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Secondary Storage Allocation

Let’s think about disk storage

• Disk seen as large array of logical blocks (c.f., frames)

• Logical block is the smallest unit of transfer (c.f., page size)

• Logical blocks are mapped onto the sectors of the disk

sequentially.

– Block zero is the first sector of the first track on the

outermost cylinder.

– Mapping proceeds in order through

- Sectors in track

- Tracks in cylinder

- Cylinders on disk

• Allocation of disk space to a file is rather like allocation of

memory space to a process…

• (Directories, partitions etc. we’ll leave until later)
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Disk as One File

Like giving all memory to one process

• Entire disk used for one “file”

• File is seen as one big stream of bytes

• Usually fixed size, writes overwrite old data

• To read data at position p, 

block = p / BLOCK_SIZE;

offset = p % BLOCK_SIZE;

• Random access is fast

• Sequential access is fast

• Useful for special cases

– Databases

– Paging files

• Operating system still has work to do, preserving the illusion

of a stream of bytes, rather than discrete blocks
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Contiguous Allocation

More than one file per disk, all space per file is contiguous

• Each file occupies a set of contiguous blocks on the disk.

• Housekeeping is simple, for each file f

start_of(f ) — the block where f begins

length_of(f ) — the block where f begins

• To read data at position p, in file f

block = start_of(f ) + p / BLOCK_SIZE;

offset = p % BLOCK_SIZE;

• Random access is fast

• Sequential access is fast

• External fragmentation when files are deleted

– Compaction?

• Files cannot grow :-(

– (Unless there is some empty space ahead of them)
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Linked Allocation

Make each block in a file point to the next one

• Housekeeping is simple, for each file f,

start_of(f ) — the block where f begins

and each block, b, has a pointer, of size PTR_SIZE, such that

next_block(b)— the block that comes after this one

• To read data at position p, in file f

block = find_block(start_of(f ),
    p / (BLOCK_SIZE – PTR_SIZE));

offset = p % BLOCK_SIZE;

where, find_block is defined as:

find_block(b, 0) = b

find_block(b, n) = find_block(next_block(b), n – 1)

• No external fragmentation  (with suitable free space

management)

• Random access is slow

• Sequential access is okay
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Linked Allocation

0 1 2 3

4 5 6 7

8 9 10 11

12 14 15

16 17 19

20 21 22 23

24 25 26 27

28 29 30 31

10

16 25

1

–1

13

18

directory

start

9

end

25

file

jeep

CMPT 300, 99-2

Segment 9, Page 6

Indexed Allocation

Bring all pointers together in an index block  (c.f., page table)

• Housekeeping is simple, for each file f

index_block(f ) — the location of f ’s index block

and each index block, b, has a pointers to f’s blocks

index(b, i ) — the ith entry in index block b

• To read data at position p, in file f

block = index(index_block(f ), p / BLOCK_SIZE);

offset = p % BLOCK_SIZE;

• Random access is okay

• Sequential access is okay

• Dynamic access without external fragmentation

– But have overhead of index block  (incl. fragmentation)

– Limits on size of index block are limits on size of files

(if we use two bytes for block number and 512-byte

blocks, max file size is 128K)
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Indexed Allocation (contd.)
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Indexed Allocation (contd.)

Handle larger files by:

• Increasing logical block size

– But more internal fragmentation

• Using larger index blocks

– But the index blocks are too much like files (different

sizes, complex to manage).

