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Page Replacement Algorithms 



Demand Paging 

 Modern programs require a lot of physical memory 
 Memory per system growing faster than 25%-30%/year 

 But they don’t use all their memory all of the time 
 90-10 rule: programs spend 90% of their time in 10% of 

their code 
 Wasteful to require all of user’s code to be in memory 

 Solution: use main memory as cache for disk 
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Illusion of Infinite Memory 

 Disk is larger than physical memory  
 In-use virtual memory can be bigger than physical 

memory 
 Combined memory of running processes much larger 

than physical memory 
 More programs fit into memory, allowing more concurrency  

 Principle: Transparent Level of Indirection (page table)  
 Supports flexible placement of physical data 

 Data could be on disk or somewhere across network 
 Variable location of data transparent to user program 

 Performance issue, not correctness issue 2 



Demand Paging is Caching 

 Since Demand Paging is Caching, must ask: 
 What is block size? 

 1 page 

 What is organization of this cache (i.e. direct-mapped, set-
associative, fully-associative)? 
 Fully associative: arbitrary virtualphysical mapping 

 How do we find a page in the cache when look for it? 
 First check TLB, then page-table traversal 

 What is page replacement policy? (i.e. LRU, Random…) 
 This requires more explanation… (kinda LRU) 

 What happens on a miss? 
 Go to lower level to fill miss (i.e. disk) 

 What happens on a write? (write-through, write back) 
 Write-back.  Need dirty bit! 
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Demand Paging Example 
Since Demand Paging like caching, can compute 

average access time! (“Effective Access Time”) 
 EAT = Hit Rate x Hit Time + Miss Rate x Miss Time 

Example: 
 Memory access time = 200 nanoseconds 
 Average page-fault service time = 8 milliseconds 
 Suppose p = Probability of miss, 1-p = Probably of hit 
 Then, we can compute EAT as follows: 

  EAT  = (1 – p) x 200ns + p x 8 ms 
          = (1 – p)  x 200ns + p x 8,000,000ns 
              = 200ns + p x 7,999,800ns 
 If one access out of 1,000 causes a page fault, then 

EAT = 8.2 μs: 
 This is a slowdown by a factor of 40! 

What if want slowdown by less than 10%? 
 200ns x 1.1 < EAT  p < 2.5 x 10-6 

 This is about 1 page fault in 400000! 4 



What Factors Lead to Misses? 

 Compulsory Misses:  
 Pages that have never been paged into memory before 
 How might we remove these misses? 

 Prefetching: loading them into memory before needed 
 Need to predict future somehow!  More later. 

 Capacity Misses: 
 Not enough memory. Must somehow increase size. 
 Can we do this? 

 One option: Increase amount of DRAM (not quick fix!) 
 Another option:  If multiple processes in memory: adjust 

percentage of memory allocated to each one! 

 Conflict Misses: 
 Technically, conflict misses don’t exist in virtual memory, 

since it is a “fully-associative” cache 
 Policy Misses: 

 Caused when pages were in memory, but kicked out 
prematurely because of the replacement policy 

 How to fix? Better replacement policy 
5 



Replacement policy 

 Why do we care about Replacement 
Policy?  
 Replacement is an issue with any cache 
 Particularly important with pages 

 The cost of being wrong is high: must go to disk 
 Must keep important pages in memory, not toss 

them out 

 The simplest algorithm: 
 Pick random page for every replacement 
 Typical solution for TLB.  Simple hardware 
 Unpredictable – makes it hard to make real-

time guarantees 
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Recall: What is in a Page Table 

Entry (PTE)? 

 Page frame number. Physical memory address of this page 

 Present/absent bit, also called valid bit. If this bit is 1, the page is in 
memory and can be used. If it is 0, the page is not currently in memory. 
Accessing a page table entry with this bit set to 0 causes a page fault to get 
page from disk. 

 Protection bits tell what kinds of access are permitted on the page. 3 bits, 
one bit each for enabling read, write, and execute. 

 Modified (M) bit, also called dirty bit, is set to 1 when a page is written to  

 Referenced (R) bit, is set whenever a page is referenced, either for reading 
or writing. 
 M and R bits are very useful to page replacement algorithms 

 Caching disabled bit, important for pages that map onto device registers 
rather than memory 
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R & M bits 

 Referenced (R) bit indicates if the page has been 
used recently.  
 Each time the page is referenced (read or written to), the 

R bit is set to 1. 

