
CMPT 300 — Operating Systems I

Summer 1999

Segment 4:

Processes and Threads

Melissa O’Neill

CMPT 300, 99-2

Segment 4, Page 1

User’s view of Processes

• A Fundamental OS abstraction

• Vary in details from OS to OS:

– Batch system — jobs

– Time-shared systems — user programs or tasks

• Common idea — process = a program in execution

• A process includes:

– program

– current program state

(i.e., data in memory, processor state, etc.)

CMPT 300, 99-2

Segment 4, Page 2

User’s view of Processes (contd.)

• Under Unix, processes:

– are created with fork, exit with exit

– have events signalled with kill

– wait for children to finish with wait

but operating systems vary in the details of how process

creation etc. work…

• On any multiprogrammed system, multiple processes may be

active at any one time (c.f., uniprogrammed system)

– even if really the processor can only physically be running

instructions from one process at any given time

• Processes have a degree of independence from each other

– may only communicate through designated

communications methods

– one errant processes should not affect other unrelated

processes

CMPT 300, 99-2

Segment 4, Page 3

User’s view of Processes (contd.)

• The environment you interact with is made up of processes

USER PID %CPU %MEM VSIZE RSIZE TT STAT TIME COMMAND
melissa 217 8.8 16.2 33.7M 5.17M ? SW 25hr WindowServer
root 230 6.2 0.8 1.61M 248K p1 SW 41hr top
root 228 2.1 5.1 22.5M 1.64M ? SW 239:28 Terminal
root 15400 1.1 0.6 2.09M 200K p9 R 525:50 httpd
melissa 241 0.8 1.1 1.68M 352K p7 SW 0:29 csh
melissa 10674 0.3 2.0 5.66M 640K ? SW 123:35 Preferences
melissa 223 0.2 5.3 6.18M 1.71M ? SW 5:41 WM
root 25 0.0 0.9 6.73M 296K ? S 50:52 nmserver
root 92 0.0 0.7 1.58M 232K ? SW 2:59 syslogd
root 97 0.0 0.6 1.57M 208K ? SW 0:37 portmap
root 100 0.0 0.5 1.67M 152K ? SW 2:20 routed
root 104 0.0 0.7 1.59M 240K ? SW 0:26 nibindd
root 105 0.0 1.1 1.63M 368K ? SW 3:41 netinfod
root 109 0.0 1.0 1.69M 312K ? SW 2:58 lookupd
root 3 0.0 0.4 3.26M 120K ? SW 0:02 kern_loader
root 113 0.0 0.2 1.65M 80K ? S 0:00 biod
root 115 0.0 0.2 1.65M 80K ? S 0:00 biod
root 116 0.0 0.2 1.65M 80K ? S 0:00 biod
root 126 0.0 0.6 1.61M 192K ? SW 0:38 autonfsmount
root 132 0.0 0.2 1.68M 80K ? S 0:00 bootpd
root 135 0.0 0.3 1.58M 96K ? SW 0:00 rpc.bootparamd
root 141 0.0 0.7 1.58M 224K ? SW 0:15 inetd
root 2 0.0 0.3 688K 88K co SW 3:26 mach_init
root 114 0.0 0.2 1.65M 80K ? S 0:00 biod
root 163 0.0 0.3 2.12M 96K ? SW 0:00 lpd
root 173 0.0 1.4 3.79M 448K ? SWN 0:13 npd
root 177 0.0 1.7 1.96M 552K ? SW 2:48 named
nobody 180 0.0 0.4 1.72M 120K ? SW 5:31 ssockd
root 189 0.0 0.5 1.64M 168K ? SW 2:04 aarpd
root 191 0.0 0.5 1.66M 160K ? SW 1:06 atis
root 1 0.0 0.1 736K 40K ? SW 0:04 init
root 202 0.0 0.4 1.77M 136K ? SW 0:42 sshd1
root 209 0.0 0.4 1.65M 120K ? SW 7:01 update
root 212 0.0 0.5 1.65M 152K ? SW 3:19 cron
root 218 0.0 1.0 5.73M 344K ? SW 0:02 loginwindow
melissa 219 0.0 1.4 3.81M 456K ? SW 0:38 pbs
melissa 221 0.0 0.6 2.13M 200K ? SW 0:01 appkitServer
root 145 0.0 0.8 1.88M 264K ? S 0:20 sendmail