• Using a two-level indexing scheme
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Two-level Indexes
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Combined Indexing
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Performance of Index-based Allocation

Indexed allocation

• Allows a file’s blocks to be scattered all over the disk

– But scattering the blocks slows performance

• Try to locate the file (or large pieces of the file) in the same

region of the disk

– Minimize disk head movements required

– Requires enough free space to be able to pick a region of

the disk that has chunks of space free
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Free-Space Management — Bit Vector

Bit map for n blocks…

...
0 1 2 n-1

bit[i ] =
0 ⇒ block[i] free

1 ⇒ block[i] occupied

• Easy to find free space (find first zero bit)

• Easy to find contiguous blocks of free space

• Space hungry — bitmap for an 8 GB disk with 512-byte

blocks would be 2 MB

• Bitmap does not get smaller as free space decreases

Class Exercise: How would we make the bitmaps
take less space?  (And what would
the percentage be?)
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Logical Block Size vs. Physical Block Size

Our filesystem need not be tied to the block size of the actual

device.  We can make the “logical block” size bigger (sometimes

called the cluster size).

• 4K logical blocks are a convenient size (especially if this size

matches our page size).

• A 4K logical block is written in 8 contiguous sectors on the

disk.

• Reduces bitmap from 2MB to 256KB (or 0.003% of the

disk).

• We can make the logical blocksize larger, but the larger the

logical block size, the more internal fragmentation.
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Free-Space Management — Free List

Represent free space as a linked list (just like a file with linked

allocation)

• Very easy to find free space

• Space efficient — blocks used to hold free list are spare, so

no overhead

• Free space may be scattered — hard to find contiguous

blocks

Class Exercise: How would you store the free list
to avoid problems with file
fragmentation?
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Region-based Approaches

Divide disk into regions (sometimes called cylinder groups), each

with its own free list.

• Unless a file is very large, try to keep all of it in the same zone

• Try to put all the files in a directory in the same zone

• Put different directories in different regions

Class Exercise: What assumptions are we making
here?  What kinds of locality are we
expecting?
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Log-based Approaches

Change our assumptions

• Contiguous allocation would be great if we could only make it

work

• Temporal locality rather than spatial locality

• Lots of memory for buffering

• Computers (and their disk drives) spend much of their time

idle, so we can employ some kind of compaction scheme that

runs as a background process

Write the file in lumps, making the lumps as big as possible

• Delay disk writes as long as possible

• Always write to the end of the “log”

• New space for the log is made by copying garbage collection
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Layers in Action —  Filesystem

Low-level filesystem

• Files don’t have names/directories, just numbers (sometimes

called the inode number).

• Implementation is easy

For example, Unix’s FFS statically allocates a fixed number of

inodes, scattered across the disk (following the region strategy).

• The 1GB drive on my workstation has 157,696 inodes, of

which 34% are used (the disk itself is 99% full).

• You can see the inodes associated with your files on a Unix

system by typing ls -i , for example:

96746 Bibliography/ 64029 intro.tex 64031 main.tex
119386 CVS/ 64036 main.aux 64001 melissa.sty
125417 Diagrams/ 64049 main.bbl 64054 method.tex
120966 Graphs/ 64038 main.blg 64030 performance.tex
63933 appendix.tex 64037 main.dvi 63999 preface.tex
63998 conclusion.tex 64035 main.log
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Layers in Action —  Filesystem (contd.)

High-level filesystem

• Provides mapping from files/directories to inode numbers

• Implementation is easy — the directories can be files in the

lower-level filesystem.

– In Unix, directories are just files containing variable-

length records that include just the name and the inode

number.  All the other data is included in the file’s index

node (inode).

Class Exercise: If we store data (permissions,
ownerships, etc.) in the inode,
doesn’t this violate the two-layer
scheme?
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Metadata — What to store about files…

Class Exercise: What information should the
operating system store about
files?
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Creator — Who made the file

We might want to store

• The user

• Their role

• The program

(Macintosh stores the creator; Unix conflates ownership with

creator.)
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Ownership — Who the file belongs to

Unix stores two ownership attributes:

• User

• Group

Where groups are system-wide groups of users.

A different operating system might do things differently:

• List of users

• List of groups

Groups could be user-defined or system-wide.
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Access Rights

A user might be allowed one or more of the following access rights

to a file: 

• Existence check

• Execute

• Read

• Append

• General update

• Change access rights

• Delete
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Access — Who can access the file

Vanilla Unix provides access based on 

• User

• Group

• World

where each can set their own protection.

