
Cmpt : Operating Systems
Summary Notes

June, 

Segment 1: Overview & History

In this segment, we introduced the general topic of op-
erating systems. We examined several views of operating
systems, including their role as:

• A Programmer’s Toolkit
• An Abstraction Layer
• A Protection Layer
• A Policy Enforcer
• A Control Program
• A Virtual Machine
• A Resource Manager
• A Product

We also examined how computer systems vary and how
operating systems must vary with them. Some of the
ways in which computer systems differ are

Special-purpose — General-purpose
Single-process — Multi-process

Single-user — Multi-user
Non–resource-sharing — Resource-sharing

Single-processor — Multi-processor
Stand-alone — Networked
Centralized — Distributed

Batch — Interactive
Deadline-free — Real-time

Insecure — Secure
Symmetric — Asymmetric

Simple — Complex
Small — Large

Inexpensive — Expensive

We also described the history of operating systems.
This history shows us why operating systems are what
they are by showing how they developed.

If you understand the evolution of operating systems
you should be able to:

• Explain what an operating system is, contrasting
the different roles an operating system fulfills.

• Classify computer systems according to a taxon-
omy.

• Describe how computer systems evolved, explain-
ing what motivated the changes at each step.

• Contrast time-sharing and batch systems.
• Explain why personal computer systems did not

start out with “state of the art operating systems”.

Segment 2: Computer System
Architecture and
Operation

This segment covered the general structure of computer
systems. We reviewed the basic concepts of machine
organization and touched on how code looks at the as-
sembly language level. We briefly examined the concepts
of memory, CPU, registers, I/O, interrupts, instructions,
and the instruction-execution cycle. Since the operating
system is the interface between the hardware and user
programs, a thorough understanding of operating sys-
tems requires an understanding of both hardware and
programs.

We also examined the programmer’s view of the op-
erating system, covering system calls and system pro-
grams.

If you understand this segment you should be able to:
• Determine which aspects of a computer system op-

erate concurrently.
• Compare and contrast programmed and interrupt-





driven i/o.
• Draw and explain a storage hierarchy.
• Explain hardware protection and design hardware

protection schemes.
• Explain the trade-offs associated with caching.
• Explain the trade-offs associated with protection.
• Differentiate between system calls and library calls.
• Identify system programs and shells.
• Differentiate between mechanisms and policies.
• Compare and contrast techniques for structuring

operating systems.

Segment 3: Processes & Threads

In this segment we introduced the concept of a process
and the notion of concurrent execution. These concepts
are at the very heart of modern operating systems. A
process is a program in execution and is the unit of work
in a modern time-sharing system. Such a system con-
sists of a collection of processes: operating-system pro-
cesses executing system code, and user processes exe-
cuting user code. All these processes can potentially
execute concurrently, with the processor(s) multiplexed
among them. By switching the processor between pro-
cesses, the operating system can make the computer
more productive. We also discussed the notion of a
thread (lightweight process) and interprocess commu-
nication using message passing and shared memory.

If you understand this segment you should be able to:
• Explain the concept of a process.
• Describe the costs associated with a process switch

and a thread switch.
• Explain and contrast the roles of the short-term,

medium-term, and long-term schedulers.
• Explain and contrast the terms time-sharing, pre-

emptive multitasking, multiprocessing, and multi-
programming.

• Determine the necessary fields for a process-
control block.

• Contrast processes and threads.
• Describe the possible scheduling states for a pro-

cess in both two-state and five-state process mod-
els.

• Categorize message-passing systems.

• Explain how to implement one interprocess com-
munications mechanism in terms of another.

Segment 4: Processor
Scheduling

Processor scheduling is the basis of multiprogrammed
operating systems. By switching the processor among
processes, the operating system can make the com-
puter more productive. In this segment, we introduced
the basic scheduling concepts and several well-known
scheduling algorithms, including FCFS, SBF, Round-
Robin and Multilevel Feedback.

If you understand this segment you should be able to:

• Draw Gantt charts to describe scheduling algo-
rithms.

• Describe and contrast a variety of scheduling algo-
rithms.

• State and contrast optimization criteria for proces-
sor scheduling.

• Calculate response time (aka turnaround time),
missed time (aka waiting time), and penalty ratio
for a scheduled burst.

Segment 5: Synchronization

This segment discussed process synchronization among
concurrently executing tasks. We discussed the critical-
section problem and covered a number of solutions.
We also examined a number of “classic” problems in
synchronization, including the bounded-buffer problem
and the dining-philosophers problem. Synchronization
is a difficult topic, and so I strongly recommend students
do practice problems beyond those done in class and as-
signments.

If you understand this segment you should be able to:
• Describe the critical section problem.
• Write parallel programs that do not contain race

conditions.
• Determine whether software-based synchroniza-

tion algorithms operate correctly (or contain race
conditions).





• Describe and implement mutexes, semaphores, and
monitors.

• Design algorithms using mutexes, semaphores, or
monitors for synchronization.

• Describe and implement solutions to several classi-
cal synchronization problems.

• Explain and prevent priority inversion.