 OS defines a clock period for paging management. Every 
clock period, the R bit for each page is reset to 0. 
 R=0  page is old (not used for some time) 

 R=1  page is new (recently used) 

 Modified (M) bit indicates if the page has been 
modified (written to) since it was last synced with 
disk.  
 The flag is reset when the page is saved to disk 

 When a page is removed from physical memory  
 M=1  it will be saved to disk 

 M=0  it will be abandoned and not saved to disk 
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 PTE helps us implement demand paging 
 Present  Page in memory, PTE points at physical page 
 Absent  Page not in memory; use info in PTE to find it 

on disk when necessary 
 Suppose user references page with Absent PTE? 

 Memory Management Unit (MMU) traps to OS 
 Resulting trap is a “Page Fault” 

 What does OS do on a Page Fault?: 
 Choose an old page to replace  
 If old page modified, write page contents back to disk 
 Change its PTE and any cached TLB to be invalid 
 Load new page into memory from disk 
 Update PTE, invalidate TLB for new entry 
 Continue thread from original faulting location 

 TLB for new page will be loaded when thread continues! 
 While pulling pages off disk for one process, OS runs 

another process from ready queue 
 Suspended process sits on wait queue 

Demand Paging Mechanisms 
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Steps in Handling a Page Fault 
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• Optimal (OPT) 

• Not recently used (NRU) 

• First-In, First-Out (FIFO) 

• Second chance (SC) 

• Least recently used (LRU) 

• Not frequently used (NFU) 

• Aging algorithm 

• Clock algorithm 

• Working set 

• WSClock 

Page Replacement Algorithms 
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OPT page replacement 

 Replace page that won’t be used for the 
longest time  

 Optimal, but infeasible in practice, since 
can’t really know future… 

 Makes good comparison case, however 
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Not recently used (NRU) 
 Use the referenced and modified bits in the page 

table entries. 4 possibilities: 
1. Not referenced, not modified 

2. Not referenced, modified  (reference cleared on clock 
interrupt) 

3. Referenced, not modified 

4. Referenced, modified 

 When a page fault occurs, find any page in group 
1, failing that any page in group 2, failing that any 
page in group 3, failing that any page in group 4. 
If there is more than one page in the lowest group, 
randomly choose one page from the group. 

 Rationale: replace the page that has not been 
referenced or modified. 



14 

FIFO 

 Throw out oldest page.   
 Be fair – let every page live in memory for 

same amount of time. 

 Bad, because it tends to throw out heavily 
used pages instead of infrequently used 
pages 
 Second-chance algorithm avoids this problem 

by giving recently-used pages a second 
chance 

 



Second-Chance Algorithm 
 Give recently-used pages a second chance 

 If the oldest page has R=0, then choose it for 
replacement; if R=1, then move it to the end, and update 
its load time as through it’s a new arrival 

 

 

 

 

 

 

 

 (a) Pages sorted in FIFO order.  
(b) Page list if a page fault occurs at time 20 and A 
has its R bit set. The numbers above the pages are 
their load times. 15 



Least Recently Used (LRU) 

 Replace page that hasn’t been used for the longest time 
 Programs have locality, so if something not used for a 

while, unlikely to be used in the near future. 
 Seems like LRU should be a good approximation to OPT. 
 How to implement LRU? Use a list! 

 
 
 
 
 

 On each use, remove page from list and place at head 
 LRU page is at tail 

 Problems with this scheme for paging? 
 List must be updated at every memory reference; List 

manipulation is expensive 
 In practice, people approximate LRU (more later) 

Page 6 Page 7 Page 1 Page 2 Head 

Tail (LRU) 
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 Consider a cache size of 3 page frames, and 
following reference stream of virtual pages:  
 A B C A B D A D B C B 

 Consider FIFO Page replacement: 
 FIFO: 7 faults.  
 When referencing D, replacing A is bad choice, 

since need A again right away 

Example: FIFO 
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 Suppose we have the same reference stream:  
 A B C A B D A D B C B 

 Consider OPT Page replacement: 
 5 faults  
 Where will D be brought in? Look for page not 

referenced farthest in future (C). 

 What will LRU do? 
 Same decisions as OPT here, but won’t always be true! 

Example: OPT 
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 Consider the following: A B C D A B C D A B 
C D 

 LRU Performs as follows (same as FIFO 
here): 
 Every reference is a page fault! 

 

When will LRU perform badly? 
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OPT Does much better 

  But it’s not implementable 
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Exercise 

 Consider a cache size of 3 page frames, and 
following reference stream of virtual pages:  
 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1 

 Run FIFO, OPT and LRU on this example. 

