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Solutions to Assignment 

Programming Exercises

p. The program hitme waits for a simple message to be sent by the program hit. When it
receives the message, hitme writes “Ouch!” to standard output.

Currently, the hitme program receives its messages synchronously (i.e., it does nothing
while it is waiting for messages to arrive). Your task is to modify the program so it receives
these messages asynchronously. In your revised version, the program will run the juggle
function while messages are not being received. You may not modify the juggle function.

Modify hitme.cc so that it uses pthread_create to create a thread that will listen for the
messages.

Rather than deal with checking error returns from pthread_create, I added an exception-
throwing wrapper function to the wrapper functions in wrappers.cc.

pthread_t epthread_create(const pthread_attr_t *attr,
void * (*start_func)(void *), void *arg) {

pthread_t thread_id;
int retval = pthread_create(&thread_id, attr, start_func, arg);

if (retval = = 0)
return thread_id;

else {
errno = retval;
throw system_error("pthread_create error");

}
}

Next, I added a wrapper function (called start_message_receiver) that calls message_receiver.
The program passes start_message_receiver to pthread_create rather than message_receiver,
because pthread_create expects a function that takes a void * argument and returns a void *
result, whereas message_receiver has no arguments and returns nothing. (Alternatively,
I could have modified message_receiver, but this way I could leave message_receiver un-
changed.)

The start_message_receiver function properly handles all exceptions. We have to be careful
about exceptions whenever we pass a C++ function to a C function (such as an operating
system library function). The C function does not understand exceptions, so the passed
function (start_message_receiver in this case) must promise that it will not throw any ex-
ceptions. To fulfill this promise, the function must handle any exceptions that are thrown
by the functions it calls. In C++ a function can show that it won’t throw exceptions by
having “throw ()” in its declaration.
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void * start_message_receiver(void *arg) throw () {
try {

message_receiver();
return 0;

}
catch (system_error &exn) {

cerr << "system error: " << exn.what()
<< " (" << strerror(errno) << ")" << endl;

}
catch (exception &exn) {

cerr << "exception raised: " << exn.what() << endl;
}
catch (...) {

cerr << "mysterious exception raised" << endl;
}
return reinterpret_cast<void *>(−1);

}

Finally, I modified main to start the thread.

int main(int argc, char **argv)
{

try {
epthread_create(0, start_message_receiver, 0);
juggle();

}
catch (system_error &exn) {

cerr << "system error: " << exn.what()
<< " (" << strerror(errno) << ")" << endl;

}
catch (exception &exn) {

cerr << "exception raised: " << exn.what() << endl;
}

}

For bonus credit, create an alternate version that uses the Unix SIGIO or SIGPOLL facilities
rather than threads (on systems supporting the bsd programming interfaces or the latest
posix interfaces (Nextstep and Linux), see the description of the FASYNC (or O_ASYNC)
in your reference for the fcntl system call; on System V systems (Solaris), see the I_SETSIG
ioctl in the streamio documentation). Because the LocalPort class hides implementation
details, including the file descriptor it uses to receive messages, you will need to extend it.
Compare the thread-based and SIGIO-based approaches and contrast their strengths and
weaknesses.

To make using the SIGIO facilities easier, I extended the LocalPort class with two additional
methods, setAsync() and poll(). The setAsync() method puts the port into asynchronous
mode, causing SIGIO signals to be sent whenever a message arrives. The poll() method
returns true if there is a message waiting, and false if there are no messages waiting.
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void LocalPort::setAsync() {
fcntl(socket_fd, F_SETOWN, getpid());
fcntl(socket_fd, F_SETFL, FASYNC);

}

bool LocalPort::poll() {
fd_set read_fds;
struct timeval zero = { 0, 0 };

FD_ZERO(&read_fds);
FD_SET(socket_fd, &read_fds);

return eselect(socket_fd+1, &read_fds, 0, 0, &zero);
}

In the hitme program, I replaced message_receiver with message_handler, which is called
whenever a SIGIO signal is received. message_handler is defined as follows:

