
CMPT 300 Project #1: Threads

In this project you will learn how to handle threads in Nachos. You are given a simple

thread system, and your tasks are:

1. Compile Nachos and run the system.

2. Add some lines to the Nachos code, then recompile and run it.

3. Delete one specified line in the Nachos code. Recompile and run it.

4. Save the output and explain the results.

5. Write a more complex program to parse the argument and print out vows

and consonants.

Please don't be overwhelmed by the sheer amount of code provided. In fact you don’t

need to worry about most of it. The parts that you need to read or modify are given in the

following instructions. Please read them carefully, and follow the steps.

Task 1: Run Nachos

Step 1: Download Nachos source code

wget http://www.cs.sfu.ca/CourseCentral/300/zonghuag/projects/project1.tar.gz

Step 2: Extract the source code

tar zxvf project1.tar.gz

Step 3: Compile the code

Enter the folder “project1/threads” and then run “make”. Then run “./nachos”.

In this program, Nachos creates one thread, which does nothing except telling us its name

“Thread1” and its termination.

If you succeed in running nachos, you will see these messages:

Hello, my name is Thread1

Thread1 ends

No threads ready or runnable, and no pending interrupts.

Assuming the program completed.

Machine halting!

Ticks: total 30, idle 0, system 30, user 0

Disk I/O: reads 0, writes 0

Console I/O: reads 0, writes 0

Paging: faults 0

Network I/O: packets received 0, sent 0

Cleaning up...

Step 5: Save the output to file

./nachos > exp1_output1.txt

This command runs Nachos and saves the output to file exp1_output1.txt

Note: Keep the file exp1_output1.txt for grading.

Task 2: Add code to Nachos
Open file threads/threadtest.cc. All the code you need to write is in this file. There are 4

functions in the file, busy_for_some_time(), wait_for_busy_thread(), busy_thread() and

ThreadTestSimple() . DO NOT modify the function busy_for_some_time() and

wait_for_busy_thread().All changes you make to Nachos source code must be clearly

marked as follows:
//project 1 changes start here

<put your changes here>

//project 1 changes end here

Your work is to add your code in function busy_thread() and ThreadTestSimple(). Your

tasks are:

Step 1:

In Thread1 (i.e. in function busy_thread()), invoke function busy_for_some_time() to a

certain time specified by the parameter “arg” . Before the function busy_for_some_time()

is invoked, output the information which claims Thread1 will busy for a time slot of

“arg”.

Step 2:

Create another thread called Thread2. This thread invokes function

wait_for_busy_thread().

Don't know what to do? Here are some instructions that may be helpful.

1. How to create threads in Nachos?

First, you need to define a Thread object, then invoke Fork():
Thread *th1 = new Thread("Thread1");

th1->Fork(busy_thread, 1);

A thread named "Thread1" will be created, and it invokes busy_thread as its working

thread function. The working thread function must have a parameter of int type, e.g.,

busy_thread() function has a "int arg" parameter. The second line invokes the working

thread function and passes the value 1 to the parameter.

Note: DO NOT define the object like "Thread th1("Thread1")". This will cause

Nachos to crash.

At this point, you don't need to worry about the thread switching strategy.

2. How to get the name of a thread in Nachos?

currentThread->getName();

This function returns the name (pointer of char *) of current thread.

3. About busy_for_some_time(int t) function

This function is provided to you. Do NOT modify it. This function will pause the thread

for some time and make other threads run. Parameter t is the time you want it pause for.

The unit is approximately 0.1 second.

4. About wait_for_busy_thread(int arg) function

The system call th1->Join() within Thread2 will make Thread2 wait for Thread1’s

termination before Thread2 can continue its execution. Notice that the parameter “arg” in

this function is of no use. We write it like this just to satisfy the parameter format of the

Fork() function.

After you finish your coding in Step 1, re-run "make" and "./nachos". Your output should

look like the following:
Hello, my name is Thread1

Thread1 will keep busy for a time slot of 1

Hello,my name is Thread2

Thread1 ends

Thread2 ends

No threads ready or runnable, and no pending interrupts.

Assuming the program completed.

Machine halting!

Ticks: total 70, idle 0, system 70, user 0

Disk I/O: reads 0, writes 0

Console I/O: reads 0, writes 0

Paging: faults 0

Network I/O: packets received 0, sent 0

Cleaning up...