 Answer:  
 FIFO: 

http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/An
imations/fifopagereplacement.htm  

 OPT: 
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/An
imations/optimalpagereplacement.htm  

 LRU: 
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/An
imations/lrupagereplacement.htm   
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Graph of Page Faults Versus The 

Number of Page Frames 
 One desirable property: When you add memory the miss 

rate goes down 
 Does this always happen?  
 Seems like it should, right? 

 No: BeLady’s anomaly  
 Certain replacement algorithms (FIFO) don’t have this 

obvious property! 
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BeLady’s anomaly 

 Does adding memory reduce number of page faults? 
 Yes for LRU and OPT 
 Not necessarily for FIFO!  (Called Belady’s anomaly) 

 After adding memory: 
 With FIFO, contents can be completely different 
 In contrast, with LRU or OPT, contents of memory with X pages are a 

subset of contents with X+1 Page 
 
 
 
 
 
 
 
 

D 

C 

E 

B 

A 

D 

C 

B 

A 

D C B A
  

E B A D C B A E 

3 

2 

1 

Ref: 

Page: 

C D 4 

E 

D 

B 

A 

E 

C 

B 

A 

D C B A E B A D C B A E 

3 

2 

1 

Ref: 

Page: 

9 page faults 

10 page faults 

23 



Implementing LRU 

 Perfect: 
 Timestamp page on each reference 
 Keep list of pages ordered by time of reference 
 Too expensive to implement in reality 

 Techniques for approximating LRU. Goal is 
to Replace an old page, not the oldest page 

 Hardware techniques 
 64-bit counter  
 n x n matrix 

 Software techniques 
 Not recently used (NRU) 
 Aging Algorithm 
 Clock Algorithm 24 



LRU in hardware 

 Implementation #1: 

 64 bit counter, C, incremented after every 

instruction 

 Each page also has a 64 bit counter 

 When a page is referenced, C is copied to its 

counter. 

 Page with lowest counter is oldest. 



LRU in hardware 

 Implementation #2: 

 Given n page frames, let M be a n x n matrix 

of bits initially all 0. 

 Reference to page frame k occurs. 

 Set all bits in row k of M to 1. 

 Set all bits in column k of M to 0. 

 Row with lowest binary value is least recently 

used. 



Figure 3-17. LRU using a matrix when pages are referenced in 

the order 0, 1, 2, 3, 2, 1, 0, 3, 2, 3. 

LRU in hardware: 

implementation #2 example 

oldest 



Not frequently used (NFU) 

 A software counter associated with each page, 
initially zero. At end of each clock period, the 
operating system scans all the pages in memory.  

 For each page, the R bit (0 or 1), is added to the 
counter (arithmetic addition), which roughly keeps 
track of how often each page has been 
referenced. When a page fault occurs, the page 
with the smallest counter is chosen for 
replacement. 

 Problem: It never forgets! 
 So pages that were frequently referenced (during 

initialization for example) but are no longer needed 
appear to be FU. 
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Aging algorithm 

 Idea: Gradually forget the past 
 A k-bit software counter is associated with each page, 

the counter is initialized to 0 

 Shift all counters to right 1 bit before R bit is added 
in. 

 Then R bit is added to MSb (Most Significant 
(leftmost) bit) 

 Page with lowest counter value is chosen for 
removal. 



Aging algorithm example 

 Shown are six pages for five clock periods. The five clock 
periods are represented by (a) to (e). 

 30 



Aging vs. LRU 

 Aging has a finite history of memory 

 Consider aging with an 8-bit counter with 

value 0. It cannot distinguish between a page 

referenced 9 clock periods ago, and another 

referenced 1000 block periods ago. 

 If the counter has infinitely many bits, then it 

implements LRU exactly. 

 8 bits generally enough  

 If clock period is 20ms, a history of 160ms is 

perhaps adequate 
31 



Clock Algorithm 

 A variant of second-chance algorithm 
 Recall “R” (reference) bit in PTE: 

 Hardware sets R bit on each reference 
 Instead of clearing R periodically (with “clock 

period” mentioned before) driven by OS timer, 
clear it at page-fault events   

 Arrange physical page frames in a circle with 
single clock hand. On each page fault: 
 Advance clock hand (not real-time) 
 Check R bit:  

 R=1used recently; clear and leave alone 
 R=0selected candidate for replacement 

 Will always find a page or loop forever? 
 Even if all R bits set, will eventually loop around 

 FIFO 
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Clock Algorithm 

Set of all pages 

in Memory 

Single Clock Hand: 

Advances only on page fault! 

