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Comparison Sorts

The only test that all the algorithms we have considered so far is  

comparison

The only information we obtain about an input sequence          

is given by                                                     or

We will assume that all the input numbers are different. 

Then the it suffices to use only one comparison 
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The Decision Tree Model

Observe that for different input permutations, even if they differ only in 

the order of elements, our algorithm must perform different actions

Therefore, we view its work as  recognizing a permutation

It is convenient to represent this process as a  decision tree

1:2

2:31:3

1:32:3

〈1,2,3〉〈1,2,3〉

〈1,3,2〉〈1,3,2〉 〈3,1,2〉〈3,1,2〉 〈2,3,1〉〈2,3,1〉 〈3,2,1〉〈3,2,1〉

〈2,1,3〉〈2,1,3〉
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Decision Trees

Let the input sequence  contain  n  elements

We assume they are  numbers from  1  to  n

Therefore, the input sequence is a permutation  〈π(1), π(2), …, π(n)〉

Each internal node is labeled by  i : j  for some  i  and  j  in the range       

1 ≤ i,j ≤ n

Execution of the algorithm is a path from the root to a leaf

At each internal node a comparison                 is made

Depending on the outcome either comparisons on the left or the right 

subtree

When we come to a leaf , the algorithm recognizes a particular ordering

ji aa ≤
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Lower Bound

Proof

There are  n!  permutations of  n  elements.

The algorithm should recognize all of them

Therefore the decision tree contains  k ≥ n!  leaves

The complete binary tree has         leaves where   h  is the height of the 

tree,  the length of the longest  root-to-leaf path

Finally, note that the height of the tree is running time in the worst case

Theorem

Any comparison sort algorithm requires  Ω(mn)  comparisons in the 

worst case

h2
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)log()!log( nnnh Ω=≥
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Counting Sort

Suppose we are allowed to do more than just comparisons

We also assume that the input numbers are in the range  0  to  k

We give an algorithm that works in  Θ(n)  time  provided  k = O(n)

The idea is: for each input element  x  to count how many elements are 

less than  x,  and use this information to place  x  to the right place in 

the output sequence

We use   A[1..n]  the input array

B[1..n]   the output array

C[0..k]   auxiliary storage

Note that we do not assume that all elements are different
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Counting Sort: Algorithm

Counting-Sort(A,B,k)

for i=0 to k do   

set C[i]:=0

for j=1 to n do

set C[A[j]]:=C[A[j]]+1   /* C[i] contains the 

/* number of elements equal to i

for i=1 to k do

set C[i]:=C[i]+C[i-1]    /* C[i] contains the 

/* number of elemnts less than or equal to i

for j=n downto 1 do

set B[C[A[j]]]:=A[j]

set C[A[j]]:=C[A[j]]-1

endfor
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Counting Sort: Soundness and Running Time

Proof

Running time:

Each of the 4  for   loops is iterated at most  max{n, k} times

Soundness:

Trace the content of arrays

QED

Theorem

Counting Sort correctly sorts a sequence of  n   elements in O(n)  

time, provided  k = O(n)
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Stable Sorting

For the next algorithm it is important how Counting Sort  and other 

sorting algorithms deal with equal elements

A sorting algorithm is called  stable if it preserves the order of equal 

elements in the input sequence, that is,

if               and  i < j  in the input sentence, then goes first in the 

output sequence

Lemma

Counting Sort is stable

Proof

Suppose that  A[i] = A[j]  and  i < j.

Then in the last  for  loop we first output  A[j]  then  A[i]

Moreover, between the outputs  C[A[i]] = C[A[j]]  is decremented.

Therefore  A[i] is placed into  B  with smaller index than  A[j]

ji aa = ia
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Radix Sort

Punch card

Radix sorting machine
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Radix Sort: The Idea

If the elements of the input sequence are  d-digit integers, we can first 

sort the according the most significant digit, then the second most 

significant digit, etc.

This, however, requires a lot of copying and auxiliary storage

Radix Sort:

Sort in place according to the least significant digit

But use a stable sorting algorithm!!
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Radix Sort: Algorithm

Radix-Sort(A,d)

for i=0 to d do   

use a stable sorting algorithm to sort array A on 
digit i

endfor

Theorem

Radix Sort correctly sorts a sequence of  n   d-digit numbers in which 

each digit can take up to  k  different values in  O(d(n+k))  time.
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Radix Sort: Analysis

Running time:

RadixSort considers  d  digits in turn

each pass takes  O(n + k)  time  (when using, say, Counting Sort)

Soundness:

By induction on the number  d  of digits

Base Case:   d = 1   Counting Sort just sorts everything

Induction Step:  Suppose algorithm works correctly  for  d – 1 

Radix sort on d-digit numbers is equivalent to  d  runs of radix sort on 

smaller  d-1 – numbers,  followed by sorting on digit  d.

By Induction Hypothesis Radix Sort sorts correctly on lower  d – 1 

digits
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Radix Sort: Analysis (cntd)

Before the last sort on digit  d,  all the numbers are properly sorted 

accordingly their last  d – 1  digits.

When sort on digit  d,  consider two elements  a  and  b  with d-th digits    

and         respectively

(1)  If                 then the algorithm will put  a  before  b,  which is 

correct

(2)  If                 the algorithm will put  b  before  a, which is again 

correct

(3)  If                 the algorithm will leave  a  and  b  in the same order 

as before, because it is stable.  

This order is again correct, for the relative order of  a  and  b  

depends in this case on the lower  d – 1 digits.

QED

da db

dd ba <

dd ba >

dd ba =
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Bucket Sort: The Idea

Counting Sort and Radix Sort achieve significant speed up against 

comparison algorithms because they use certain assumptions about

the input numbers:

They are small integers, or integers of bounded size.

Bucket Sort uses an assumption about the distribution of these 

numbers:

They are taken uniformly at random from  [0; 1)

Then we:

Split  [0;1)  into  n  equal intervals (buckets)

Put every input element into the corresponding bucket

Sort each bucket

Concatenate the buckets
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Bucket Sort: Algorithm

A[1..n]  the input array

B[1..n]  heads of buckets

i-th bucket is organized as a list with a pointer  B[i]  to the top of the 

list

Bucket-Sort(A,d)

set n:=length(A)

for i=0 to n do   

insert A[i] into list B[n⋅A[i]]
endfor

for i=0 to n do

sort list B[i] with insertion sort

concatenate the lists  B[1],B[2],...,B[n]
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Bucket Sort: Soundness

Proof.

Obvious

Theorem

Bucket Sort correctly sorts a sequence of  numbers from the interval  

[0;1)
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Bucket Sort: Running Time

Proof.

Clearly, the first  for loop takes  Θ(n)  time to complete

Each iteration of the second  for  loop contributes          time where      

is the number of elements in the  i-th bucket.

Therefore

Theorem

The expected running time of Bucket Sort is  O(n)
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Bucket Sort: Running Time

Proof (cntd).

Take the expectation of both sides

We show that  
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Bucket Sort: Running Time

Proof (cntd).

Define indicator random variables

if and only if  A[j]  falls into bucket  i,  otherwise

Thus 

We get
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Bucket Sort: Running Time

Proof (cntd).

Then

and, since         and         are independent

Finally
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Bucket Sort: Running Time

Proof (cntd).

For the running time we now have

QED
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