
Sorting in Linear Time

Data Structures and Algorithms

Andrei Bulatov

Algorithms – Sorting in Linear Time 7-2

Comparison Sorts

The only test that all the algorithms we have considered so far is

comparison

The only information we obtain about an input sequence

is given by or

We will assume that all the input numbers are different.

Then the it suffices to use only one comparison

naaa ,,, 21 K

jijijiji aaaaaaaa ≥=≤< ,,, ji aa >

ji aa ≤

Algorithms – Sorting in Linear Time 7-3

The Decision Tree Model

Observe that for different input permutations, even if they differ only in

the order of elements, our algorithm must perform different actions

Therefore, we view its work as recognizing a permutation

It is convenient to represent this process as a decision tree

1:2

2:31:3

1:32:3

〈1,2,3〉〈1,2,3〉

〈1,3,2〉〈1,3,2〉 〈3,1,2〉〈3,1,2〉 〈2,3,1〉〈2,3,1〉 〈3,2,1〉〈3,2,1〉

〈2,1,3〉〈2,1,3〉

Algorithms – Sorting in Linear Time 7-4

Decision Trees

Let the input sequence contain n elements

We assume they are numbers from 1 to n

Therefore, the input sequence is a permutation 〈π(1), π(2), …, π(n)〉

Each internal node is labeled by i : j for some i and j in the range

1 ≤ i,j ≤ n

Execution of the algorithm is a path from the root to a leaf

At each internal node a comparison is made

Depending on the outcome either comparisons on the left or the right

subtree

When we come to a leaf , the algorithm recognizes a particular ordering

ji aa ≤

Algorithms – Sorting in Linear Time 7-5

Lower Bound

Proof

There are n! permutations of n elements.

The algorithm should recognize all of them

Therefore the decision tree contains k ≥ n! leaves

The complete binary tree has leaves where h is the height of the

tree, the length of the longest root-to-leaf path

Finally, note that the height of the tree is running time in the worst case

Theorem

Any comparison sort algorithm requires Ω(mn) comparisons in the

worst case

h2

hkn 2! ≤≤
)log()!log(nnnh Ω=≥

Algorithms – Sorting in Linear Time 7-6

Counting Sort

Suppose we are allowed to do more than just comparisons

We also assume that the input numbers are in the range 0 to k

We give an algorithm that works in Θ(n) time provided k = O(n)

The idea is: for each input element x to count how many elements are

less than x, and use this information to place x to the right place in

the output sequence

We use A[1..n] the input array

B[1..n] the output array

C[0..k] auxiliary storage

Note that we do not assume that all elements are different

Algorithms – Sorting in Linear Time 7-7

Counting Sort: Algorithm

Counting-Sort(A,B,k)

for i=0 to k do

set C[i]:=0

for j=1 to n do

set C[A[j]]:=C[A[j]]+1 /* C[i] contains the

/* number of elements equal to i

for i=1 to k do

set C[i]:=C[i]+C[i-1] /* C[i] contains the

/* number of elemnts less than or equal to i

for j=n downto 1 do

set B[C[A[j]]]:=A[j]

set C[A[j]]:=C[A[j]]-1

endfor

Algorithms – Sorting in Linear Time 7-8

Counting Sort: Soundness and Running Time

Proof

Running time:

Each of the 4 for loops is iterated at most max{n, k} times

Soundness:

Trace the content of arrays

QED

Theorem

Counting Sort correctly sorts a sequence of n elements in O(n)

time, provided k = O(n)

Algorithms – Sorting in Linear Time 7-9

Stable Sorting

For the next algorithm it is important how Counting Sort and other

sorting algorithms deal with equal elements

A sorting algorithm is called stable if it preserves the order of equal

elements in the input sequence, that is,

if and i < j in the input sentence, then goes first in the

output sequence

Lemma

Counting Sort is stable

Proof

Suppose that A[i] = A[j] and i < j.

Then in the last for loop we first output A[j] then A[i]

Moreover, between the outputs C[A[i]] = C[A[j]] is decremented.

Therefore A[i] is placed into B with smaller index than A[j]

ji aa = ia

Algorithms – Sorting in Linear Time 7-10

Radix Sort

Punch card

Radix sorting machine

Algorithms – Sorting in Linear Time 7-11

Radix Sort: The Idea

If the elements of the input sequence are d-digit integers, we can first

sort the according the most significant digit, then the second most

significant digit, etc.

This, however, requires a lot of copying and auxiliary storage

Radix Sort:

Sort in place according to the least significant digit

But use a stable sorting algorithm!!

329

457

657

839

436

720

355

720

355

436

457

657

329

839

720

329

436

839

355

457

657

329

355

436

457

657

720

839

Algorithms – Sorting in Linear Time 7-12

Radix Sort: Algorithm

Radix-Sort(A,d)

for i=0 to d do

use a stable sorting algorithm to sort array A on
digit i

endfor

Theorem

Radix Sort correctly sorts a sequence of n d-digit numbers in which

each digit can take up to k different values in O(d(n+k)) time.