Check for pages not used recently 

Mark pages as not used recently 

 What if hand moving slowly? 
 Not many page faults and/or find page quickly 

 What if hand is moving quickly? 
 Lots of page faults and/or lots of reference bits set 

 One way to view clock algorithm: Partitioning of pages into two groups: 
young and old 

 Animation: http://gaia.ecs.csus.edu/~zhangd/oscal/ClockFiles/Clock.htm  
(usrname/passwd: CSC139/csus.os.prin)  

 (Uncheck “use modified bit” button. Note that it uses “U” instead of “R” for 
the reference bit.) 33 

http://gaia.ecs.csus.edu/~zhangd/oscal/ClockFiles/Clock.htm


Nth Chance version of Clock 

Algorithm 
 Nth chance algorithm: Give page N chances 

 OS keeps counter per page: # sweeps 
 On page fault, OS checks R bit: 

 R=1clear R bit and also set counter to N (ref’ed in last 
sweep) 

 R=0decrement count; if count=0, replace page 
 Means that clock hand has to sweep by N times without 

page being used before page is replaced 
 How do we pick N? 

 Why pick large N? Better approx to LRU 
 If N ~ 1K, really good approximation 

 Why pick small N? More efficient 
 Otherwise might have to look a long way to find free page 

 What about dirty pages? 
 Takes extra overhead to replace a dirty page, so give 

dirty pages an extra chance before replacing? 
 Common approach: 

 Clean pages, use N=1 
 Dirty pages, use N=2 

34 



Allocation of Page Frames 

 How do we allocate memory (page frames) 
among different processes? 
 Does every process get the same fraction of 

memory?  Different fractions? 
 Should we completely swap some processes out 

of memory? 
 Each process needs minimum number of 

pages 
 Want to make sure that all processes that are 

loaded into memory can make forward progress 
 Example:  IBM 370: 6 pages to handle SS MOVE 

instruction: 
 instruction is 6 bytes, might span 2 pages 
 2 pages to handle from 
 2 pages to handle to 35 



Possible Replacement Scopes: 

 Possible Replacement Scopes: 

 Global replacement – process selects 

replacement frame from set of all frames; one 

process can take a frame from another 

 Achieve effective utilization of memory through 

sharing 

 Local replacement – each process selects 

from only its own set of allocated frames 

 Achieve memory isolation among processes 
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Fixed/Priority Allocation 

 Equal allocation (Fixed Scheme):  
 Every process gets same amount of memory 
 Example: 100 frames, 5 processesprocess gets 20 

frames 
 Proportional allocation (Fixed Scheme) 

 Allocate according to the size of process 
 Computation proceeds as follows: 
  si = size of process pi and S = si  
  m = total number of frames 

 
  ai = allocation for pi =  

 
 Priority Allocation: 

 Proportional scheme using priorities rather than size 
 Same type of computation as previous scheme 

 Possible behavior: If process pi generates a page fault, 
select for replacement a frame from a process with 
lower priority number 

m
S

si 
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Page-Fault Frequency Allocation 
 Can we reduce Capacity misses by dynamically 

changing the number of pages/application? 
 
 
 
 
 
 
 
 

 Establish “acceptable” page-fault rate 
 If actual rate too low, process loses frame 
 If actual rate too high, process gains frame 

 Question: What if we just don’t have enough 
memory? 38 



Thrashing 

 If a process does not have “enough” pages, the page-fault 
rate is very high.  This leads to: 
 low CPU utilization 
 operating system spends most of its time swapping to disk 

 Thrashing  a process is busy swapping pages in and out 
 Questions: 

 How do we detect Thrashing? 
 What is best response to Thrashing? 

39 



 Program Memory 
Access Patterns have 
temporal and spatial 
locality 
 Group of Pages 

accessed along a given 
time slice called the 
“Working Set” 

 Working Set defines 
minimum number of 
pages needed for 
process to behave well 

 Not enough memory for 
Working SetThrashing 
 Better to swap out 

process? 

 

Locality In A Memory-Reference 

Pattern 

40 



Working-Set Model 

   working-set window  fixed number of page references  
 Example:  10 million references 

 WSi (working set of Process Pi) = total set of pages referenced in 
the most recent  (varies in time) 
 if  too small will not encompass entire locality 
 if  too large will encompass several localities 
 if  =   will encompass entire program 

 D = |WSi|  total demand frames  
 if D > m  Thrashing 

 Policy: if D > m, then suspend one of the processes 
 This can improve overall system behavior by a lot! 

 Animation: 
http://cs.uttyler.edu/Faculty/Rainwater/COSC3355/Animations/wor
kingset.htm  41 
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What about Compulsory Misses? 

