
CMPT 300 — Operating Systems I

Summer 1999

Segment 6:

Synchronization

Melissa O’Neill

CMPT 300, 99-2

Segment 6, Page 1

Background

• Concurrent access to shared data may result in

inconsistencies due to race conditions.

• Maintaining data consistency requires mechanisms to

ensure the orderly execution of cooperating processes.

CMPT 300, 99-2

Segment 6, Page 2

The Bounded Buffer Problem

Two processes:

• A producer, creating data items

• A consumer, using them up

CMPT 300, 99-2

Segment 6, Page 3

Bounded Buffer, Producer — buffer1.cc

const int N = 128; // maximum capacity of the buffer

volatile item buffer[N]; // the buffer itself

volatile int in = 0; // the next position to insert at

volatile int out = 0; // the next position to remove from

void producer() {
item produced_item;

for (; ;) {
produced_item = produce_item();
while ((in + 1) % N == out) {

// buffer full — wait

}
buffer[in] = produced_item;
in = (in + 1) % N;

}
}

CMPT 300, 99-2

Segment 6, Page 4

Bounded Buffer, Consumer — buffer1.cc

void consumer() {
item consumable_item;

for (; ;) {

while (in == out) {
// buffer empty — wait

}
consumable_item = buffer[out];
out = (out + 1) % N;
consume_item(consumable_item);

}
}

This solution to the problem never uses all the available slots in

the buffer (when the buffer is “full” one slot remains unused).

CMPT 300, 99-2

Segment 6, Page 5

Bounded Buffer, Producer — buffer2.cc

const int N = 128; // maximum capacity of the buffer

volatile item buffer[N]; // the buffer itself

volatile int count = 0; // number of items in the buffer

void producer() {
int in = 0;
item produced_item;

for (; ;) {
produced_item = produce_item();
while (count == N) {

// buffer full — wait

}
buffer[in] = produced_item;
in = (in + 1) % N;
count = count + 1;

}
}

CMPT 300, 99-2

Segment 6, Page 6

Bounded Buffer, Consumer — buffer2.cc

void consumer() {
int out = 0;
item consumable_item;

for (; ;) {
while (count == 0) {

// buffer empty — wait

}
consumable_item = buffer[out];
out = (out + 1) % N;
count = count – 1;
consume_item(consumable_item);

}
}

The statements “count = count + 1” and “count = count – 1”

must be executed atomically.

CMPT 300, 99-2

Segment 6, Page 7

Bounded Buffer, Consumer — buffer2.s

_producer:
pea a6@
movel sp,a6
moveml #d2/d3/d4/d5/a2/a3,sp@-
clrl d3
lea _produce_item,a3
movel #_buffer,d4
lea _count,a2

.
:

movel a2@,d0
addql #1,d0
movel d0,a2@

.
:

Clearly, the code does not atomically change count. (Similar

code is present for producer).

CMPT 300, 99-2

Segment 6, Page 8

The Critical-Section Problem

The problem of the two processes competing to update count
is an example of the critical-section problem.

The critical section problem exists where

• n processes all competing to use some shared data

• Each process has a code segment, called a critical section, in

which the shared data is accessed.

• We must ensure that when one process is executing in its

critical section, no other process is allowed to execute in its

critical section.

CMPT 300, 99-2

Segment 6, Page 9

The Critical-Section Problem — Structure

void foo() {
for (; ;) {

// enter critical section

foo_critical_section_actions();

// leave critical section

foo_other_actions();
}

}

void bar() {
for (; ;) {

// enter critical section

bar_critical_section_actions();

// leave critical section

bar_other_actions();
}

}

CMPT 300, 99-2

Segment 6, Page 10

The Critical-Section Problem —

Solution Requirements

Any solution to the critical-section problem must satisfy the

following requirements:

• Mutual Exclusion. If a process is executing in its critical

section, then no other processes can be executing in their

critical sections.

• Progress. If no process is executing in its critical section and

there exist some processes that wish to enter their critical

section, then the selection of the process that will enter its

critical section next cannot be postponed indefinitely.

• Bounded Waiting. A bound must exist on the number of times

that other processes are allowed to enter their critical

sections after a process has made.

(Assume processes don’t hang/die inside the critical section.)

