CMPT 300 — Operating Systems I

Summer 1999

Segment 5:

Processor Scheduling

Basic Concepts of CPU Scheduling

- Maximum CPU utilization is obtained with multiprogramming
- CPU-I/O Burst Cycle Process execution consists of a cycle of:
 - CPU execution
 - 1/0 wait

Melissa O'Neill

CMPT 300, 99-2 Segment 5, Page 1 CMPT 300, 99-2 Segment 5, Page 2

CPU Scheduler (aka short-term scheduler)

- Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them.
- CPU scheduling decisions may take place when a process:
 - 1. Switches from running to waiting state (e.g., 1/0 wait)
 - 2. Switches from running to ready state (e.g., interrupt)
 - 3. Switches from waiting to ready (e.g., 1/0 completes)
 - 4. Terminates
- Scheduling under 1 and 4 is nonpreemptive.
- All other scheduling is preemptive.
- **Class Exercise:** What criteria should we use to evaluate different scheduling algorithms?

Scheduling Criteria — User Oriented

Performance-related criteria

- Response time
- Turnaround time
- Deadlines satisfied

Other criteria

• Predictability

Scheduling Criteria — System Oriented

Performance-related criteria

- Throughput
- Processor utilization

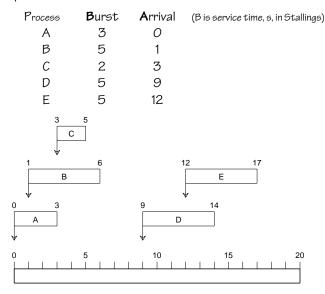
Other criteria

- Fairness
- Respect for priorities
- Resource balancing

Optimization Criteria

Maximize

- Throughput
- Processor utilization


Minimize

- Turnaround time
- Response time

CMPT 300, 99-2 Segment 5, Page 5 CMPT 300, 99-2 Segment 5, Page 6

A Running Example...

Five process, A, B, C, D, E

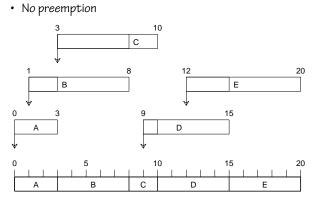
A Running Example (contd.)

We will examine the following measures for scheduling algorithms:

- **S** start time
- \mathbf{F} finish time
- **T** response time (F A)
 M missed time (T B)

• **P** — penalty ratio (T / B)

- (w in Stallings)
 - (RR in Stallings)


For each scheduling algorithm we will build a table like this:

Process	В	А	S	F	Т	М	P
А	3	0					
В	5	1					
С	2	3					
D	5	9					
E	5	12					

Mean

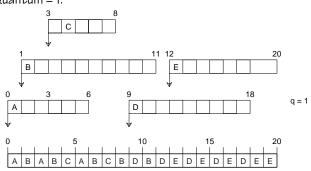
First-Come, First-Served (FCFS) Scheduling

• Run processes in the order they arrive in the ready queue

First-Come, First-Served (FCFS) Scheduling (contd.)

Wef	ind:								
	Process	в	Α	e	6	F	Т	М	P
	А	3	0	C)	3	3	0	1.0
	В	5	1	3	3	8	7	2	1.4
	С	2	3	ε	3	10	7	5	3.5
	D	5	9	10)	15	6	1	1.2
	E	5	12	15	5	20	8	3	1.6
	Mean						6.2	2.2	1.74

But, consider:

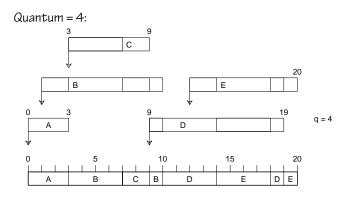

Process	• B	Α	5	F	Т	М	P
W	1	0	0	1	1	0	1.00
Х	100	0	1	101	101	1	1.01
Y	1	0	101	102	102	101	102.00
Ζ	100	0	102	202	202	102	2.02
Mean					101.	5 51	28.10