 Recall that compulsory misses are misses that 
occur the first time that a page is seen  
 Pages that are touched for the first time 

 Pages that are touched after process is swapped 
out/swapped back in 

 Clustering: 
 On a page-fault, bring in multiple pages “around” the 

faulting page 

 Since efficiency of disk reads increases with sequential 
reads, makes sense to read several sequential pages 

 Working Set Tracking: 
 Use algorithm to try to track working set of application 

 When swapping process back in, swap in working set 

42 



Maintaining WS: A Simple Way 

 Store page numbers in a shift register of length k, 
and with every memory reference, we do 

 Shift the register left one position, and 

 Insert the most recently referenced page number on 
the right 

 The set of k page numbers in the register is the 
working set. 

 Too expensive to do this for each memory 
reference. 

p1 p2 … pk 

the oldest page 

p2 p3 … p(k+1) 

Page (k+1) is 

referenced 
The most recent  page 
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Implementation:  

Defining a working set 

 Since not practical to keep history of past  
memory references, use working set window of 
τ ms. 
 e.g., instead of defining working set as those pages 

used during previous 10 million references, define it 
as pages used during past working set window of 
100ms 

 Note: not wall-clock time! If a process starts 
running at time T, and runs for 40ms at time 
T+100ms, it’s execution time is 40ms. (the other 
60ms is used for running other processes) 

 We use the term current virtual time to denote 
execution time of a process since its start 
 Working set of a process is set of pages it referenced during 

the past τ ms of virtual time 
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Working set algorithm 

 Recall: the R bit of a PTE is cleared every clock period. 

Assume the working set window τ ms spans multiple clock 

periods. 

 On every page fault, the page table is scanned to look for a 

suitable page to evict. The R bit of each PTE is examined.  
 If R=1 the page has been accessed this clock period and is part of 

WS.  

 Its Time of last use is updated to the present time.  

 If R=1 for all pages in memory, a random page is evicted 

 If R=0 the age (difference between the present time and Time of last 
use) is determined. 

 If age > τ, then the page is no longer considered to be part of 
WS. It may be removed and replaced with the new page 

 If age ≤ τ, then the page is still in WS. If all pages in physical 
memory are still in WS, the oldest one is chosen for eviction 



Working set algorithm example 
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WSClock algorithm 

 Basic working set algorithm requires entire page table 
to be scanned at every page fault until a victim is 
located 

 WSClock algorithm is a combination of Clock algorithm 
and working set algorithm: 
 Instead of clearing R periodically driven by OS timer, clear it 

at page-fault events   
 Arrange physical page frames in a circle with single 

clock hand. On each page fault: 
 Advance clock hand (not real time) 
 Check R bit:  

 R=1used recently; clear and leave alone 
 R=0additional checking for page age: 

 If age > τ, not in WS; selected candidate for replacement 
 If age ≤ τ, in WS. If all pages in physical memory are still in WS, the 

oldest one is chosen for eviction 

 Worst-case same as working set algorithm, but average 
case much better 

 (Note: this is a simplified version of WSClock that does 
not consider the modified bit. The algorithm in textbook 
is more complex.) 47 
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 Operations of 

the WSClock 

algorithm.  

 (a) and (b) give 

an example of 

what happens 

when R = 1. 

(c) and (d) give 

an example of 

R = 0 and age 

> τ. 



Summary 
 Replacement algorithms 

 OPT: Replace page that will be used farthest in future 
 FIFO: Place pages on queue, replace page at end 
 Second-chance: giving recently-used pages a second chance 
 LRU: Replace page used farthest in past  
 Approximations to LRU 

 NFU & Aging: 
 Keep track of recent use history for each page 

 Clock Algorithm: 
 Arrange all pages in circular list 
 Sweep through them, marking as not “in use” 
 If page not “in use” for one pass, than can replace 

 Nth-chance clock algorithm 
 Give pages multiple passes of clock hand before replacing 

 Working Set: 
 Set of pages touched by a process recently 

 Working set algorithm: 
 Tries to keep each working set in memory 

 Thrashing: a process is busy swapping pages in and out 
 Process will thrash if working set doesn’t fit in memory 
 Need to swap out a process 
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Summary 

Algorithm Comment 

Optimal Not implementable, good as benchmark 

NRU Very crude 

FIFO Might throw out important pages 

Second chance Big improvement over FIFO 

Clock Realistic 

LRU Excellent, but difficult to implement exactly 

NFU Fairly crude approximation to LRU 

Aging Efficient algorithm approximates LRU well 

Working set Somewhat expensive to implement 

WSClock Good efficient algorithm 