CMPT 300, 99-2

Segment 6, Page 11

The Critical-Section Problem —

Turn Taking (Solution Attempt)

enum { Foo, Bar } turn = Foo; // shared data — whose turn it is

void foo() {
for (; ;) {

while (turn != Foo) {
// let bar take its turn

}
foo_critical_section_actions();
turn = Bar;
foo_other_actions();

}
}

CMPT 300, 99-2

Segment 6, Page 12

The Critical-Section Problem — Turn Taking

(contd.)

void bar() {
for (; ;) {

while (turn != Bar) {
// let foo take its turn

}
bar_critical_section_actions();
turn = Foo;
bar_other_actions();

}
}

CMPT 300, 99-2

Segment 6, Page 13

The Critical-Section Problem —

Using Flags (Solution Attempt)

bool foo_busy = false; // set if foo in/entering critical section

bool bar_busy = false; // set if bar in/entering critical section

void foo() {
for (; ;) {

foo_busy = true;
while (bar_busy == true) {

// let bar finish

}
foo_critical_section_actions();
foo_busy = false;
foo_other_actions();

}
}

CMPT 300, 99-2

Segment 6, Page 14

The Critical-Section Problem — Using Flags

void bar() {
for (; ;) {

bar_busy = true;
while (foo_busy == true) {

// let foo finish

}
bar_critical_section_actions();
bar_busy = false;
bar_other_actions();

}
}

CMPT 300, 99-2

Segment 6, Page 15

The Critical-Section Problem — Using Both

bool foo_busy = false; // set if foo in/entering critical section

bool bar_busy = false; // set if bar in/entering critical section

enum { Foo, Bar } turn = Foo; // whose turn it is for tiebreaker

void foo() {
for (; ;) {

foo_busy = true;
turn = Bar;
while (bar_busy == true && turn == Bar) {

// let bar finish

}
foo_critical_section_actions();
foo_busy = false;
foo_other_actions();

}
}

CMPT 300, 99-2

Segment 6, Page 16

The Critical-Section Problem — Using Both

void bar() {
for (; ;) {

bar_busy = true;
turn = Foo;
while (foo_busy == true && turn == Foo) {

// let foo finish

}
bar_critical_section_actions();
bar_busy = false;
bar_other_actions();

}
}

CMPT 300, 99-2

Segment 6, Page 17

Lamport’s Bakery Algorithm —

Critical-Section Solution for n Tasks

Based on the idea of customers taking tickets at a bakery

(except that several customers can have the same ticket):

• Before entering its critical section, task receives a number.

• Holder of the smallest number enters the critical section.

• If tasks Ti and Tj receive the same number, if i < j, then Ti is

served first.

• The numbering scheme always generates numbers in

increasing order of enumeration (e.g., 1,2,3,3,3,3,4,5…)

CMPT 300, 99-2

Segment 6, Page 18

Lamport’s Bakery Algorithm

volatile bool choosing[N]; // set while task is taking a number

volatile int numbers[N]; // numbers held by each task

void task(const int i) {
for (; ;) {

choosing[i] = true;
numbers[i] = max(numbers) + 1;
choosing[i] = false;
for (int j = 0; j < n; ++j) {

while (choosing[j]) {
// wait while task j chooses

}
while (number[j] != 0 && (number[j] < number[i]

|| (number[j] == number[i] && j < i))) {
// wait for other tasks

}
critical_section_actions(i);
numbers[i] = 0;
other_actions(i);

}

CMPT 300, 99-2

Segment 6, Page 19

}
Hardware “Solutions” to the

Critical-Section Problem — Disabling Interrupts

void task(const int i) {
for (; ;) {

disable_interrupts();

critical_section_actions(i);

enable_interrupts();

other_actions(i);

}
}

CMPT 300, 99-2

Segment 6, Page 20

The Test and Set Operation

inline bool test_and_set(bool &flag) {
bool old_value = 0;
asm {

tas flag
sne old_value

}
return old_value;
// update flag to hold true, but return the value flag held before

// it was updated.

}

CMPT 300, 99-2

Segment 6, Page 21

Hardware “Solutions” to the

Critical-Section Problem — Test and Set

volatile bool lock = false; // shared mutual exclusion lock

void task(const int i) {
for (; ;) {

while (test_and_set(lock) == true) { // lock set already

// do nothing — wait for lock to be released

}

critical_section_actions(i);

lock = false;

other_actions(i);
}

}

CMPT 300, 99-2

Segment 6, Page 22

Trying to Avoid Busy-Waiting — Test and Set

volatile bool lock = false; // shared mutual exclusion lock

void task(const int i) {

for (; ;) {

while (test_and_set(lock)) { // lock set already

sched_yield(); // yield the processor to another task

}

critical_section_actions(i);

lock = false;

other_actions(i);
}

}

Less wasteful on a uniprocessor, but not ideal.

