Queues, Stacks, Graph
Traversing

Data Structures and Algorithms

Andrei Bulatov

Algorithms — Queues, Stacks, Graph Traversing

Graph Reminder

Vertices and edges
Nodes and arcs
Representation of graphs:
-- adjacency matrix
-- adjacency lists
Degrees of vertices, indegree, outdegree; regular graphs
Walks, paths, and cycles; lengths
Connectivity, connected components
Trees, root, leaves, parent and child, descendant and ancestor

9-2

Algorithms — Queues, Stacks, Graph Traversing

Graph Traversing
Often we need to visit every vertex of a graph

There are many ways to do that, two are most usual: breadth first
search and depth first search

In both cases we start with some vertex s

For BFS: /\

- visit neighbors of s ‘
- then visit neighbors of t y (W
neighbors in turn y " (W)
- this data structure is . (W
called a queue i@

9-3

Algorithms — Queues, Stacks, Graph Traversing

Graph Traversing: BFS
Breadth First Search(G,s)

set Discov[s]:=true and Discov[v]:=false for v#s
Enqueue(Q,s)
while Q 1s not empty do
set u:=Dequeue(Q)
for each (u,v)UE do
1f Discov[v]=false then do
set Discov[v]:=true;
Enqueue(Q,V)
endif
endfor
endwhile

9-4

Example

Algorithms — Queues, Stacks, Graph Traversing

9-5

Algorithms — Queues, Stacks, Graph Traversing

Queues Through Array

If we store a queue in an array, we need two pointers to the head and
to the tail of the queue

IO 7 2 [+ [+ [[
1‘head TtaiI

TtaiI Thead

Algorithms — Queues, Stacks, Graph Traversing

Enqueue

Enqueue(G,x)

set Q[tai1l1[qQ]]:=x

1f tail[Q]=1ength[Q] then
set tai1l[qQ]:=1

else set tai1l[Q]:=ta11[Q]+1

I 7 [z [+ e ¢ [
Thead TtaiI

TtaiI Thead

9-7

Algorithms — Queues, Stacks, Graph Traversing

Dequeue

Dequeue(G)

set v:=Q[head[Q]]

1f head[Q]=1length[Q] then
set head[Q]:=1

else set head[Q]:=head[Q]+1

I 2 [+ [+ [[
Thead TtaiI

TtaiI Thead

9-8

Algorithms — Queues, Stacks, Graph Traversing

Graph Traversing: DFS

For DFS:

- start with some vertex s

- visit first neighbor of s

- then visit neighbors of that neighbor

- every time consider the neighbors of
the last vertex visited

- this data structure is
called a stack

9-9

Algorithms — Queues, Stacks, Graph Traversing 9-10

Graph Traversing: DFS
Depth First Search(G,s)

set Explor[s]:=true and Explor[v]:=false for v#s
Push(S,s)
while not Stack-Empty(S) do
set u:=Pop(S)
for each (u,v)UE do
1f Explor[v]=false then do
set Explor[v]:=true;
Push(sS,v)
endif
endfor
endwhile

Algorithms — Queues, Stacks, Graph Traversing 9-11

Example

Algorithms — Queues, Stacks, Graph Traversing 9-12

Stacks Through Array

If we store a stack in an array, we need a pointer to the top of the stack

4
T top

Stack-Empty(S)

1f top[S]=0 then
return true

else return false

Algorithms — Queues, Stacks, Graph Traversing 9-13

Push
Push(S,x)

set top[S]:=top[S]+1
set S[top[S]]:=x

Algorithms — Queues, Stacks, Graph Traversing 9-14

Pop
Pop(S)

1f Stack-Empty(S) then
error “underflow”
else do
set top[S]:=top[S]-1

return S[top[S]+1]

T top

Algorithms — Queues, Stacks, Graph Traversing

Stacks Through Pointers and Objects

Stacks can also be stored using pointers and objects

data | pntr > data | pntr 3 data | pntr T—

dat

pntr-

!

top

Stack-Empty(S)

1f top[S]=Nil then
return true

else return false

9-15

NIL

Algorithms — Queues, Stacks, Graph Traversing 9-16

Push and Pop
Push(S,x)

set next[x]:=top[S]
set top[S]]:=x

Pop(S)

set t:=top[S]

set top[S]:=next[top[S]]
return t

Algorithms — Queues, Stacks, Graph Traversing

Stacks Through Pointers and Objects

Stacks can also be stored using pointers and objects

data | pntr > data | pntr 3 data | pntr T—

dat

pntr-

!

top

Stack-Empty(S)

1f top[S]=Nil then
return true

else return false

9-17

NIL

Algorithms — Queues, Stacks, Graph Traversing 9-18

Push and Pop
Push(S,x)

set next[x]:=top[S]
set top[S]:=x

Pop(S)

set t:=top[S]

set top[S]:=next[top[S]]
return t

Algorithms — Queues, Stacks, Graph Traversing

Queues Through Pointers and Objects

Queues can also be stored using pointers and objects

NIL

- pntr

data

!

tail

<€— pntr

data +—-

- pntr

data 1€

pntr

data

head

9-19

Algorithms — Queues, Stacks, Graph Traversing 9-20

Enqueue and Dequeue
Enqueue(Q,x)

set next[tail[Q]]:=x
set top[S]:=x

Dequeue(Q)

set x:=head[S]

set head[Q]:=next[head[Q]]
return X

Algorithms — Queues, Stacks, Graph Traversing 9-21

Doubly Linked Lists

To run, say, insertion sort, just a list (or queue, or stack) is not enough,
as we need to move along the list back and forth

A doubly linked list is used

¢ | prev | data | next < prev | data | next ¢ | prev | data | next
T NIL
NIL head
Operations:
List-Search
List-Insert

List-Delete

Algorithms — Queues, Stacks, Graph Traversing 9-22

Search

List-Search(L,k)

set Xx:=head[L]

while x#NIL and data[x]#k do
set X:=next[x]

return x

Algorithms — Queues, Stacks, Graph Traversing 9-23

Insert and Delete

List-Insert(L,x)

set next[x]:=head[L]

1f head[L]#NIL then do
set prev[head[L]:=x

set head[L]:=x

set prev[x]:=NIL

List-Delete(L,x)
1f prev[x]#NIL then
set next[prev[x]]:=next[x]
else
head[L] :=next[x]
1T next[x]#NIL then
set prev[next[x]:=prev[x]

Algorithms — Queues, Stacks, Graph Traversing

Binary Rooted Trees

If we need to run heap sort on a sequence of numbers of unpredictable

length, we cannot organize heap in an array

A binary tree is used

Y —

NIL

parent

left | right

parent

left

right

root

parent

left

parent

parent

parent

left | right

left | right

left | right

right

NIL

9-24

Algorithms — Queues, Stacks, Graph Traversing

Arbitrary Rooted Trees

Sometimes a non-binary tree is needed

€—— parent [

NIL

NIL root
chil | sibl \
/ N
parent parent parent
chil | sibl >| chil | sibl —>| chil | sibl
A 4
parent parent parent
chil | sibl f=————>] chil | sibl chil | sibl \
NIL
\ NIL \ NIL

9-25

Algorithms — Queues, Stacks, Graph Traversing 9-26

Homework

Write pseudocode of Insertion Sort if the data is stored in a doubly
linked list

Write pseudocode of Heap Sort using the binary tree representation of
data rather than arrays

