
Cmpt  – Operating Systems

Sample Final
Summer 

Read the following carefully:

• You may refer to notes or textbooks during this exam.

• Read each question thoroughly before you begin it.

• Some questions must be answered on the question paper.

• This sample examination paper is provided as a revision aid only. Questions on the final
exam may cover different topics, and differ in difficulty from these questions.

• You may use the back of your answer booklet for any rough work. More paper is available if
you need it.

• When you are asked to finish, please do so immediately. Continuing to write after the official
end of the examination is unfair to fellow students, and carries an appropriate penalty.

. ( marks)

Which of the following are true and which are false? (Shade the leftmost circle for statements that are
true, and the rightmost circle for statements that are false. You will lose ½ mark for each incorrect answer.)

(a) A logical block can be smaller than a phys-
ical block. ©T ©F

(b) Object files passed to a linker contain relo-
cation entries. ©T ©F

(c) A load image (or executable) is created by
linking a binary object file with the system
libraries. ©T ©F

(d) If we added appropriate user-mode code
(but made no kernel changes), Windows
NT could be certified as a Unix operating
system. ©T ©F

(e) Relocation information is only required for
programs written in a high-level language

©T ©F

(f) The Macintosh Finder and the Windows
Program Manager are examples of shells.

©T ©F

(g) The processor’s primary cache is the
fastest storage available inside the com-
puter. ©T ©F

(h) An operating system implements pro-
cesses by maintaining a process image for
each process. ©T ©F

(i) Lamport’s “bakery algorithm” can solve
the critical-section problem for n tasks.

©T ©F

(j) The “banker’s algorithm” is rarely used in
current operating systems. ©T ©F

(k) If deadlock has been avoided, starvation is
impossible. ©T ©F

(l) The “banker’s algorithm” can be simply ex-
tended to avoid livelock instead of dead-
lock. ©T ©F

(m) Code that uses a Semaphore variable with
signal and wait can be trivially rewritten
to use a Condition variable with csignal and
cwait. ©T ©F

(n) A program running from inside a logi-
cal address space may still use position-
independent code. ©T ©F

(o) Operating system kernels can reside in vir-
tual memory ©T ©F

(p) With paging and segmentation, it is pos-
sible for multiple instances of a process to
share their code. ©T ©F

. (+ marks)

(a) How could an operating system that uses global page replacement detect thrashing?

(b) Once detected, what should the operating system do to remedy the problem? Give two rea-
sonable solutions and their trade-offs with respect to each other.

. ( marks)

In an object-oriented language, all the methods for each class are stored together. Explain why this
may not be an ideal layout on a system that expects efficient use of virtual memory.



. ( marks)

Suppose a computer has , bytes of physical memory with a page size of  bytes. The
operating system has just begun a program which uses , bytes of virtual memory. None of the
program is currently in memory, and all frames are empty. Assuming the following page reference
sequence, which pages are in which frames at the end of the sequence? (Show your working).

, , , , , , , , , , , , , , , , , , , , , , , , 

. (++ marks)

Consider the following three operating systems:

• ms-dos — a simple, uniprocessing operating system, developed for personal computers in
the early s.

• nextstep — a multiprocessing operating system developed for personal workstations in the
late s and early s (typically the workstations are used by a single user at a time).

• os/390 — a multiuser, multiprocessing, mainframe operating system; in development for
many years.

Based on your expectations as an operating systems designer, which of these operating systems
should:

(a) Prevent deadlock occurring for some of their resources.

(b) Expect to suffer resource-contention problems in practice.

(c) Include deadlock detection and/or deadlock avoidance code.

. (+ marks)

Consider the following snapshot of a system:

Allocation Max Available
a b c d a b c d a b c d

P₀            
P₁        
P₂        
P₃        
P₄        

Answer the following questions using the banker’s algorithm:

(a) Is the system in a safe state?

(b) If a request from process P₁ arrives for (,,,), can the request be granted immediately?

For each part, show how you derived your answer.



. ( marks)

Choose the most correct answer from the answers offered. (Shade one circle out of those given, corre-
sponding to the answer you feel to be the most correct of those available.)

(a) The banker’s algorithm

© Is only run when the system is in a
safe state

© Is simpler to implement than the
resource-allocation–graph algorithm

© Can only operate when there is a
single instance of each resource type

© Can only be run inside an operating
system kernel

(b) The clock and fpb algorithms both
attempt to replace the page that

© Was written the longest time ago

© Was loaded into memory the longest
time ago

© Is least likely to be accessed in the
near future

© Will be required again in the shortest
time

(c) Batch processing was introduced to

© Increase throughput

© Allow background processing

© Provide multiprogramming

© Overlap cpu and i/o operations

(d) A processor provides an atomic exchange
instruction, where exchange(a, b) sets b to
a’s old value, and sets a to b’s old value.
This instruction is

© Less powerful than test_and_set

© As powerful as test_and_set

© More powerful than test_and_set

© As powerful as compare_and_swap

(e) Compared to preemptive multitasking,
nonpreemptive multitasking on a
uniprocessor machine

© Gives the operating system more
control

© Is more difficult to implement

© Provides greater cpu protection

© Reduces the need to protect critical
sections in user programs

. ( marks)

Explain and contrast the tradeoffs involved in using an inverted page table versus a two-level page
table.