CMPT 300, 99-2

Segment 6, Page 23

Trivial Process Class

class Task {

static Task * self(); // returns the a pointer to the current task

void snooze(); // puts a task to sleep

void wakeup(); // wakes up a sleeping task

}

CMPT 300, 99-2

Segment 6, Page 24

Trying to Avoid Busy-Waiting — Test and Set

volatile bool lock = false; // shared mutual exclusion lock

volatile queue<Task *> waiting; // tasks waiting for the lock

void task(const int i) {
for (; ;) {

if (test_and_set(lock)) { // someone locked it already

waiting.push(Task.self()); // sleep — they’ll wake us up

Task.self()–>snooze();
}

critical_section_actions(i);

if (!waiting.empty()) { // someone’s waiting

waiting.front()–>wakeup(); // wake them up

waiting.pop();
} else

lock = false;

other_actions(i);
}

}

CMPT 300, 99-2

Segment 6, Page 25

Mutex Class

class Mutex {
public:

Mutex(); // initial value, unlocked

void lock(); // lock the mutex — task sleeps until lock obtained

// REQUIRE: Not already locked by this task

void unlock(); // unlock the mutex — can wake up a sleeper

// REQUIRE: Not already unlocked

private:
.
:

}

Provided by the operating system!

• OS designers get to decide whether to use busy–waiting or a

queue of waiting tasks.

CMPT 300, 99-2

Segment 6, Page 26

Critical Sections using Mutexes

Mutex guard; // shared mutual exclusion lock, initially unlocked

void task(const int i) {

for (; ;) {

guard.lock();

critical_section_actions(i);

guard.unlock();

other_actions(i);

}
}

(Mutexes are sometimes called binary semaphores. When

people call them “binary semaphores”, they usually intend to

use them in “weird” ways.)

CMPT 300, 99-2

Segment 6, Page 27

Mutex Class, Extended

class Mutex {
public:

Mutex(); // initial value, unlocked

void lock(); // lock the mutex — task sleeps until lock obtained

bool try_lock(); // try to lock the mutex, returns true on success

void unlock(); // unlock the mutex — can wake up a sleeper

private:
.
:

}

(See pthread_mutex_init, pthread_mutex_lock,

pthread_mutex_trylock, pthread_mutex_unlock, and

pthread_mutex_destroy in the Unix manual pages — these

interfaces are C based, but it is easy to wrap them into a C++

class).

CMPT 300, 99-2

Segment 6, Page 28

Semaphores

class Semaphore {
public:

Semaphore(int i = 1); // initializes counter to i

void wait(); // ––counter, task sleeps until counter > 0

void signal(); // ++counter, may wake up a task that is sleeping

private:
int counter;

.
:

}

(See sem_init, sem_wait, sem_trywait, sem_post, and sem_destroy
in the Unix manual pages — these interfaces are C based, but it

is easy to wrap them into a C++ class. But you almost never want

to use semaphores anyway).

CMPT 300, 99-2

Segment 6, Page 29

Implementing Mutexes using Semaphores

class Mutex {
private:

Semaphore access;

public:

Mutex() : access(1) {} // initializes underlying semaphore to 1

void lock() {
access.wait(); // wait until we can have access

}

void unlock() {
access.signal(); // signal that access by others is now allowed

}
}

CMPT 300, 99-2

Segment 6, Page 30

Implementing Semaphores using Mutexes

class Semaphore {
private:

int count;
Mutex count_guard;
Mutex access;

public:

Semaphore(int i = 1) : count(i) {
access.lock();

}

void wait() {
count_guard.lock();
––count;
if (count < 0) {

count_guard.unlock();
access.lock();

}
count_guard.unlock();

}

CMPT 300, 99-2

Segment 6, Page 31

Implementing Semaphores using Mutexes

(continued)

.
:

void signal() {
count_guard.lock();
++count;
if (count <= 0) {

access.unlock();
} else {

count_guard.unlock();
}

}
}

(It should take you a few minutes to satisfy yourself that this

code works. Yuck!)

