooted Trees

If we need to run heap sort on a sequence of numbers of unpredictable 

length, we cannot organize heap in an array

A  binary tree is used
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Arbitrary Rooted Trees

Sometimes a non-binary tree is needed

chil
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Homework

Write pseudocode of Insertion Sort if the data is stored in a doubly 

linked list

Write pseudocode of Heap Sort using the binary tree representation of 

data rather than arrays


