
CMPT 300 — Operating Systems I

Summer 1999

Segment 3:

Computer System Architecture

Melissa O’Neill

CMPT 300, 99-2

Segment 3, Page 1

Computer System Architecture

tape drivesprinterdiskdisk

CPU
disk

controller
printer

controller
tape-drive
controller

memory

memory controller

system bus

on-line

CMPT 300, 99-2

Segment 3, Page 2

Computer System Operation

• I/O devices and the CPU can execute concurrently.

• Each device controller is in charge of a particular device type.

• Each device controller has a local buffer.

• CPU moves data from main memory to the local buffers and vice

versa.

• I/O is from the device to local buffer of controller.

• Device controller informs CPU that it has finished its operation by

causing an interrupt.

CMPT 300, 99-2

Segment 3, Page 3

Processor Operation (basic)

START HALT
Fetch Next
Instruction

Fetch Cycle Execute Cycle

Execute
Instruction

• Memory contains program instructions and program data

• Processor registers maintain processor state. Registers

include:

– General Purpose (Address & Data) Registers

– Instruction Pointer (aka Program Counter)

– Stack Pointer(s)

– Control and Status Registers

CMPT 300, 99-2

Segment 3, Page 4

I/O Structure

Two alternatives — either:

1. Programmed I/O — After I/O starts, control returns to user

program only on I/O completion.

– CPU waits until I/O completes.

– at most one I/O request is outstanding at a time; no

simultaneous I/O processing.

CMPT 300, 99-2

Segment 3, Page 5

I/O Structure (continued)

or:

2. Interrupt driven I/O — After I/O starts, control returns to

user program without waiting for I/O completion.

– System call – request to the operating system to allow

user to wait for I/O completion.

– Device-status table contains entry for each I/O device

indicating its type, address, and state.

– Operating system indexes into I/O device table to

determine device status and to modify table entry to

include interrupt.

CMPT 300, 99-2

Segment 3, Page 6

Processor Operation Revisited (with interrupts)

START

HALT

Fetch Next
Instruction

Fetch Cycle Execute Cycle Interrupt Cycle

Interrupts
Disabled

Interrupts
Enabled

Execute
Instruction

Check for
Interrupt;

Process Interrupt

• Interrupt transfers control to the interrupt service routine,

generally, through the interrupt vector, which contains the

addresses of all the service routines.

• Interrupt architecture must save the address of the

interrupted instruction (and anything else need to resume

the code that was running)

• What if an interrupt occurs during interrupt processing?

CMPT 300, 99-2

Segment 3, Page 7

Interrupt Handling

• The operating system preserves the state of the CPU by

storing registers and the program counter.

• Determines which type of interrupt has occurred, using either

– polling

– vectored interrupts

• Separate segments of code determine what action should be

taken for each type of interrupt.

CMPT 300, 99-2

Segment 3, Page 8

Types of Interrupts

• Software exception (also called a trap)

• Timer

• I/O

• Hardware failure

An operating system is interrupt driven.

CMPT 300, 99-2

Segment 3, Page 9

Storage Hierarchy

• Storage systems organized in hierarchy:

– speed

– size

– cost

– volatility

• Caching – copying information into faster storage system;

main memory can be viewed as a fast cache for secondary

storage.

CMPT 300, 99-2

Segment 3, Page 10

Storage-Device Hierarchy

Registers

Cache

Disk Cache

Main Memory

Magnetic Disk

Removable Media

CMPT 300, 99-2

Segment 3, Page 11

Cache Issues

• Cache size

• Block size

• Mapping function

• Replacement algorithm

• Write policy

Class Exercise:

What problems might

the addition of cache

cause?

CPU

Word Transfer

Block Transfer

Cache

Main Memory

CMPT 300, 99-2

Segment 3, Page 12

Dual-Mode Operation

Sharing system resources requires the operating system to

ensure that a buggy program cannot cause other programs to

execute incorrectly.

Solution: Dual-Mode Operation

• Provide hardware support to differentiate between at least

two modes of operations.

1. User mode – execution done on behalf of a user.

2. Kernel mode (aka privileged mode, supervisor mode,

system mode or monitor mode)—execution done on

behalf of operating system.