CMPT 300, 99-2

Segment 6, Page 32

Bounded Buffer using Semaphores,

Producer — buffer3.cc

const int N = 128; // maximum capacity of the buffer

volatile item buffer[N]; // the buffer itself

Semaphore empty_slot(N); // any free slots?

Semaphore filled_slot(0); // any filled slots?

void producer() {
int in = 0;
item produced_item;

for (; ;) {

produced_item = produce_item();

empty_slot.wait();

buffer[in] = produced_item;
in = (in + 1) % N;

filled_slot.signal();
}

}

CMPT 300, 99-2

Segment 6, Page 33

Bounded Buffer using Semaphores,

Consumer — buffer3.cc

void consumer() {
int out = 0;
item consumable_item;

for (; ;) {

filled_slot.wait();

consumable_item = buffer[out];
out = (out + 1) % N;

empty_slot.signal();

consume_item(consumable_item);
}

}

CMPT 300, 99-2

Segment 6, Page 34

Readers–Writers Problem

Sometimes a data item has have readers (which don’t make

changes to the data) and writers (which do make changes).

• Many readers can share access to the item, but writers

must have exclusive access.

• Solution: Reader–Writer locks.

CMPT 300, 99-2

Segment 6, Page 35

Implementing Reader–Writer Locks (continued)

class ReaderWriterLock {
private:

Semaphore access;
int readcount;
Semaphore readcount_guard;

public:
ReaderWriterLock() :

access(), // initially, unlocked

readcount(0), // with no readers

readcount_guard() // and no one accessing readcount
{ }

void lockWrite() {
access.wait();

}

void unlockWrite() {
access.signal();

}

CMPT 300, 99-2

Segment 6, Page 36

Implementing Reader–Writer Locks (continued)

.
:

void lockRead() {
readcount_guard.wait();
++readcount;
if (readcount == 1)

access.wait();
readcount_guard.signal();

}

void unlockRead() {
readcount_guard.wait();
––readcount;
if (readcount == 0)

access.signal();
readcount_guard.signal();

}

CMPT 300, 99-2

Segment 6, Page 37

Class Exercise: Does this code work?

If you think it works, is there room

for improvement regarding

fairness?

If you don’t think it works, what’s

wrong with it?

CMPT 300, 99-2

Segment 6, Page 38

The Dining Philosophers Problem

• Each philosopher alternates between periods of:

– Thinking

– Eating

CMPT 300, 99-2

Segment 6, Page 39

The Dining Philosophers Problem

const int N = 5; // five philosophers

Semaphore chopstick[5]; // one semaphore for each chopstick

// initially, set to 1

// Each Philosopher i:

void philosopher(int i) {

for (; ;) {

chopstick[i].wait(); // pick up left chopstick

chopstick[(i+1) % N].wait(); // pick up right chopstick

eat();

chopstick[i].signal(); // drop left chopstick

chopstick[(i+1) % N].signal(); // drop left chopstick

think();

}
}

CMPT 300, 99-2

Segment 6, Page 40

The Dining Philosophers Problem (contd.)

Class Exercise: Is this solution to the problem

entirely satisfactory?

If not, how would you fix the

algorithm?

CMPT 300, 99-2

Segment 6, Page 41

Monitors

Semaphores are pretty low level and hard to get right.

• High-level synchronization construct, based on classes

• Only one task can be running “inside” the class at a time

• Declare classes like this:

monitor class classname {
private:

… private member declarations …

public:
… member function declarations only …

}

• But how do we handle needing to wait within the monitor?

CMPT 300, 99-2

Segment 6, Page 42

Monitors

Entrance

queue of
entering

processes

Exit

condition c1

cwait(c1)

urgent queue

csignal

condition cn

cwait(cn)

•

•

•

local data

condition variables

Procedure 1

Procedure k

initialization code

•
•
•

monitor waiting area

MONITOR

CMPT 300, 99-2

Segment 6, Page 43

Monitors

• Allow condition variables, of class Condition:

Condition tool_ready

• Inspired by semaphores, class Condition supports two

methods, cwait() and csignal().

– x.cwait() suspends the process until another process

invokes x.signal()

– x.csignal() resumes exactly one suspended process —

if no process is suspended, the signal operation has no

effect.

Class Exercise: How does this differ from the wait
and signal methods of Semaphores?