Other options include:

• List of users

• List of groups

• List of programs

• Sensitivity labels
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Watchdogs

Let files/directories declare a program as their guardian 

• Maximum flexibility

• Slower performance
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Access Information

When the file was 

• Created

• Data Modified

• Meta-Data Modified

• Data Read

• Meta-Data Read

and by whom. 

We might want to have just information for the last access, or we

might want to keep a log of all accesses, perhaps with rollback

information.
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File Types

What kind of file it is 

• Executable

• Internal format (object file, TIFF image, Rich Text)

• Logical Record Type

• File type for OS

– Lockable

– Has ACL or watchdog

– “Sticky”

• File organization

– Sequential

– Indexed

– Random
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File Types (contd.)

Often file name and contents can supplement file types provided

by the operating system, but

• Not always elegant 

• Not always efficient

In the past, operating systems provided many different file

types, and many different file organizations. But,

• Inflexible 

• Complicated the operating system

A simpler scheme is possible, using a logical record of one byte

but allowing direct access (aka random access), where

• A contiguous block of logical records can be read/written

atomically 

• Allow blocks of logical records can be locked
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Other…

Various other information 

• Version

• Dependencies

• Expected size

• Number of links

Again, we can avoid complicating the operating system with some

of this information

• CVS (or RCS or SCCS) can provide version control

• make can manage dependencies
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Directories — Motivation

• Convenience for users

– Names allow user control, rather than machine control, of

file identifiers 

– More efficient

• Logical grouping of files

• Many-to-one mapping (one file, many names)
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Directories — Single Level

• Non-hierarchical

• Simple

• Inflexible

– Naming problems 

– Grouping problems

• Inefficient search

Example, 

jim.mbox sally.mboxfred.mbox main.c subs.c index.html sally.gif bouncerbertie
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Directories — Tree Structured

• Tree-based hierarchy

• Betted Structured

• Efficient searching

• Grouping capability

• Directory Structures can be deep

– Having to type a command like

/usr/local/teTeX/bin/latex
/Users/Melissa/Research/Papers/Determinacy/main.tex

every time I want to typeset a paper I’m working on  would

be a pain

– Introduce the notion of a current directory   (and relative

paths)

– Introduce the notion of a search path

• Policy for directory deletion?
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Directories — Tree Structured, Example

fred jim sally

dogs code

bouncer bertie main.c main.o subs.c

mailbox mailbox mailboxweb

index.html sally.gif
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Directories — DAG Structured

• DAG-based hierarchy

• Allow sharing of files and directories  (aliasing)

• Added complexity

• Implementation choices

– Hard links  (with reference counting)

– Soft links  (symbolic references)

• Policy for directory deletion?

Class Exercise: Allowing multiple hard links to a
directory may be problematic —
why?
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Directories — DAG Structured, Example

fred jim sally

dogs code

bouncer bertie main.c main.o subs.c

mailbox mailbox web mailboxweb

index.htmlsally.gif

code

index.html beloved.gif
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Directories — Graph Structured

• Graph-based hierarchy

• Most general

• Added complexity

– Reference counting is inadequate for hard links to

directories if cycles can form

– Need garbage collection, or restrictive directory linking or

deletion rules
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Directories — Graph Structured, Example

fred jim sally

dogs code

bouncer bertie main.c subs.c users

mailbox mailbox web mailboxweb

index.htmlsally.gif

code

index.html beloved.gif
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Disk Caching

diskmain memory

block buffer

open-file table

ram disk

CPU controller

track
buffer

Class Exercise: If the operating system is going to
cache blocks of a file in memory,
what parts should be kept?
(C.f., paging algorithms.)
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Disk Caching (contd.)