CMPT 300, 99-2

Segment 4, Page 4

(contd.)
USER PID %CPU %MEM VSIZE RSIZE TT STAT TIME COMMAND
root 150 0.0 0.3 2.13M 112K ? SW 0:00 lpd
melissa 225 0.0 5.8 11.4M 1.84M ? RWN 122:27 Mail
melissa 226 0.0 3.4 5.55M 1.08M ? SW 212:09 BackSpace
root 160 0.0 0.3 1.91M 96K ? SW 0:00 pbs
melissa 231 0.0 0.4 1.77M 128K p2 SW 76:04 tail
melissa 232 0.0 0.6 1.68M 184K p3 S 0:05 csh
melissa 235 0.0 0.4 1.68M 144K p4 S 0:06 csh
melissa 239 0.0 1.0 1.68M 312K p6 SW 0:14 csh
root 194 0.0 0.5 1.64M 160K ? SW 0:56 snitch
melissa 243 0.0 0.5 1.68M 168K p8 S 0:16 csh
melissa 507 0.0 0.4 1.77M 128K p7 SW 74:27 tail
melissa 585 0.0 1.0 3.94M 312K ? SW 0:34 nextspell
melissa 1675 0.0 6.1 28.9M 1.95M ? SW 0:17 Webster
melissa 11225 0.0 1.6 11.8M 528K ? SW 0:24 Librarian
melissa 11836 0.0 0.6 4.17M 184K ? SWN 0:01 PDFCryptServer
melissa 11838 0.0 0.9 4.12M 296K ? SWN 0:04 FlateFilterServe
melissa 11840 0.0 0.9 4.09M 296K ? SWN 0:01 PDFFontFileServe
root 12011 0.0 0.5 3.67M 168K ? SW 0:02 Faxxess
root 12012 0.0 0.7 1.60M 232K ? SW 0:08 TrimProgram
root 12525 0.0 0.9 1.76M 288K ? SW 10:59 aufs
root 0 0.0 14.9 17.7M 4.76M ? R N 710hr kernel idle
root 222 0.0 3.7 6.02M 1.17M ? S N 1:16 Workspace
root 10380 0.0 0.3 1.80M 88K ? S 0:00 plug-gw
melissa 12554 0.0 1.5 1.69M 496K ? SW 1:46 fetchmail
nobody 13952 0.0 0.7 2.09M 232K p9 S 0:03 httpd
nobody 13955 0.0 0.7 2.02M 232K p9 SW 0:03 httpd
melissa 17200 0.0 0.5 1.68M 160K p5 S 0:00 csh
melissa 29082 0.0 2.0 4.84M 640K ? SW 0:38 Preview
melissa 2214 0.0 5.6 4.80M 1.80M ? SW 3:02 WriteNow
melissa 3753 0.0 1.6 1.91M 528K ? SW 1:47 aufs
melissa 3757 0.0 0.9 1.66M 280K p6 T 0:00 ncftp
root 4131 0.0 0.6 1.02M 184K Ca SW 0:00 pppd
root 4253 0.0 0.7 1.69M 240K p9 SW 0:01 telnetd
melissa 4254 0.0 1.0 1.68M 312K p9 S 0:02 csh
melissa 4316 0.0 5.9 5.38M 1.88M ? SW 0:04 Edit
melissa 4319 0.0 3.3 2.70M 1.07M p6 S 0:01 kermit
melissa 4321 0.0 0.8 2.70M 272K p6 S 0:00 kermit
nobody 4337 0.0 0.8 1.64M 264K ? SW 0:00 ssockd

– about 75 processes executing on my workstation

– times represent 35 days of uptime

CMPT 300, 99-2

Segment 4, Page 5

Process Concept

• A process has two aspects:

– resource ownership (memory, files, etc.)

– despatching (processor use)

• Active processes must share the available resources

CMPT 300, 99-2

Segment 4, Page 6

Process Implementation

• How does the OS implement the process abstraction?

CMPT 300, 99-2

Segment 4, Page 7

Process Implementation

• Maintain process image for each process

i.e., storage containing:

– program code

– program data

– processor stack

– housekeeping information (PCB)

• Switch CPU between active processes (process switch)

CMPT 300, 99-2

Segment 4, Page 8

A Two-state Process Model

Not
Running Running

Dispatch

Dispatch
Queue

Enter Exit

Pause

Pause

Enter Exit

(a) State transition diagram

(b) Queuing diagram

Processor

• But what exactly is in the queue here?

CMPT 300, 99-2

Segment 4, Page 9

Process Control Block

Class Exercise: What information should be stored

in a process control block?

CMPT 300, 99-2

Segment 4, Page 10

Process Switching

Class Question: When can/do we switch processes?

CMPT 300, 99-2

Segment 4, Page 11

Process Switching

We could switch processes any time the OS has control, i.e.,

• interrupt occurs

– clock

– I/O interrupt

– memory fault

• Trap occurs

– trace

– protection fault

• System call

– I/O request

– wait for child

– etc.