When should the process resumed

by x.signal() run? What are the

options and what are the

tradeoffs?

CMPT 300, 99-2

Segment 6, Page 44

Monitors — Example, Dining Philosophers

monitor class DiningPhilosophers {
public:

const int N = 5; // five philosophers

private:
enum { Thinking, Hungry, Eating } state[N];
Condition can_eat[N]; // used to wake up philosophers

public:
void grab_both_chopsticks (int i) {

state[i] = Hungry;
while (!chopsticks_available(i)) {

can_eat[i].cwait();
}
state[i] = Eating;

}

void drop_both_chopsticks (int i) {
state[i] = Thinking;
might_eat_now((i–1) % N); // maybe a neighbour can eat

might_eat_now((i+1) % N); // now that we’re done eating

}

CMPT 300, 99-2

Segment 6, Page 45

Monitors — Example, Dining Philosophers (contd.)

.
:

bool chopsticks_available (int k) {
return (state[(k–1) % N] != Eating

&& state[(k+1) % N] != Eating);
}

void might_eat_now (int k) {
if (state[k] == Hungry && chopsticks_available(k)) {

can_eat[k].csignal();
}

}

DiningPhilosophers() {
for (int i = 0; i < 5; ++i) {

state[i] = Thinking;
}

}
}

CMPT 300, 99-2

Segment 6, Page 46

Monitors — Example, Dining Philosophers (contd.)

We run the dining philosophers using:

DiningPhilosophers phils;

void philosopher(int i) {

for (; ;) {

phils.grab_both_chopsticks(i);

eat();

phils.drop_both_chopsticks(i);

think();

}
}

void main () {
parfor (int i = 0; i < DiningPhilosophers::N; ++i)

philosopher(i);
}

CMPT 300, 99-2

Segment 6, Page 47

Class Exercise: Is this version of the dining

philosophers problem

satisfactory?

CMPT 300, 99-2

Segment 6, Page 48

Monitors — Implementation Using Semaphores

• Extra (hidden) variables, added to class

Semaphore guard; // initialized to 1
Semaphore insider_can_run; // initialized to 0
int insider_count; // initialized to 0

• Each public member function becomes:

guard.wait();
… original member function body …
if (insider_count > 0)

insider_can_run.signal();
else

guard.signal();

• Each condition variable, x, becomes:

Semaphore x_happened; // initialized to 0
int x_waiting_count; // initialized to 0

CMPT 300, 99-2

Segment 6, Page 49

Monitors — Implementation Using Semaphores

(contd.)

• x.cwait() becomes:

++x_waiting_count;
if (insider_count > 0)

insider_can_run.signal();
else

guard.signal();
x_happened.wait();
––x_waiting_count;

• x.signal() becomes:

if (x_waiting_count > 0) {
++insider_count;
x_happened.signal();
insider_can_run.wait();
––insider_count;

}

CMPT 300, 99-2

Segment 6, Page 50

Priority Inversion

Class Exercise: What happens if a low-priority

process is in the monitor when a

higher-priority thread wants to run

(and enter the monitor itself)?

What other synchronization

methods does priority inversion

apply to?

CMPT 300, 99-2

Segment 6, Page 51

PThreads Condition Variables

PThreads provides the same kind of condition variables we saw

with monitors, but rather than associate a condition with

monitor, Pthreads associates them with a guardian mutex.

• pthread_cond_wait(condition, mutex) — unlocks mutex and

waits for condition to be signalled — when awakened,

thread will relock mutex

• pthread_cond_signal(condition) — signals condition to one

waiting thread (the guardian mutex should be locked when

signalling to prevent lost wakeup bugs)

• pthread_cond_broadcast(condition) — signals condition to all

waiting threads (only one of them will run at a time)

• pthread_cond_init(condition) & pthread_cond_init(condition)
initialize and destroy condition variables

CMPT 300, 99-2

Segment 6, Page 52

Segment Review

You should be able to:

• Describe the critical-section problem

• Determine whether software-based synchronization

algorithms operate correctly (or contain race conditions)

• Describe and implement semaphores, critical regions, and

monitors

• Design algorithms using semaphores, critical regions, or

monitors for synchronization

• Describe and implement solutions to several classical

synchronization problems

• Explain and prevent priority inversion

CMPT 300, 99-2

Segment 6, Page 53