Random access to file

• LRU replacement for cached blocks

Sequential access to file

• Free behind / read ahead
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Disk Buffering

Allow writes to return immediately, after copying data into a

buffer that will be written out to the disk

Buffers vs. Caches

• We need some kind of buffer  (the write may not be the same

size as the block)

• We don’t need the cache, it just improves performance
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Buffer-Cache

Both store disk blocks — use the same data structure, the

buffer cache

• “Free” buffers used as cache

• Dirty buffers will eventually be written out to disk

• Allow buffer-cache to use any memory that is free in the

machine.

Class Exercise: When should we write the dirty
buffers?
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Buffer-Cache (contd.)

One buffer cache for all processes and all block devices

• Local Disks

• Remote Disks

• Tapes, CD-ROMs, etc.
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Dealing with System Failure

Class Exercise: Imagine a program is going to write
to the end of a file (extending the
file by one block).

In what order should we update the
structures on disk to cause
minimum damage if the system
crashes?

(Assume the disk will never leave a
disk block half-written.)

File creation?

File deletion?
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Recovering from System Failure

Before system failure…

• Use system programs to back up data from disk to another

storage device (floppy disk, magnetic tape).

After system failure…

• Run consistency checker — compares data in directory

structure with data blocks on disk, and tries to fix

inconsistencies.

• Recover lost file or disk by restoring data from backup.
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Disk Scheduling

The operating system needs to use all I/O devices efficiently.

• Minimize access time — composed of

– Seek time — time for the disk arm to move the heads to

the cylinder containing the desired sector.

– Rotational latency — additional time waiting for the disk

to rotate the desired sector to the disk head.

• Maximize disk bandwidth

– Bandwidth = Total Bytes Transferred / Total Time Taken

• Usually, disk requests can be re-ordered.

• Several algorithms exist to schedule disk I/O requests.

– We illustrate them with a request queue of

98, 183, 37, 122, 14, 124, 65, 67 (cylinders)

and an initial head position of 53
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First-Come First-Served (FCFS)

queue = 98, 183, 37, 122, 14, 124, 65, 67

head starts at 53

0 14 37 53 65 67 98 122 124 183 199

Total head movement of 640 cylinders — Yuck!
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Shortest Seek Time First (SSTF)

Select the request with the minimum seek time from the current

head position. 

queue = 98, 183, 37, 122, 14, 124, 65, 67

head starts at 53

0 14 37 53 65 67 98 122 124 183 199

Total head movement of 236 cylinders

• May starve requests!
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SCAN (aka The Elevator Algorithm)

Move head from one end of the disk to the other, servicing

requests as we go.

queue = 98, 183, 37, 122, 14, 124, 65, 67

head starts at 53

0 14 37 53 65 67 98 122 124 183 199

 

Total head movement of 208 cylinders
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Circular-SCAN (C-SCAN)

Move head from one end of the disk to the other, servicing

requests as we go forward, zip back doing nothing.

queue = 98, 183, 37, 122, 14, 124, 65, 67

head starts at 53

0 14 37 53 65 67 98 122 124 183 199

Total head movement of 382 cylinders
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LOOK  &  C-LOOK

Like SCAN and C-SCAN, but only go as far as the last request in

each direction.

C-LOOK

queue = 98, 183, 37, 122, 14, 124, 65, 67

head starts at 53

0 14 37 53 65 67 98 122 124 183 199

Total head movement of 322 cylinders (LOOK would be  180)
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Selecting a Disk-Scheduling Algorithm

Comparing the algorithms, we find that

• FCFS is actually okay if the disk controller manages disk

scheduling itself (many do these days)

• SSTF is common and has a natural appeal

• LOOK works well (lowest amount of head moment in our test)

• SCAN and C-SCAN perform better for systems that place a

heavy load on the disk.
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Modern Disk Geometry

Modern disks maximize disk utilization by putting varying

numbers of sectors on different cylinders of the disk

• Logical block —> (sector, track, cylinder)  complex or

impossible for operating system to calculate.

Thus,

• Disk scheduling and scheduling grouping become impossible to

perform perfectly.

