Sortingin Linear Time

Data Structures and Algorithms

Andrei Bulatov

Algorithms — Sorting in Linear Time

Comparison Sorts

The only test that all the algorithms we have considered so far is
comparison

The only information we obtain about an input sequence (a,a,,...

isgivenby g <aj,a <aj,g =a;,a =a; or g >a;

We will assume that all the input numbers are different.
Then the it suffices to use only one comparison & < a;

7-2

an)

Algorithms — Sorting in Linear Time 7-3

The Decision Tree Model

Observe that for different input permutations, even if they differ only in
the order of elements, our algorithm must perform different actions

Therefore, we view its work as recognizing a permutation
It is convenient to represent this process as a decision tree

(139 (213 (23)

Algorithms — Sorting in Linear Time 7-4

Decision Trees

Let the input sequence contain n elements
We assume they are numbers from 1 to n
Therefore, the input sequence is a permutation (11(1), T(2), ..., T(Nn))

Each internal node is labeled by i:j for some i and | inthe range
1<ij<n

Execution of the algorithm is a path from the root to a leaf
At each internal node a comparison & <a; is made

Depending on the outcome either comparisons on the left or the right
subtree

When we come to a leaf , the algorithm recognizes a particular ordering

Algorithms — Sorting in Linear Time 7-5

Lower Bound

Theorem

Any comparison sort algorithm requires Q(mn) comparisons in the
worst case

Proof
There are n! permutations of n elements.
The algorithm should recognize all of them
Therefore the decision tree contains k =n! leaves

The complete binary tree has 2" leaves where h is the height of the
tree, the length of the longest root-to-leaf path

n<k< 2
h=log(n!) = Q(nlogn)

Finally, note that the height of the tree is running time in the worst case

Algorithms — Sorting in Linear Time

Counting Sort

Suppose we are allowed to do more than just comparisons
We also assume that the input numbers are in the range 0 to k
We give an algorithm that works in ©(n) time provided k = O(n)

The idea is: for each input element x to count how many elements are
less than x, and use this information to place x to the right place in
the output sequence

We use A[1..n] the input array

B[1..n] the output array

C[0..k] auxiliary storage

Note that we do not assume that all elements are different

7-6

Algorithms — Sorting in Linear Time 7-7

Counting Sort: Algorithm

Counting-Sort(A,B k)
for 1=0 to k do

set C[1]:=0
for j=1 to n do

set C[A[]J]]:=C[A[]J]]+1 /* C[1] contains the

/* number of elements equal to 1

for 1=1 to k do

set C[1]:=C[1]+C[1-1] /* C[1] contains the

/* number of elemnts less than or equal to 1

for j=n downto 1 do

set B[C[A[J]]]:=A[]]

set C[A[j]]:=C[A[j]]-1
endfor

Algorithms — Sorting in Linear Time 7-8

Counting Sort: Soundness and Running Time

Theorem

Counting Sort correctly sorts a sequence of n elementsin O(n)
time, provided k = O(n)

Proof
Running time:
Each of the 4 for loops is iterated at most max{n, k} times
Soundness:

Trace the content of arrays
QED

Algorithms — Sorting in Linear Time 7-9

Stable Sorting

For the next algorithm it is important how Counting Sort and other
sorting algorithms deal with equal elements

A sorting algorithm is called stable if it preserves the order of equal
elements in the input sequence, that is,

if @ =ajand i<] inthe input sentence, then & goes first in the
output sequence

Lemma
Counting Sort is stable

Proof
Suppose that Afi] = A[j] and i<].
Then in the last for loop we first output A[j] then A[i]
Moreover, between the outputs C[A]i]] = C[A[j]] is decremented.
Therefore AJi] is placed into B with smaller index than A[j]

Algorithms — Sorting in Linear Time 7-10

Radix Sort

pgocoococoo0cco0OQOCCOOOCGOOO000EDO0D0DOD0GO00QC0C00000000000000000000000000000000
1234587 0 NURUNEBT UL SN S AT AANARNUE BT BBE UQRU GBI GEENNRRASET I UL RN HEETRBNARNI U B IR
IAAREEARRERER RN AR RN RN R R R AR R R AR R AR AR AR RN RN R R R AR R R RA A RN RR AR

222222212222272122222222222222222222222222222221221

2227222222222222222222222222222
HOCHSCHULRECHENZENTRUM (HRZ)
33333333333233333333333338333 333338333333333333333333333133
Universitdt Giessen
A4 40404040000 000084800 addaq 8840488400888 0808 8488444444488 44844444444

5555555550550 55558558556556855555555565555555555555555555555555555555555555554553
G6EB6EEEEEE6666606666666666666666666666666666C666666CC6CC666C066666C6G6C66656666666566
(R sy Rk BRI R R R R g R R U p b e g Db T F R)

8B60BBGB80380888888668088868088888088068838¢6888880086886088880808B863080888888888888

123456788 NURBUBEYEBAN2ANSBIRANBANDAS Y BNL LU EBTHBRNANDNSGTIBAMARONSETBENNRBIHNB BN B W

§999905999909993§9088988989899909998989999089999909858090950990990890899999999993339

Punch card

LE0pOBLIN | LOVLISN3NDY3E WIIM-HIZID

@

Radix sorting machine

Algorithms — Sorting in Linear Time 7-11

Radix Sort: The Idea

If the elements of the input sequence are d-digit integers, we can first
sort the according the most significant digit, then the second most
significant digit, etc.