Class Exercise: Would more modes be helpful?

CMPT 300, 99-2

Segment 3, Page 13

Dual-Mode Operation (continued)

• Mode bit added to computer hardware to indicate the current

mode: privileged (0) or user (1).

• When an interrupt or fault occurs, hardware switches to

privileged mode:

User
Mode

Kernel
Mode

Interrupt / Exception

Set User Mode Bit

• Privileged instructions can be issued only in kernel mode.

CMPT 300, 99-2

Segment 3, Page 14

I/O Protection

We need to protect, the I/O devices from the actions of errant

programs.

Solution: I/O Protection

• Only the kernel is allowed to interact with the I/O hardware.

• All I/O instructions are privileged instructions.

• Must ensure that a user program can never run in kernel mode

(e.g., a user program that, as part of its execution, stores a

new address in the interrupt vector).

CMPT 300, 99-2

Segment 3, Page 15

Memory Protection

We need to protect, the interrupt vector, the interrupt service

routines and operating system data structures from the actions

of errant programs.

Solution: Memory Protection

• Processor can use two special registers that determine the

range of legal addresses that a program may access:

– Base register – holds the smallest legal physical memory

address.

– Limit register – contains the size of the range.

• Memory outside the defined range may not be accessed by

user-mode code.

CMPT 300, 99-2

Segment 3, Page 16

Memory Protection — Example

kernel

job 1

job 2

job 3

job 4

1024000

0

880000

420940

300040

256000

300040

base register

120900

limit register

CMPT 300, 99-2

Segment 3, Page 17

Protection Hardware (basic)

Processor

base base + limit

address ≥ <

trap

Memory

• When executing in kernel mode, the process has unrestricted

access to all memory.

• The load instructions for the base and limit registers are

privileged instructions.

CMPT 300, 99-2

Segment 3, Page 18

Protection Hardware (other answers)

When I teach CMPT-363, I initially tell my students:

 s Modes are almost always a mistake !

U

In that case, I’m talking about user interfaces, but perhaps the

same lesson applies here?

Class Exercise: Consider the case where a process

asks to read one block from the

disk. Discover how our memory

protection scheme adds additional

overhead.

Rethink the idea of modes. What

problem are we trying to solve, and

how else could we solve it?

CMPT 300, 99-2

Segment 3, Page 19

CPU Protection

If a program hangs, it shouldn’t hang the machine.

• Timer – interrupts computer after specified period to ensure

operating system maintains control.

– Timer is decremented every clock tick.

– When timer reaches zero, an interrupt occurs.

– Timer commonly used to implement time sharing.

– Timer also used to compute the current time.

– Load-timer is a privileged instruction.

CMPT 300, 99-2

Segment 3, Page 20

General-System Architecture

Given that I/O instructions are privileged, how does the user

program perform I/O?

Solution: System call

• System call — the method used by a process to request

action by the operating system.

– Provides only user access to kernel-mode–only

functionality.

– Usually takes the form of a software interrupt

– Is just like an interrupt — control passes through the

interrupt vector to a service routine in the OS, and the

mode bit is set to kernel mode.

– Requires that the kernel verify that the parameters are

correct and legal, execute the request, and return

control to the user instruction following the system call.

CMPT 300, 99-2

Segment 3, Page 21

System Calls (continued)

• Generally available as assembly-language instructions.

– Wrappers for these instructions are available for higher-

level languages.

• Three general methods are used to pass parameters between

a running program and the operating system:

– Pass parameters in processor registers

– Store the parameters in a table in memory, passing the

table address to the operating system in a register

– Push the parameters onto the stack

CMPT 300, 99-2

Segment 3, Page 22

System Calls — Example (hello.S)

Here’s our classic “Hello World” program, written using direct

system calls.

#include <syscall.h>
.data
greeting: .ascii "Hello World\n" // As usual...

.text
start: // Print “Hello World” using write

movel #SYS_write, d0
movel #1, d1
movel #greeting, d2
movel #12, d3
trap #4 // Syscall !

bcs failed // Okay/Failed?

okay: movel #0, d1
bra exit

failed: movel d0, d1
exit: movel #SYS_exit, d0

trap #4 // Syscall !

illegal // Crazy! Panic!