• But approximations work.

More importantly,

• Careful placement of vital data across platters may not work

out.
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Redundant Array of Independent Disks (RAID)

Disks are

• Less reliable than solid-state components

• Slow

RAID aims to address these issues by using multiple physical

disks, operated in parallel to appear as one disk.
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Redundant Array of Independent Disks (RAID)

Strip size, choice of

• Physical disk block

• Filesystem logical block

• Track

• Cylinder

• …
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RAID 0  (really _AID)

Data is striped across n disks

• No redundancy — single drive failure means data loss

• Maximizes parallelism

– Every strip is stored on just one disk

– Transfer rate up to n times the transfer rate of one disk,

if n contiguous strips are accessed

– Small strips (1/n of I/O request) => high transfer rate

– Up to n strips may be accessed simultaneously

– If strip size matches typical I/O request size, high I/O

request rate
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RAID 1  (Mirroring)

Duplicate everything, use 2n disks where RAID 0 would use n

• Worst case, data loss after two drive failures, best case,

data loss after n+1 drive failures.

• Good parallelism

– Every strip is stored on two disks (identical copies)

– Read transfer rate up to 2n times the transfer rate of

one disk, if 2n contiguous strips are read

– Write transfer rate up to n times the transfer rate of

one disk, if n contiguous strips are written

– Small strips (1/n of I/O request) => high transfer rate

– Up to n (or 2n) strips may be accessed simultaneously

– If strip size matches typical I/O request size, high I/O

request rate

• Most expensive

• Drives must detect errors themselves
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RAID 1  (Mirroring, contd.)
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RAID 2  (Parallel Access with Hamming Code)

Use n+3 disks where RAID 0 would use n

• Data loss after two drive failures

• Fine-grained parallelism

– Every strip is stored across all disks

- Each of the n disks stores 1/n of the bits in the strip

- The remaining three disks store hamming code

– All disks accessed in lock-step

– Read transfer rate up to n times the transfer rate of one

disk

– Write transfer rate up to n times the transfer rate of

one disk

– I/O request rate identical to that of a single disk

• Can detect/correct disk errors even if drive does not
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RAID 2  (Parallel Access with Hamming Code)

b0 b1 b2 b2 f0(b) f1(b) f2(b)
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RAID 3  (Parallel Access with Parity)

Use n+1 disks where RAID 0 would use n

• Data loss after two drive failures

• Fine-grained parallelism

– Every strip is stored across all disks

- Each of the n disks stores 1/n of the bits in the strip

- The remaining disks stores parity

– All disks accessed in lock-step

– Read transfer rate up to n times the transfer rate of one

disk

– Write transfer rate up to n times the transfer rate of

one disk

– I/O request rate identical to that of a single disk

• Drives must detect disk errors
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RAID 3  (Parallel Access with Parity, contd.)

b0 b1 b2 b2 P(b)
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RAID 4  (Independent Access with Parity)

Use n+1 disks where RAID 0 would use n

• Data loss after two drive failures

• Coarse-grained parallelism

– Every strip is stored across all two disks

- Strips as in RAID 0 for n disks

- The remaining disk stores parity

– To write a strip, parity must be read, updated, and

written, too

– Read transfer rate up to n times the transfer rate of one

disk, if n contiguous strips are read

– Write transfer rate nearly n times the transfer rate of

one disk, if n contiguous strips are written at once

– Small strips (1/n of I/O request) => high read transfer

rate

– Up to n strips may be read simultaneously
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RAID 4  (Independent Access with Parity, cond.)

• Coarse-grained parallelism (contd.)

