
Queues, Stacks, Graph
Traversing

Data Structures and Algorithms

Andrei Bulatov

Algorithms – Queues, Stacks, Graph Traversing 9-2

Graph Reminder

Vertices and edges

Nodes and arcs

Representation of graphs:

-- adjacency matrix

-- adjacency lists

Degrees of vertices, indegree, outdegree; regular graphs

Walks, paths, and cycles; lengths

Connectivity, connected components

Trees, root, leaves, parent and child, descendant and ancestor

Algorithms – Queues, Stacks, Graph Traversing 9-3

Graph Traversing

Often we need to visit every vertex of a graph

There are many ways to do that, two are most usual: breadth first
search and depth first search

In both cases we start with some vertex s

For BFS:

- visit neighbors of s

- then visit neighbors of

neighbors in turn

- this data structure is

called a queue

s

t u

wv

x
t

u

v

w

x

Algorithms – Queues, Stacks, Graph Traversing 9-4

Graph Traversing: BFS

Breadth First Search(G,s)
set Discov[s]:=true and Discov[v]:=false for v≠s
Enqueue(Q,s)

while Q is not empty do

set u:=Dequeue(Q)

for each (u,v)∈E do

if Discov[v]=false then do

set Discov[v]:=true;

Enqueue(Q,v)

endif

endfor

endwhile

Algorithms – Queues, Stacks, Graph Traversing 9-5

Example

s

t u

wv

x

Algorithms – Queues, Stacks, Graph Traversing 9-6

Queues Through Array

If we store a queue in an array, we need two pointers to the head and
to the tail of the queue

7 2 4 6 8

3 9 6 8 5

head tail

tail head

Algorithms – Queues, Stacks, Graph Traversing 9-7

Enqueue

Enqueue(G,x)
set Q[tail[Q]]:=x

if tail[Q]=length[Q] then

set tail[Q]:=1

else set tail[Q]:=tail[Q]+1

7 2 4 6 8

head tail

x

3 9 6 8 5

tail head

x

Algorithms – Queues, Stacks, Graph Traversing 9-8

Dequeue

Dequeue(G)
set v:=Q[head[Q]]

if head[Q]=length[Q] then

set head[Q]:=1

else set head[Q]:=head[Q]+1

7 2 4 6 8

head tail

3 9 6 8 5

tail head

Algorithms – Queues, Stacks, Graph Traversing 9-9

Graph Traversing: DFS

For DFS:

- start with some vertex s

- visit first neighbor of s

- then visit neighbors of that neighbor

- every time consider the neighbors of

the last vertex visited

- this data structure is

called a stack
s

t u

wv

x
t

v

u

w

x

Algorithms – Queues, Stacks, Graph Traversing 9-10

Graph Traversing: DFS

Depth First Search(G,s)

set Explor[s]:=true and Explor[v]:=false for v≠s
Push(S,s)

while not Stack-Empty(S) do

set u:=Pop(S)

for each (u,v)∈E do

if Explor[v]=false then do

set Explor[v]:=true;

Push(S,v)

endif

endfor

endwhile

Algorithms – Queues, Stacks, Graph Traversing 9-11

Example

s

t u

wv

x

Algorithms – Queues, Stacks, Graph Traversing 9-12

Stacks Through Array

If we store a stack in an array, we need a pointer to the top of the stack

Stack-Empty(S)
if top[S]=0 then

return true

else return false

7 2 468

top

Algorithms – Queues, Stacks, Graph Traversing 9-13

Push

Push(S,x)
set top[S]:=top[S]+1

set S[top[S]]:=x

7 2 468

top

x

Algorithms – Queues, Stacks, Graph Traversing 9-14

Pop

Pop(S)
if Stack-Empty(S) then

error “underflow”

else do

set top[S]:=top[S]-1

return S[top[S]+1]

7 2 468

top

x

Algorithms – Queues, Stacks, Graph Traversing 9-15

Stacks Through Pointers and Objects

Stacks can also be stored using pointers and objects

Stack-Empty(S)
if top[S]=Nil then

return true

else return false

data pntr data pntr data pntr
dat

a
pntr

NIL
top

Algorithms – Queues, Stacks, Graph Traversing 9-16

Push and Pop

Push(S,x)
set next[x]:=top[S]

set top[S]]:=x

Pop(S)
set t:=top[S]

set top[S]:=next[top[S]]

return t

Algorithms – Queues, Stacks, Graph Traversing 9-17

Stacks Through Pointers and Objects

Stacks can also be stored using pointers and objects

Stack-Empty(S)
if top[S]=Nil then

return true

else return false

data pntr data pntr data pntr
dat

a
pntr

NIL
top

Algorithms – Queues, Stacks, Graph Traversing 9-18

Push and Pop

Push(S,x)
set next[x]:=top[S]

set top[S]:=x

Pop(S)
set t:=top[S]

set top[S]:=next[top[S]]

return t

Algorithms – Queues, Stacks, Graph Traversing 9-19

Queues Through Pointers and Objects

Queues can also be stored using pointers and objects

pntr data pntr data pntr data pntr data

NIL
tail head

Algorithms – Queues, Stacks, Graph Traversing 9-20

Enqueue and Dequeue

Enqueue(Q,x)
set next[tail[Q]]:=x

set top[S]:=x

Dequeue(Q)
set x:=head[S]

set head[Q]:=next[head[Q]]

return x

Algorithms – Queues, Stacks, Graph Traversing 9-21

Doubly Linked Lists

To run, say, insertion sort, just a list (or queue, or stack) is not enough,

as we need to move along the list back and forth

A doubly linked list is used

Operations:

List-Search

List-Insert

List-Delete

prev data next prev data next prev data next

NIL
head

NIL

Algorithms – Queues, Stacks, Graph Traversing 9-22

Search

List-Search(L,k)
set x:=head[L]

while x≠NIL and data[x]≠k do

set x:=next[x]

return x

Algorithms – Queues, Stacks, Graph Traversing 9-23

Insert and Delete

List-Insert(L,x)
set next[x]:=head[L]

if head[L]≠NIL then do

set prev[head[L]:=x

set head[L]:=x

set prev[x]:=NIL

List-Delete(L,x)

if prev[x]≠NIL then

set next[prev[x]]:=next[x]

else

head[L]:=next[x]

if next[x]≠NIL then

set prev[next[x]:=prev[x]

Algorithms – Queues, Stacks, Graph Traversing 9-24

Binary Rooted Trees

If we need to run heap sort on a sequence of numbers of unpredictable

length, we cannot organize heap in an array

A binary tree is used

left

parent

right
NIL

root

left

parent

right left

parent

right

left

parent

rightleft

parent

rightleft

parent

right

NIL

Algorithms – Queues, Stacks, Graph Traversing 9-25

Arbitrary Rooted Trees

Sometimes a non-binary tree is needed

chil

parent

siblNIL
root

NIL

chil

parent

sibl chil

parent

sibl chil

parent

sibl

chil

parent

sibl

NIL

chil

parent

sibl

NIL

chil

parent

sibl

NILNIL

Algorithms – Queues, Stacks, Graph Traversing 9-26

Homework

Write pseudocode of Insertion Sort if the data is stored in a doubly

linked list

Write pseudocode of Heap Sort using the binary tree representation of

data rather than arrays