CMPT 300, 99-2

Segment 4, Page 12

A Five-state Process Model

New Ready

Blocked

Running Exit
Admit

Dispatch

Timeout

Release

Event
Wait

Event
Occurs

• Admit (and release) are operations supported by the long-

term scheduler

• Other operations are supported by the short-term

scheduler

CMPT 300, 99-2

Segment 4, Page 13

A Five-state Process Model

Possible states for a process…

• New: Process is being created.

– No resources allocated yet.

• Running: Instructions are being executed.

• Ready: Process is waiting to be assigned to a processor.

• Blocked: Process is waiting for some event to occur.

• Exited: Process has finished execution.

Class Question: Why do we need an “exited” state?

CMPT 300, 99-2

Segment 4, Page 14

Process Scheduling Queues

The machine keeps track of which processes are in which

states using queues.

• New queue — processes waiting to be created

• Ready queue — processes (residing in main memory), ready

and waiting to execute.

• Event queues — processes waiting for a particular event

(e.g., waiting for an I/O request to complete)

Tip: In C++, we would say something like:

queue< ProcessStartInfo * > new_queue;

Process * current_process

queue< Process * > ready_queue;

queue< Process * > tape_drive_queue;

CMPT 300, 99-2

Segment 4, Page 15

Schedulers

• Long-term scheduler — selects which processes should be

brought into the ready queue.

– Invoked very infrequently (seconds or minutes)

– May be slow

– Controls the degree of multiprogramming

• Short-term scheduler — selects which process should be

executed next and allocates it to the processor.

– Invoked very frequently (milliseconds)

– Must be fast

CMPT 300, 99-2

Segment 4, Page 16

Process Switch

When system switches to another process, the system must

save the state of the old process and load the saved state for

the new process.

• Process-switch time is overhead

• Time required depends on hardware support.

CMPT 300, 99-2

Segment 4, Page 17

Cooperating Processes

Two possibilities:

• Independent processes cannot affect or be affected by the

execution of another process.

• Cooperating processes can affect or be affected by the

execution of another process.

Advantages of process cooperation:

• Information sharing

• Computation speed-up

• Modularity

• Convenience

CMPT 300, 99-2

Segment 4, Page 18

Sharing Stateful Resources

Share any resource that has a readable and settable state:

• Memory

• Files

CMPT 300, 99-2

Segment 4, Page 19

Threads

• Traditional processes

— Virtual uniprocessor machine

• Multithreaded processes

— Virtual multiprocessor machine

Thus, threads

• Share

– Address space (i.e., memory)

– Other resources (e.g., open files)

• Don’t share

– Processor registers

– Processor stack area

CMPT 300, 99-2

Segment 4, Page 20

Threading Possibilities

one process
one thread

one process
multiple threads

multiple processes
one thread per process

multiple processes
multiple threads per process

CMPT 300, 99-2

Segment 4, Page 21

Uses of Threads

• Performing foreground and background work

• Supporting asynchronous processing

• Speeding execution

• Organizing programs

CMPT 300, 99-2

Segment 4, Page 22

Class Exercise: Can an application implement

threads without thread support

being built into the OS?

If so, what does it need from the

from the OS to support threads?

CMPT 300, 99-2

Segment 4, Page 23

Model for User Threads

P

User
Space

Threads
Library

Kernel
Space

Pure user-level

• No kernel overhead for thread library calls

• Scheduling policy in thread library can be quite different

from of kernel — can be application specific

But,

• I/O issues

• Can’t take (easily) take advantage of multiprocessing

CMPT 300, 99-2

Segment 4, Page 24

Model for Kernel-level Threads

• So, maybe we should put the threads in the kernel?

P

User
Space

Kernel
Space

Pure kernel-level

P

User-level thread

Kernel-level thread

Process

But,

• Now we have kernel overheads

– Kernel data structures

– Mode switch to kernel

CMPT 300, 99-2

Segment 4, Page 25

Changes to Process Control Block

to Support Kernel-level Threads

• Before

Single-Threaded
Process Model

Process
Control
Block

User
Address
Space

User
Stack

Kernel
Stack

CMPT 300, 99-2

Segment 4, Page 26

Changes to Process Control Block

to Support Kernel-level Threads

• After

Multithreaded
Process Model

Process
Control
Block

User
Address
Space

User
Stack

Kernel
Stack

User
Stack

Kernel
Stack

User
Stack

Kernel
Stack

Thread
Control
Block

Thread Thread Thread

Thread
Control
Block

Thread
Control
Block

• What is in a thread control block? Typically just registers.