– If strip size matches typical I/O request size, high read

request rate

• Drives must detect disk errors
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RAID 5

 (Independent Access with Scattered Parity)

Use n+1 disks where RAID 0 would use n

• Data loss after two drive failures

• Coarse-grained parallelism

– Like RAID 4, but we scatter the parity information

across all the disks

– Read transfer rate up to n times the transfer rate of one

disk, if n contiguous strips are read

– Write transfer nearly n times the transfer rate of one

disk, if n contiguous strips are written at once

– Small strips (1/n of I/O request) => high transfer rate

– Up to n strips may be accessed simultaneously

– If strip size matches typical I/O request size, high I/O

request rate

• Drives must detect disk errors
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RAID 5

 (Independent Access with Scattered Parity)
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(Open) File Tables

The operating system needs to know what parts of the file are in

the buffer cache, and what parts aren’t.

• Global information stored globally

• Some information can be per process
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File Access

Programs need to deal with the data in files

• Read data in from files

– Read whole file from start to finish

– Read some data from the middle (or anywhere else) 

• Write data to files

– Append to the end

– Change data in the middle 

and manage the files themselves.

Class Exercise: What operations should we provide
for accessing files?

Develop a stateless file interface
and a stateful one.
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Stateless File Access

No (apparent) internal state — each system call fully describes

the desired operation

File access:

• read( filename, position, length, buffer )

• write( filename, position, length, buffer )

• truncate( filename, length )

• lock( filename, position, length, lock_state )

File management:

• status( anyname, info )

• delete( anyname )

• create_file( filename )

• create_dir( dirname )

• move( anyname, anyname )
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Stateful File Access

Operating system keeps internal state

File access:

• handle = open( filename, mode )

• read( handle, length, buffer )

• write( handle, length, buffer )

• truncate( handle, length )

• seek( handle, position )

• lock( handle, length, state )

• close( handle )

File management:

• status( anyname, info )

• delete( anyname )

• change_directory( dirname )

• create_dir( dirname )

• move( anyname, anyname )
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Contrasting Stateful vs. Stateless

Completeness

• Each method can simulate the other

Stateless operation

• Simple

• Works well in a multi-threaded program

• Basis for NFS

Stateful operation

• Assumes file-locality and sequential access is common

• Provides the operating system with more information about

which files are being used

• Maps well to other kinds of device besides files  (e.g.,

read/write to a terminal)

• May add arbitrary limitations (e.g, maximum open files)
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Consistency Model

Additional complications

• Multiple processes can access files — Two (or more)

processes could read and write the same file.

• Asynchronous writes + Errors = ?

• What if the file is moved/renamed/deleted while a process is

using it?

What should the rules be?

Class Exercise: Develop and justify a consistency
model for file operations.

Develop another one.
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Unix Consistency Model

Unix uses the following rules

• All file operations are globally atomic

• A file is not removed from the filesystem until all links to the

file are removed—an open counts as a link

• write in one process is globally visible immediately afterwards

• writes are asynchronous, I/O errors may not be discovered

until the file is closed

These rules do not map well onto a stateless I/O interface
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NFS Consistency Model

NFS uses the following rules

• All file operations are globally atomic and stateless

• Moved/rename/delete can disrupt accesses performed by

other processes.

• write in one process is globally visible immediately afterwards

• writes are synchronous, I/O errors are discovered immediately

These rules map well onto a stateless I/O interface, but are not

entirely consistent with the POSIX file model.
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AFS Consistency Model

AFS uses the following rules

• All file operations are locally atomic

• A file is not removed from the filesystem until all links to the

file are removed—an open counts as a link

• Changes to a file performed by another process will only be

seen if the file is closed and reopened.

• writes are asynchronous, I/O errors may not be discovered

until the file is closed

These rules map well onto a stateful interface, but are not

entirely consistent with the POSIX file model.
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File Access — Revisited

Besides system calls for protection there are other system calls

we might want 

• Find the capacity of the disk

• Eject the disk

• Discover whether any reads/writes have transparently failed.

• … etc …

We shouldn’t have to extend the operating system’s API every

time we come up with something else to add.

Add generic method to talk to the lower-level layers

• ioctl( handle, request, buffer )

(some operating systems do all their I/O this way, the kernel just

passes generic request messages from the application to the

device).
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File Access — Pseudo-files

An alternative to adding ioctl calls is to provide additional

files/directories for programs to access.