LocalPort myport(HIT_PORT_NAME);
RemotePortAddress sender;

void message_handler(int signo) throw () {
try {

char buffer[5];

clog << "\t\t received signal that a message is waiting\n";
while ( myport.poll() ) {

int n = myport.receive(sender, &buffer, sizeof(buffer));
if (n != 4)

throw logic_error("receive failed!? (size != 4)");
const char *const sender_name = sender.name();
clog << "\t\t message received (from " <<

(*sender_name ? sender_name : "<anonymous>")
<< ", " << n << " bytes)" << endl;

cout << "Ouch!" << endl;
}
return;

}
catch (system_error &exn) {

cerr << "system error: " << exn.what()
<< " (" << strerror(errno) << ")" << endl;

}
catch (exception &exn) {

cerr << "exception raised: " << exn.what() << endl;
}
catch (...) {

cerr << "mysterious exception raised" << endl;
}
exit(2);

}

There are several things to note about this code. First, I again used catch to prevent
exceptions escaping from inside the signal handler. This code is analogous to the catch
blocks in start_message_handler, and exists for the same reason: Signal handlers aren’t
allowed to throw exceptions.
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Second, notice the while loop involving poll(). The while loop is included to handle the
case of several messages arriving in quick succession. When this happens, the program
may receive fewer SIGIO signals than there are messages (because Unix only records that
there is “at least one” outstanding SIGIO signal, not how many there are—Unix signals are
like processor interrupts in this regard). To address this issue the SIGIO handler loops until
poll returns false, ensuring that all waiting messages are dealt with (and that spurious
SIGIO signals won’t cause problems).

Finally, I extended main to install the signal handler before it calls juggle. For convenience,
I used sighandler, defined in the util module, to install the SIGIO handler.

int main(int argc, char **argv) {
try {

clog << "\t\t created server port (" << myport.name() << ")" << endl;
sighandler(SIGIO, message_handler);
clog << "\t\t installed SIGIO handler" << endl;
myport.setAsync();
clog << "\t\t set server port into asynchronous mode" << endl;
juggle();

}
catch (system_error &exn) {

cerr << "system error: " << exn.what()
<< " (" << strerror(errno) << ")" << endl;

}
catch (exception &exn) {

cerr << "exception raised: " << exn.what() << endl;
}

}

An important difference between the SIGIO version and the Pthreads version is whether
juggle runs while a message is being processed. In the SIGIO version, juggle is suspended
while the message is handled, while in the Pthreads version it can continue to run.

The threading technique is cleaner and more general than the SIGIO technique:

• The SIGIO version requires that the LocalPort be declared as a global variable, whereas
the Pthreads version used a local variable.

• If several parts of the program wanted to receive messages in the background, they
could each create a port and a thread to listen on that port—this is more difficult to
do using SIGIO because there can only be one SIGIO handler.

• If a program wanted to read a file in the background, it could use a thread in a sim-
ilar way to the way it uses a thread to receive messages, but there is no analogous
method involving SIGIO, since SIGIO is only available for “slow” devices like network
connections and terminals.

Written Exercises

w. What are race conditions? Explain, using the message-server and message-test programs
from the project as examples.

Race conditions occur when multiple tasks manipulate a shared resource and the out-
come is dependent on the relative timing of the tasks.
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For example, consider two tasks using the original message server from the project: the
first task fetches the value of variable x, increments the value, and stores it back to x on
the server; the second task fetches the same variable from the server, decrements it, and
stores it. Depending on how these tasks execute relative to one another, the final value of
x could be unchanged, x+1, or x−1.

The sequence

a = fetch("x")
b = fetch("x")

+ +a
− −a

store("x", a)
store("x", a)

results in the increment being lost, whereas the sequence

b = fetch("x")
a = fetch("x")

− −a
+ +a

store("x", a)
store("x", a)

forgets about the decrement. The following execution sequence updates x correctly:

a = fetch("x")
+ +a
store("x", a)

b = fetch("x")
− −a
store("x", a)

w. Explain why race conditions can still occur even if every data item is protected by a
mutual-exclusion lock and the data item is always locked when it is read or written.