Your output is not necessarily identical, but it must fulfill three requirements:

1. Print the name of Thread1 and Thread2.

2. Print the information claiming that thread1 is going to keep busy for a time with the

right parameter. Notice that this parameter in the output must be the same with the

parameter passed to the busy_for_some_time() function.

3. Thread1 ends before Thread2.

Step 3: Save the output to file

./nachos > exp1_output2.txt

This command runs the Nachos and save the output to file exp1_output2.txt

Task 3: Simple Multithreaded Programming Exercise
In this task, you are asked to fulfill the following 4 steps.

Step 1: Delete one code line in source file threadtest.cc which you have done by the

end of Task 2

Delete the code line
th1->Join();

in the function wait_for_busy_thread(). If you want to easily restore this line afterwards,

you can put a double-slashes // in the beginning of the line to comment it out instead of

simply deleting.

Step 2: Rebuild the project

Rebuild the project. Make sure the building process is without errors or you should revise

the code and get rid of them.

Step 3: Rerun “nachos” and save the output to file

Right after the former step, please run command
./nachos > exp1_output3.txt

which saves output of the modified “nachos” to exp1_output3.txt.

Step 4: Compare the outputs in Task 2 and 3

Find out the difference between the outputs in Task 2 and 3 which are saved in

exp1_output2.txt and exp1_output3.txt respectively. Describe and explain the difference

briefly. You are required to write the answer in exp1_report.txt.

Task 4: Multithreaded Programming
Modify Nachos main() function so that it accepts a new option “-a”. This option can be

followed by a phrase of unspecified length. For example, the nachos executable can be

run as:
prompt% nachos –a Object Oriented Programming at SFU

Write a function Threadtest so that it creates two threads (vow and cons). The threads

should take turns printing the respective words of the phrase supplied on the command

line while preserving the original word sequence in the argument list. The vow thread

should print all the words that start with a vowel and the cons thread should print all

words starting with a consonant. Note that the ThreadTest should not print anything

itself – the output should be supplied by the threads it creates. Note that the order of the

words in the phrase should not be changed in the printout. Your program should work for

a phrase of any reasonable length, not just the one given in the example. The output of

your program should look similar to the following.
prompt% nachos -a Object Oriented Programming at SFU

Entering main

vow: Object

vow: Oriented

cons: Programming

vow: at

cons: SFU

No threads ready or runnable, and no pending interrupts.

Assuming the program completed.

Machine halting!

[…]

Cleaning up...

prompt%

Run
./nachos –a Object Oriented Programming at SFU > exp1_output4.txt

which saves output of the modified “nachos” to exp1_output4.txt.

Hint: declare a globally accessible list of stings argumentlist, store the command

line arguments there and use list handling routines specified in threads/list2.h,

threads/list2.cc to manipulate your list. Do not use list.h and list.cc,

since List is defined with C++ templates, which make it difficult to handle list of

strings, while List in list2.h and list2.cc are defined as void *. We have

defined and filled in the argumentlist data structure in main.cc, so you can use it

in threadtest.cc.

The system call Yield() lets the calling thread give up control to the OS scheduler, in

order to give other active threads a chance to run, The two threads should use Yield()

to take turns in printing out the vows and cons, in order to preserve the original word

sequence in the argument list. No mutex protection is needed here. If your program

output does not preserve the original word sequence, i.e., it prints out all the vows before

printing out all the cons, then you will get partial credit.

Since Tasks 1-3 and Task 4 are independent pieces, we have defined the following

headers in main.cc for your convenience:
#define THREADTESTSIMPLE

//#define THREADTEST

If THREADTESTSIMPLE is defined, then ThreadTestSimple() is invoked by

main(), and you are working on Tasks 1-3; If THREADTEST is defined, then

ThreadTest() is invoked, and you are working on Task 4.

After you finish these tasks:
1) Please make a single tar.gz file, and submit it. (the command is “tar cvf

project1.tar file1 file2…”)

2) The name of the ZIP should be "proj1_********.tar.gz". (* as student ID)

3) The following files should be included inside the bundle:

File Name Description

threadtest.cc Source file

exp1_output1.txt Output of Task 1

exp1_output2.txt Output of Task 2

exp1_output3.txt Output of Task 3

exp1_output4.txt Output of Task 4

exp1_report.txt The answer to the question in Step 4 of Task 3