For example, a Unix system mounting a Macintosh floppy must

accommodate the Mac OS resource fork and finder information

components that have no corresponding Unix counterpart.

• myfile.doc — the file’s data fork

• .resource/myfile.doc — the file’s resource fork

• .finderinfo/myfile.doc— the file’s finder information

Where .resource and .finderinfo are both pseudo-directories.
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File Access — Leveraging the VM System

Use the virtual memory system to provide file access

• Memory-map the file into memory

• Page faults retrieve the file from disk

• Copy-on-write or writeback semantics

Add the following system calls:

• map_file( handle, size, mode, address )

• unmap_file( address )

(This mechanism does not provide for extending or truncating the

file.)
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Tertiary Storage 

Tertiary Storage is

• Low-cost media

• Usually removable media

Examples

• Floppy disk

• Zip

• Jaz

• CD-ROM

• CD-R

• CD-RW

• DVD

• DAT

• DLT
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Tertiary Storage — Removable Disk

Usually given similar filesystem as that of secondary storage,

except:

• Removable disks require a label

• Removable disks may contain a filesystem belonging to

another operating system

• Removable disks may not be trustworthy

• Removable disks may be removed — impact for caching
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Tertiary Storage — Tape

Filesystem does not map well onto tape, so applications are

usually given access to the raw device.

• Typically, only one application can use the tape drive at a time

• Application decides on the data format for the tape

– Portability issues

• The last write defines the current end of the tape.

• Random access is slow (potentially minutes!), if allowed at

all

• But,  with careful design, the same I/O system calls can be

used for a tape drive that could be used as disk.
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Jukeboxes

A removable-media drive can be made part of a jukebox

• Potentially huge capacity

• High latency  (potentially minutes/hours to load a medium, if

another process is accessing a different medium)
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Reliability

Removable-media is often less reliable than fixed media

• A fixed disk drive is likely to be more reliable than a removable

disk or tape drive.

• An optical cartridge is likely to be more reliable than a

magnetic disk or tape.

• A head crash in a fixed hard disk generally destroys the data,

whereas the failure of a tape drive or optical disk drive often

leaves the medium unharmed.
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Cost

Cost should be considered carefully

• The cost per megabyte of hard disk storage is competitive

with magnetic tape if only one tape is used per drive.

• The cheapest tape drives and the cheapest disk drives have

had about the same storage capacity over the years.

• Tertiary storage gives a cost savings only when the number of

cartridges is considerably larger than the number of drives.
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Other I/O Devices

We can partition devices into two broad categories

• Block devices

– Reads/writes fixed-size chunks

– Allow random access

Examples

– Disk (fixed, removable, magnetic, optical, etc.)

– Tape

• Stream devices

– Reads/writes variable-size chunks  (or 1-byte chunks)

– Sequential access

Examples

– Network sockets

– Terminal I/O

– Mouse

– Scanner
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Other I/O Devices — Graphics display

Specialized memory, I/O hardware handles frame buffer.  Frame

buffer is often dual ported memory to allow it to be read by the

graphics system and written by the CPU at the same time.

Two options for OS management of graphics

• Allocate frame buffer memory to one (or more processes).

– X-Windows

– Display Postscript

• Have the operating system manage screen drawing

– Microsoft Windows
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Segment Review

You should be able to:

• Describe and contrast contiguous, linked and indexed

allocation

• Describe strategies for managing free space and allocating

blocks

• Divide a filesystem implementation into two layers

• Select metadata to store about files

• Implement file protection mechanisms

• Contrast directory structuring mechanisms

• Contrast buffering with caching

• Describe and select from several disk scheduling policies

• Describe and contrast different RAID storage strategies

• Design file access mechanisms

• Design and contrast consistency models for files

• Define and contrast primary, secondary and tertiary storage

• Categorize devices as block or stream devices
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