CMPT 300, 99-2

Segment 4, Page 27

Hybrid schemes for threads

• This approach is taken by Solaris, which calls its kernel-

level threads lightweight processes

P P

User
Space

Threads
Library

Kernel
Space

Combined

P

User-level thread

Kernel-level thread

Process

CMPT 300, 99-2

Segment 4, Page 28

Scheduler Activations

A better way to deal with kernel/user thread package issues:

• Kernel talks to the thread library through upcalls

• An upcall is a call from the kernel to a user code

– Kernel creates a new kernel thread (called a scheduler

activation)

– Calls routine in user thread library

• Upcalls happen:

– When a thread blocks

– When a thread becomes ready

CMPT 300, 99-2

Segment 4, Page 29

Message-Based

Interprocess Communication (IPC)

Messages are an alternative to communication though shared

memory or shared files.

• Analogous to sending a message by mail, or a package by sea

• Provides a virtual communications medium

• Requires two basic operations:

– send_message(destination, message)

– receive_message(sender, message)

Class Exercise: The above definitions of

send_message and receive_message
are remarkably vague.

What details are missing?

What are the options?

CMPT 300, 99-2

Segment 4, Page 30

Implementation Questions

• Is a “connection” set up between the two processes?

– If so, is the link unidirectional or bidirectional?

• How do processes find the addresses of their friends?

• Can many processes send to the same destination?

• Can many processes receive at the same destination?

• Does the sender wait until the receiver receives the

message?

• Does the receiver always know who sent the message?

• Can the receiver restrict who can talk to it?

• What is the capacity of the receiver’s mailbox?

• Is the recipient guaranteed to be on the same machine?

• Can messages be lost?

• Can messages vary in size or is the size fixed?

• Do messages contain typed data?

CMPT 300, 99-2

Segment 4, Page 31

Example: Message passing in Mneme (ports.cc)

• Basics

Mneme calls its message sources and destinations “ports”

(the sea analogy).

There are two classes:

– LocalPort (where messages are send and received)

– RemotePortAddress (names for places that messages can

be sent to)

• Is a “connection” set up between the two processes?

No. Mneme uses connectionless datagrams.

• Can a process have more than one LocalPort?

Yes.

• How do processes find the addresses of their friends?

Mneme ports are named using ASCII strings (filenames!).

CMPT 300, 99-2

Segment 4, Page 32

Example (continued)

• Can many processes send to the same destination?

Yes.

• Can many processes receive at the same destination?

No.

• Does the sender wait until the receiver receives the message?

No. (But if the destination mailbox is full, the process will

block until the message can be placed in the mailbox).

• Does the receiver always know who sent the message?

Usually. (It is possible to create anonymous LocalPorts, but

this is rarely done.)

CMPT 300, 99-2

Segment 4, Page 33

Example (continued)

• Can the receiver restrict who can talk to it?

Only by receiving messages, checking who they are from, and

throwing away ones that are from “undesirable” senders.

• What is the capacity of the receiver’s mailbox?

Approximately 32 KB of data.

• Do messages arrive in order?

Messages from the same sender arrive in order. Messages

from different senders may not arrive in the order they were

sent.

• Is the recipient guaranteed to be on the same machine?

Yes, currently.

CMPT 300, 99-2

Segment 4, Page 34

Example (continued)

• Can messages be lost?

Not under NEXTSTEP, Linux or Solaris 2.6 for local delivery.

• Can messages vary in size or is the size fixed?

Message size can vary. Large messages (more than 10 KB)

may cause problems and are not supported.

• Do messages contain typed data?

No. The messaging primitives see messages as a simple byte

sequence.

(But the MessageBuffer class provides a mechanism for

extracting typed data from a sequence of bytes).

• What happens if the receiver dies?

Messages already delivered to the receiver’s mailbox will be

lost. Otherwise, a system_error exception will be thrown.

CMPT 300, 99-2

Segment 4, Page 35

Class Exercise: Using the Mneme port classes as a

foundation, how would you

implement a message passing

scheme that:

a) Always waits for the receiver to

receive the message before the

sender continues

b) Allows messages greater than

10 KB.

c) Has unlimited buffering so that a

sender never has to wait

d) Won’t lose a message if the

receiver dies

e) Has unlimited buffering?

CMPT 300, 99-2

Segment 4, Page 36

Segment Review

You should be able to:

• Explain the concept of a process

• Describe the costs associated with a process switch and a

thread switch

• Contrast processes and threads

• Determine necessary fields for a process control block

• Describe the possible scheduling states for a process for

both two-state and five-state process models

• Categorize message passing systems

• Explain how to implement one interprocess communications

mechanism in terms of another

CMPT 300, 99-2

Segment 4, Page 37