Mutual exclusion locks are meant to protect critical sections, yet the rule above does not
say that the locks are held throughout the critical section, only that the lock is held when
data is read or written. Thus, we can write the following code (analogous to the code for
question w1) which is clearly suffering a race condition:

x_guard.lock()
a = x
x_guard.unlock()

x_guard.lock()
b = x
x_guard.unlock()

+ +a
+ +b

x_guard.lock()
x = a
x_guard.unlock()

x_guard.lock()
x = b
x_guard.unlock()
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In addition, even if critical sections are correctly protected, there can still be problems
with deadlock. Suppose two tasks want to modify both x and y, both of which are pro-
tected by locks. The following code execution sequence will operate correctly:

x_guard.lock()
y_guard.lock()
old_x = x
old_y = y
x = old_y
y = old_x
y_guard.unlock()
x_guard.unlock()

y_guard.lock()
x_guard.lock()
new_y = x + y
new_x = x −y
x = new_y
y = new_x
x_guard.unlock()
y_guard.unlock()

but other execution orders may cause deadlock:

x_guard.lock()
y_guard.lock()

deadlock deadlock

Finally, if two critical sections are not commutative, there will be a race condition. For
example, if x = 1, the execution order

x_guard.lock()
x = x + 2
x_guard.unlock()

x_guard.lock()
x = x * 2
x_guard.unlock()

results in x = 6, but the execution order

x_guard.lock()
x = x * 2
x_guard.unlock()

x_guard.lock()
x = x + 2
x_guard.unlock()

results in x = 4.
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w. Suppose we have a counter which we must increment atomically. Two solutions are pro-
posed:

(a) Protect the variable using a simple spin lock. We assume an atomic test_and_set
operation, where test_and_set(&flag) sets flag to be true and returns the value flag
held just before it was set to true.

struct Counter {
bool mutex;
int value;

void inc() {
while (test_and_set(&mutex)) {

/* do nothing */
}
value = value + 1;
mutex = false;

}
}

(b) Use compare_and_swap, where compare_and_swap(&var, oldval, newval) atomically
compares the contents of var with oldval, and if they are the same, updates var
to hold newval. compare_and_swap returns the original value it found in var. (In
other words, oldval is our “guess” for the value of the variable var (it is only a guess
because some other process might modify var “behind our backs”). If our guess is
right, compare_and_swap will modify var to hold newval and return oldval. If our
guess is wrong, it will return the value that is really in var, which we can then use as
a guess if we want to try again.)

struct Counter {
int value;

void inc() {
int old_value, swap_value, new_value;

swap_value = value;
do {

old_value = swap_value;
new_value = old_value + 1;
swap_value = compare_and_swap(&value, old_value, new_value);

} while (swap_value != old_value);
}

}

The second method saves the storage space of a boolean variable, since the class does
not need a mutex field, but there is another reason why the second method is better. De-
termine and explain the problem that exists in (a) that does not exist in (b), and discuss
whether replacing the spin lock with semaphores would address the problem.

The problem with (a) occurs when a task is preempted just after it obtains the mutex lock.
No other process will be able to access the variable until the preempted task resumes and
finishes its critical section. This could be a long time if the preempted task is a low-
priority task.
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The code for (b) does not use mutual exclusion, so it is unaffected by preemption.

Replacing the spin lock with semaphores may or may not solve the problem, depending on
how semaphores are implemented. If the semaphore implementation addresses priority-
inversion issues, then there will be no problem, otherwise there could still be a problem
with a low-priority task holding the semaphore while a high-priority task waits.