This, however, requires a lot of copying and auxiliary storage
Radix Sort:

Sort in place according to the least significant digit

But use a stable sorting algorithm!!

329 72 !)
457 35 3)
657 43 4)
839 — 45 — 8 f

O NO &~ P LWW

o) B~ W
S o wvo

436 6
720 3
355 8

Algorithms — Sorting in Linear Time 7-12

Radix Sort: Algorithm

Radix-Sort(A,d)

for 1i=0 to d do
use a stable sorting algorithm to sort array A on
digit 1

endfor

Theorem

Radix Sort correctly sorts a sequence of n d-digit numbers in which
each digit can take up to k different values in O(d(n+k)) time.

Algorithms — Sorting in Linear Time 7-13

Radix Sort: Analysis

Running time:
RadixSort considers d digits in turn
each pass takes O(n + k) time (when using, say, Counting Sort)
Soundness:
By induction on the number d of digits
Base Case: d=1 Counting Sort just sorts everything
Induction Step: Suppose algorithm works correctly for d — 1

Radix sort on d-digit numbers is equivalentto d runs of radix sort on
smaller d-1 - numbers, followed by sorting on digit d.

By Induction Hypothesis Radix Sort sorts correctly on lower d — 1
digits

Algorithms — Sorting in Linear Time 7-14

Radix Sort: Analysis (cntd)

Before the last sort on digit d, all the numbers are properly sorted
accordingly their last d -1 digits.
When sort on digit d, consider two elements a and b with d-th digits
aq and by respectively
(1) If ag <by then the algorithm will put a before b, which is
correct
(2) If aq >by the algorithm will put b before a, which is again
correct
(3) If aq =by the algorithm will leave a and b in the same order
as before, because it is stable.
This order is again correct, for the relative order of a and b

depends in this case on the lower d — 1 digits.
QED

Algorithms — Sorting in Linear Time

Bucket Sort: The Idea

Counting Sort and Radix Sort achieve significant speed up against
comparison algorithms because they use certain assumptions about
the input numbers:

They are small integers, or integers of bounded size.

Bucket Sort uses an assumption about the distribution of these
numbers:

They are taken uniformly at random from [0; 1)

Then we:
Split [0;1) into n equal intervals (buckets)
Put every input element into the corresponding bucket
Sort each bucket
Concatenate the buckets

7-15

Algorithms — Sorting in Linear Time 7-16

Bucket Sort: Algorithm

A[1..n] the input array
B[1..n] heads of buckets

I-th bucket is organized as a list with a pointer BJi] to the top of the
list

Bucket-Sort(A,d)
set n:=length(A)
for 1=0 to n do

insert A[i] into Tist B[LnA[i]l]
endfor
for 1=0 to n do

sort 1i1st B[1] with insertion sort
concatenate the lists B[1l],B[2],...,B[n]

Algorithms — Sorting in Linear Time

Bucket Sort: Soundness

7-17

Theorem

Bucket Sort correctly sorts a sequence of numbers from the interval
[0;1)

Proof.
Obvious

Algorithms — Sorting in Linear Time 7-18

Bucket Sort: Running Time

Theorem
The expected running time of Bucket Sortis O(n)

Proof.
Clearly, the first for loop takes ©(n) time to complete

Each iteration of the second for loop contributes O(niz) time where n;
IS the number of elements in the i-th bucket.

Therefore -
T(n) =0(n)+ > O(n?)
=0

Algorithms — Sorting in Linear Time 7-19

Bucket Sort: Running Time

Proof (cntd).
Take the expectation of both sides

n—1
E[T(n)] = E| ©(n)+ Y O(n?)
1=0

[n-1
=o(n) +E| Y O(n?)
i=0

n—1
=9(n)+ Y O(E[n])
1=0

We show that E[n?]=2-1

S |

Algorithms — Sorting in Linear Time 7-20

Bucket Sort: Running Time

Proof (cntd).
Define indicator random variables
Xij =1 ifand only if A[j] falls into bucket i, otherwise Xij =0

Thus Ny, = inj - - 27
Weget J= En]=E [inj]

=E ZZX,JX,k :E_Zn:x +Z Zx,,x,k

|]=1k=1 =1]=1 1<k<n,k#]

_ZE[X|J]+Z ZE[XIJXIK]

]=1 1<k<nk# |

Algorithms — Sorting in Linear Time

Bucket Sort: Running Time

Proof (cntd).
Then E[X,J] 1El+OB[1 1):

and, since Xjj and X;y are independent
EL XGj Xik] = E[Xj 1 CE[X] = £ 0 =

n
Finally — E[n?] = Z L Z %
—1 ksnjik

=nCi+n(n-1) 05
n

—1+N-1_5_1
n n

7-21

Algorithms — Sorting in Linear Time

Bucket Sort: Running Time

Proof (cntd).
For the running time we now have

n—1
E[T(n)]=6(n)+ Y O(E[n’])
1=0

n-1
=0(n)+> 0@~)
1=0

=0O(n)+0O(n) =O(Nn)

QED

7-22