Algorithms – Sorting in Linear Time 7-13

Radix Sort: Analysis

Running time:

RadixSort considers d digits in turn

each pass takes O(n + k) time (when using, say, Counting Sort)

Soundness:

By induction on the number d of digits

Base Case: d = 1 Counting Sort just sorts everything

Induction Step: Suppose algorithm works correctly for d – 1

Radix sort on d-digit numbers is equivalent to d runs of radix sort on

smaller d-1 – numbers, followed by sorting on digit d.

By Induction Hypothesis Radix Sort sorts correctly on lower d – 1

digits

Algorithms – Sorting in Linear Time 7-14

Radix Sort: Analysis (cntd)

Before the last sort on digit d, all the numbers are properly sorted

accordingly their last d – 1 digits.

When sort on digit d, consider two elements a and b with d-th digits

and respectively

(1) If then the algorithm will put a before b, which is

correct

(2) If the algorithm will put b before a, which is again

correct

(3) If the algorithm will leave a and b in the same order

as before, because it is stable.

This order is again correct, for the relative order of a and b

depends in this case on the lower d – 1 digits.

QED

da db

dd ba <

dd ba >

dd ba =

Algorithms – Sorting in Linear Time 7-15

Bucket Sort: The Idea

Counting Sort and Radix Sort achieve significant speed up against

comparison algorithms because they use certain assumptions about

the input numbers:

They are small integers, or integers of bounded size.

Bucket Sort uses an assumption about the distribution of these

numbers:

They are taken uniformly at random from [0; 1)

Then we:

Split [0;1) into n equal intervals (buckets)

Put every input element into the corresponding bucket

Sort each bucket

Concatenate the buckets

Algorithms – Sorting in Linear Time 7-16

Bucket Sort: Algorithm

A[1..n] the input array

B[1..n] heads of buckets

i-th bucket is organized as a list with a pointer B[i] to the top of the

list

Bucket-Sort(A,d)

set n:=length(A)

for i=0 to n do

insert A[i] into list B[n⋅A[i]]
endfor

for i=0 to n do

sort list B[i] with insertion sort

concatenate the lists B[1],B[2],...,B[n]

Algorithms – Sorting in Linear Time 7-17

Bucket Sort: Soundness

Proof.

Obvious

Theorem

Bucket Sort correctly sorts a sequence of numbers from the interval

[0;1)

Algorithms – Sorting in Linear Time 7-18

Bucket Sort: Running Time

Proof.

Clearly, the first for loop takes Θ(n) time to complete

Each iteration of the second for loop contributes time where

is the number of elements in the i-th bucket.

Therefore

Theorem

The expected running time of Bucket Sort is O(n)

)(2
inO in

∑
−

=
+Θ=

1

0

2)()()(
n

i
inOnnT

Algorithms – Sorting in Linear Time 7-19

Bucket Sort: Running Time

Proof (cntd).

Take the expectation of both sides

We show that












+Θ= ∑

−

=

1

0

2)()()]([
n

i
inOnEnTE












+Θ= ∑

−

=

1

0

2)()(
n

i
inOEn

∑
−

=
+Θ=

1

0

2])[()(
n

i
inEOn

ninE 12 2][−=

Algorithms – Sorting in Linear Time 7-20

Bucket Sort: Running Time

Proof (cntd).

Define indicator random variables

if and only if A[j] falls into bucket i, otherwise

Thus

We get

























= ∑

−

=

21

0

2][
n

i
iji XEnE

1=ijX 0=ijX

∑
=

=
n

j
iji Xn

1












= ∑∑

= =

n

j

n

k
ikij XXE

1 1 










+= ∑ ∑∑

= ≠≤≤=

n

j jknk
ikij

n

i
ij XXXE

1 ,11

2

∑ ∑∑
= ≠≤≤=

+=
n

j jknk
ikij

n

i
ij XXEXE

1 ,11

2][][

Algorithms – Sorting in Linear Time 7-21

Bucket Sort: Running Time

Proof (cntd).

Then

and, since and are independent

Finally

nnnijXE 1112)1(01][=−⋅+⋅=

ijX ikX

2
111][][][

nnnikijikij XEXEXXE =⋅=⋅=

∑ ∑∑
= ≠≤≤=

+=
n

j kjnk
n

n

j
ninE

1 ,1

1

1

12
2][

2
11)1(

nn
nnn ⋅−+⋅=

nn
n 1211 −=−+=

Algorithms – Sorting in Linear Time 7-22

Bucket Sort: Running Time

Proof (cntd).

For the running time we now have

QED

∑
−

=
+Θ=

1

0

2])[()()]([
n

i
inEOnnTE

∑
−

=
−+Θ=

1

0

1)2()(
n

i
n

On

)()()(nnOn Θ=+Θ=