Semaphores are likely to be less wasteful of processor resources, however, because even if
a task does wait, it will be blocked rather than busy-waiting.

w. Consider the following set of running processes, where the arrival time and the length of
the next processing burst are given in milliseconds:

Arrival Burst Priority
Process Time Time (if applicable)

A   
B   
C   
D   
E   

The processes are assumed to have arrived in the order A, B, C, D, E, all at time zero.
This question concerns the behaviour of these processes under the following scheduling
algorithms:

i. First Come, First Served (fcfs)

ii. Shortest Burst First (sbn (aka sjf))

iii. Nonpreemptive Priority (where zero is the highest priority)

iv. Round Robin (rr) (where quantum = )

(a) Draw a Gantt chart illustrating the execution of these processes for each of the four
scheduling algorithms given above.

i.

A

B

C

D

E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A B C D E





ii.
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(b) What is the turnaround time of each process for each of the four scheduling algo-
rithms?

i ii iii iv
A    
B    
C    
D    
E    

(c) What is the waiting time of each process for each of the four scheduling algorithms?

i ii iii iv
A    
B    
C    
D    
E    
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(d) Which of the schedules results in the minimal average waiting time (over all pro-
cesses)?

Shortest Burst First (with an average waiting time of .).

w. Although state diagrams for processes usually show a single blocked (or waiting) state,
there is rarely a single queue of blocked processes associated with that state. Why?

There are multiple blocked queues because blocked processes are usually not all wait-
ing for the same event. Usually there is a queue for every event (e.g., a queue for each
semaphore, a queue for each incoming network connection, a queue for each terminal,
etc.).

w. Some multiprocessor systems have multiple ready queues, one for each processor,
whereas other multiprocessor systems use a single shared ready queue. Give some of the
tradeoffs involved in each design choice.

A single ready queue for all processors is a shared resource, with all the problems shared
resources have. Thus the implementation must ensure that there are no race conditions
if two processors try to access the queue at the same time. Even if the implementa-
tion is careful to avoid race conditions, there may be cache-performance issues with this
design—if the ready queue is shared, each processor will not be able to store the queue in
its cache, and will instead need to write it out to main memory.

Per-processor ready queues avoid contention problems, but they lead to the question of
what should happen if one processor has an empty ready queue while another processor
has a full ready queue. One option is to “steal” work from that other processor, but this
approaches the synchronization problems we were trying to avoid. In practice, on a busy
machine (where performance matters most) stealing is practical because steals are rare.

Per-processor ready queues also make it easier for tasks to be rescheduled on the same
processor that they last used, and thereby benefit from any data that may be in the pro-
cessor cache from their last burst.

Fairness, however, is easier to enforce with a single ready queue.

w. Consider the following preemptive–priority-scheduling algorithm based on dynamically
changing priorities. Larger priority numbers imply higher priority. When a process is
waiting for the processor (in the ready queue, but not running), its priority changes at a
rate α; when it is running, its priority changes at a rate β. All processes are given a priority
of zero when they enter the ready queue. The parameters α and β can be set to give many
different scheduling algorithms.

(a) What is the policy that results from β > α > 0 ?

First-come first-served.

(b) What is the policy that results from α < β < 0 ?

Preemptive last-come first-served.
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(c) It might seem like updating the priorities of all the processes in the ready queue
could take an amount of time that is dependent on the length of the ready queue
(i.e., if the size of the ready queue is n, it would take O(n) time), but in fact it is
possible to do better. Explain how a clever implementation could make the time to
update these priorities independent of the length of the ready queue.
In your scheme, would the following operations become dependent on the length of
the ready queue, and if so, what would be the relationship?

i. Add a new process to the ready queue

ii. Switch from running one process to running another process

Express your answer using O notation if you know it. If these operations do not
depend on the length of the ready queue, explain why.