CMPT 300, 99-2

Segment 3, Page 23

System Call Wrappers

Programming languages like C generally want to see system calls

as a function in their language, so most operating systems define

library wrappers for their system calls.

• The C Library on NEXTSTEP (m68k) has this wrapper for the

rename system call:

rename:
movel sp,a0 // args on stack

movel d2,sp@– // save registers

movel #SYS_rename,d0
movel a0@(0x4:w),d1 // old filename

movel a0@(0x8:w),d2 // new filename

trap #4 // Syscall!

bcc rename_okay // Okay/Failed?

rename_failed:
jsr cerror:l // set errno

rename_okay:
movel sp@+,d2 ; restore d2
rts

CMPT 300, 99-2

Segment 3, Page 24

Beyond System Calls — Library Interfaces

System calls tend to be minimal and low level. Generally, we prefer

to use higher-level routines found in libraries provided with the

operating system.

Class Exercise: What is the key difference between

system calls and library calls?

CMPT 300, 99-2

Segment 3, Page 25

Beyond System Calls —

Operating System Shells and System Programs

• “User interface” for the operating system

• Allow control of:

– Process creation and management

– I/O handling

– Secondary-storage management

– Main-memory management

– File-system access

– Protection

– Networking

CMPT 300, 99-2

Segment 3, Page 26

Beyond System Calls —

Operating System Shells and System Programs

(continued)

• Shells include:

– Control-card interpreters

– Command line interpreters

– GUI-based managers

• To many users, these programs are the operating system

(even if the operating system core sees them as user-mode

programs)

CMPT 300, 99-2

Segment 3, Page 27

System Design Goals

• User goals

– Convenient to use

– Easy to learn

– Reliable

– Safe

– Fast

• System goals

– Easy to design, implement, and maintain

– Flexible

– Reliable

– Error-free

– Efficient

CMPT 300, 99-2

Segment 3, Page 28

Mechanism and Policy

• Mechanisms determine how to do something

• Policies decide what will be done.

• Policy may vary while mechanism changes (and different

mechanisms can implement the same policy).

Class Exercise: Some examples of mechanism and

policy…

CMPT 300, 99-2

Segment 3, Page 29

System Implementation

• Traditionally written in assembly language, now often written

in higher-level languages.

• Code written in a high-level language:

– Can be written faster.

– Is more compact.

– Is easier to understand and debug.

• An operating system is far easier to port (move to some

other hardware) if it is written in a high-level language.

CMPT 300, 99-2

Segment 3, Page 30

System Structure — Non-modular Approach

• One big program, not very modular; examples

– MS-DOS

– Early Unix kernels

• Maintenance nightmare

CMPT 300, 99-2

Segment 3, Page 31

System Structure — Layered Approach

• OS functionality built up through layers, with each layer

depending on the previous layers

Class Exercise: You’re asked to design a small OS

with about five layers?

What would they be?

(No peeking at your textbook!)

CMPT 300, 99-2

Segment 3, Page 32

System Structure — Layered Approach (contd)

• Stallings lists a thirteen-layer conceptual framework

• Real operating systems are a little different

CMPT 300, 99-2

Segment 3, Page 33

Object
Manager

Security
Reference

Monitor

Process
Manager

Local
Procedure

Call
Facility

Virtual
Memory
Manager

Window
Manager

Graphic
Device
Drivers

I/O Manager

Microkernel

Hardware

System Services

W
in

do
w

s
N

T
E

xe
cu

tiv
e

POSIX
Subsystem

Win32
Subsystem

NTVDM

MS-DOS

Win 16

OS/2
Subsystem

Security
Subsystem

User Mode

Kernel Mode

Hardware Abstraction Layer (HAL)

Cache
Manager

File System
Drivers

Network
Drivers

Hardware
Device Drivers

Message
Passing

System
Trap

Hardware
Signal

CMPT 300, 99-2

Segment 3, Page 34

Segment Review

You should be able to:

• Determine which aspects of a computer system operate

concurrently

• Compare and contrast programmed and interrupt-driven I/O

• Explain hardware protection and design hardware protection

schemes

• Explain the trade-offs associated with caching

CMPT 300, 99-2

Segment 3, Page 35