CMPT 300, 99-2 Segment 5, Page 9 CMPT 300, 99-2 Segment 5, Page 10

Round Robin (RR) Scheduling

- Divide time between processes on ready queue
- Each process gets one quantum of time before moving on to next process

Quantum = 1:



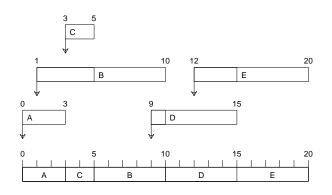
Round Robin (RR) Scheduling (contd)

We fi	nd:							
	Process	в	Α	9	F	Т	М	P
	А	3	0	0	6	6	3	2.0
	В	5	1	1	11	10	5	2.0
	С	2	3	4	8	5	3	2.5
	D	5	9	9	18	9	4	1.8
	E	5	12	12	20	8	3	1.6
	Mean					7.6	3.6	1.98

Round Robin (RR) Scheduling

• Very small quantum approximate a *processor sharing* policy

Round Robin (RR) Scheduling (contd)


Process	В	Α	S	F	T	М	P
А	3	0	0	3	3	0	1
В	5	1	3	10	9	4	1.8
С	2	3	7	9	6	4	3.0
D	5	9	10	19	10	5	2.0
E	5	12	14	20	8	3	1.6
Mean					7.2	3.2	1.88

• Very large quantum approximate a FCFS policy

CMPT 300, 99-2 Segment 5, Page 13 CMPT 300, 99-2 Segment 5, Page 14

Shortest Burst Next (SPN)

- Try to have advantages of RR, without cost of preemption
- Run the process that will have the shortest burst of CPU next.

Shortest Burst Next (SPN) (contd.)

We find:

We find:

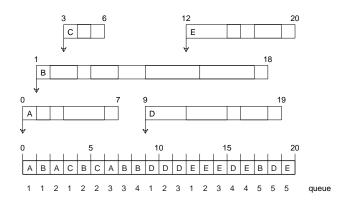
Process	в	Α	5	F	Т	М	P
А	3	0	0	3	3	0	1.0
В	5	1	5	10	9	4	1.8
С	2	3	3	5	2	0	1.0
D	5	9	10	15	6	1	1.2
E	5	12	15	20	8	3	1.6
Mean					5.6	1.6	1.32

Better than FCFS, but:

• Long bursts are still a problem, due to lack of preemption

Preemptive Shortest Burst Next (PSPN (aka SRT))

- Pre-empt when a shorter-burst process becomes ready
- Achieves best achievable penalty ratio


Highest Penalty Ratio Next (HPRN (aka HRRN))

- Choose based on penalty ratio, rather than burst time.
- Avoids starving long bursts, but performance appears worse than SPN.

CMPT 300, 99-2 Segment 5, Page 17 CMPT 300, 99-2 Segment 5, Page 18

Mutlilevel Feedback (FB)

- Penalize jobs that have been running a long time.
- Multiple ready queues, take from the topmost queue that has items in it (thus queues have priority)
- When a process has spent "too long" on one queue, it is bumped down to the next lowest queue

Mutlilevel Feeback (FB)

We find:

Process	В	Α	9	F	Т	М	P
А	3	0	0	7	7	4	2.3
В	5	1	1	18	17	12	3.4
С	2	3	3	6	3	1	1.5
D	5	9	9	19	10	5	2.0
E	5	12	12	20	8	3	1.6
Mean					9	5	2.16

Many variations:

- Give lower priority ready queues larger quanta.
- Different criteria for what constitutes "too long" in a queue
- Move "starving" processes in low priority queues back up into higher priority queues
- Share CPU time between queues according to some allocation strategy, rather than always preferring the top queue

Segment Review

You should be able to:

- Draw Extended Gantt Charts to describe scheduling algorithms
- Describe and contrast a variety of scheduling algorithms, including FCFS, RR, SPN, SRT, FB

CMPT 300, 99-2 Segment 5, Page 21