We can restate the above scheduling algorithm in a way that makes it easy to im-
plement constant time update of process priorities: There is a global clock, c, whose
value decreases at a rate α. When the ready queue is empty, c is set to zero. When a
process is waiting in the ready queue, its priority remains constant; when running,
its priority changes at a rate β. All processes are given an initial priority equal to the
current value of c when they enter the ready queue.
The priority numbers of processes are different, but the relative positions are the
same. To calculate the priority number in the old scheme, simply subtract c.
This scheme requires that the ready queue be maintained as a priority queue, which
typically requires O(log n) time to add a new process to the queue and to switch
between processes if there are n processes in the ready queue.
(This solution assumes overflow is not an issue.)

(d) The algorithm above is underspecified—for example, it is unclear exactly when the
priorities of processes are changed. Similarly, there are some cases that could occur
in which it is not clear how the scheduler should behave. Explain one such case and
specify an appropriate behaviour.

The algorithm does not state what happens when two processes have the same pri-
ority. For example, what happens when α = β and two processes arrive at the same
time? Does the first to arrive run until it completes, or does the scheduler switch
between them at every time quantum? Either would be acceptable policies.

(e) Can this algorithm provide a timesharing scheduling policy?

• If it is possible, state values of α and β that provide such a policy and explain
the scheduling behaviour that will be observed—does it correspond to Round
Robin, or is it different?

• If it is not possible, explain why and suggest an enhancement to the algorithm
that would allow it to support timesharing scheduling policies.

Yes, it can. For example, α = 2,β = 1 would allow a timesharing policy, albeit one
where new tasks can be made to wait some time before they begin.
If we add the rule that the processor switches between processes of equal priority
at every scheduling step, then α = β = 0 would result in round robin—without this
rule round robin is not possible.
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w. Contrast the following kernel designs (which may overlap):

(a) Monolithic nonreentrant kernel

(b) Reentrant kernel

(c) Multi-threaded kernel

(d) Microkernel

In a monolithic nonreentrant kernel, only one process may be running kernel code at a
time. In this design, it is not easy for a thread to block while running kernel code, since
the only way for it to block is for it to exit the kernel first. While this can be done (through
a technique known as lusering—see The Unix Hater’s Handbook for more details) it is
complicated. In this design, interrupt service routines are very restricted as far as what
kernel services they may use, but memory use is reduced because system only uses a single
kernel stack.

Monolithic kernels lack modularity and clear interfaces between areas of functionality—
the kernel is implemented as one large loosely structured program. The only way to add
functionality to a monolithic kernel is to recompile it. The earliest kernels were mono-
lithic nonreentrant kernels.

In a reentrant kernel, the idea of processes extends into the kernel and system calls are
allowed to block inside the kernel. This reentrancy is usually achieved by having a kernel
stack for each process, resulting in greater memory use than nonreentrant kernels. Al-
lowing processes to block inside the kernel is not the same as allowing preemption inside
the kernel.

A multithreaded kernel is a reentrant kernel which allows multiple tasks to be running
inside the kernel. In this design, code running inside the kernel may be preempted and
interrupt service routines are usually much freer in the services they can perform, often
being run in a separate thread that is free to block. Solaris is an example of a multi-
threaded preemptable kernel, and is highly regarded for its efficiency and its scalability
on multiprocessor machines.

A microkernel follows the principle of only putting the bare minimum of functionality
into the kernel. The bulk of operating system services are implemented as user-level
servers. For example, filesystem and networking facilities may be provided outside the
kernel. Adding functionality to a microkernel is easy because it simply requires you to
write a new server and tell people about it. And, because of the protection that exists
between user-space tasks, a bug in the new server can’t crash the existing servers. The
idea behind microkernels is that they are simpler, easier to debug, and more suitable for
distributed systems than traditional kernels. Unfortunately, the promise of ease of de-
bugging has not been fully proven—the GNU Hurd operating system is based on a micro-
kernel, yet it has been delayed due to difficulty with debugging the system. Microkernels
also suffer slower performance than multithreaded kernels, because many more process
switches are required to perform basic tasks (such as reading a file) than in regular ker-
nels, due to the overheads of contacting several server processes.
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