. (+ marks)

In managing a networked file system, the operating system may assume that the following tech-
niques will improve performance:

(a) Client-side write buffering

(b) Client-side read caching

For each assumption, describe a scenario that violates it (your scenario should be specific to a
networked filesystem).



. ( +  +  +  + ++++ marks)

Linked file allocation easily supports two different kinds of writes.

In an overwriting write, newly-written data
overwrites existing data—an overwriting write
cannot make the file any larger or cause
new blocks to be allocated. For example,
overwriting the first character of a file con-
taining “Hello World!” with a J, leaving
“Jello World!” (see right).

An appending write adds new data to the end
of a file. An appending write has three possible
cases:

H e l l o W

o r l d !

start size
12

(Block)

(Block)

(File)

J e l l o W

o r l d !

start size
12

(Block)

(Block)

(File)

Before After

a. The file is empty and has no blocks allocated.
When the first character is written to the file,
a block must be allocated and written, and the
directory entry must be updated to store the lo-
cation of the first block in the file and the new
file size. For example, appending ‘H’ to an empty
file (see right).

start
0

size

(File)

H

start size
1
(File)

(Block)

Before After

b. The last block in the file is full, requiring that
another block be added to the file. As before,
the directory entry must be updated to reflect
the new file size. For example, appending ‘o’ to a
file that has one full block containing “Hello W”
(see right).

H e l l o W

start size
7

(Block)

(File)

H e l l o W

o

start size
8

(Block)

(Block)

(File)

Before After

c. There is room in the final block of the file for
another character, so the file does not need to
have another block allocated. The directory en-
try must once again be updated to reflect the
new file length. For example, appending ‘!’ to
a file containing “Hello World”, where the last
block of the file has space for three more char-
acters (see right).

(continued on next page)

H e l l o W

o r l d

start size
11

(Block)

(Block)

(File)

H e l l o W

o r l d !

start size
12

(Block)

(Block)

(File)

Before After



For this question, assume the following:

• Characters and integers are  bits wide.
• The logical block size is eight -bit words.
• User programs read or write the file one -bit character at a time.

(a) In the best case, what fraction of each disk Block stores user data?

(b) What is the maximum amount of internal fragmentation that can occur in a file in this filesys-
tem?

(c) Below is an implementation of a routine to read a character from the file. It contains a serious
error—what is it?

struct File {
uint16_t start;
uint16_t size;

};

struct BlockHeader {
uint16_t next_block;

};

const uint16_t BLOCK_SIZE = 8;
const uint16_t BLOCK_CAPACITY = BLOCK_SIZE − 1;

struct Block {
BlockHeader header;
wchar_t data[BLOCK_CAPACITY];

}

wchar_t read_character(File file, uint16_t position) {
uint16_t diskblock = file.start;

if (position >= file.size)
throw InvalidFilePosition();

for (; ;) {
Block block = read_block(diskblock);
if (position < BLOCK_SIZE)

return block.data[position];
diskblock = block.header.next_block;
position = position − BLOCK_SIZE;

}
}

(continued on next page)



(d) What additional data should you store in the File structure to make appends more efficient?

(e) It is possible to provide another kind of write, an inserting write. An inserting write is a
generalization of an appending write: An inserting write can insert data anywhere in the
file without upsetting existing data, whereas an appending write can only add data onto the
end of a file. For example, if we open a file containing the phrase “Hello World!” and the
file pointer is just after the first ‘o’, inserting ‘ ’, ‘S’, ‘m’, ‘a’, ‘l’, ‘l’ leaves the file containing
“Hello Small World!” (c.f., overwriting writes, which yield “Hello Small!”, and append-
ing writes, which yield “Hello World! Small”).

Develop a modification to the linked-allocation scheme outlined above to allow inserting
writes. The mechanism you develop must have a constant upper bound on the number of
blocks it writes for any single insertion.

i. Give your revised definitions for BlockHeader and/or File.

ii. Draw diagrams to illustrate your allocation scheme for each distinct case of inserting a
-bit word into the file.

iii. Rewrite read_character to use your new scheme. (Ideally, your changes to this function
should be small.)

iv. In the best case, what fraction each of disk Block stores file contents?

v. What is the maximum amount of internal fragmentation that can occur in a file under
your allocation scheme?



