
Cmpt  Operating Systems I Summer 

Assignment 

Due: : a.m., Wednesday, June , .
Weight: % of your course grade.

Preliminaries

As with all assignments in this course, a small part of the assessment for this assignment reflects
how your work is presented. Your work must be easy to read. This means:

• Your work must be clear, succinct, grammatically correct, and correctly spelled.

• Your work must be laid out sensibly. In text, lines should be short enough to be readable
(i.e., don’t fill the entire width of the page with text—appropriate use of margins and other
blank space on a page can dramatically improve the readability of your work).

• Your program code should be indented sensibly, and be read easily by anyone familiar
with Unix and C/C++. Well-written code that implements straightforward functionality
may not need any additional comments.

• Unless there is a compelling reason to do otherwise, all pages should be on letter-size
paper, with content in the portrait orientation. Pages should be held together with a single
staple in the top lefthand corner.

• Avoid unnecessary embellishment—you should not use presentation folders.

Most students find it easier to create their answers to assignments using a word processor
or equivalent program. Although you may handwrite your answers, it is much easier to check
and correct grammar and spelling on a computer screen than on a handwritten page. If you
choose to handwrite your answers, they must be neat, tidy and legible.

The late policy for all assignments is as follows: % penalty for being one day late, %

penalty for being two days late. Assignments may be handed in early. No assignments will be
accepted more than two days late. The late period begins immediately after the beginning of
class on the due date (i.e., handing in your work at  a.m. on the Wednesday it is due counts as
one day late).

This assignment may be refined or clarified in class or e-mail.

Programming Exercises

For this programming assignment, you will be modifying C++ source code. This source code
is available on the Web at http://www.cs.sfu.ca/CC/300/oneill/Homework/assign2.tar.gz and on Csil

in /gfs1/CMPT/300/src/assign2.tar.gz . You can expand this archive file using the command gzcat
assign2.tar.gz | tar xvf − on any Unix system. You can also find the contents of this archive file in
the directory /gfs1/CMPT/300/src/assign2/.

For each of the programming exercises below, develop the program as indicated in the ques-
tion, and then include the source listing for the program in your report along with any commen-
tary you feel is necessary to explain it. Your programs must be short (your changes should easily
fit on a single page), but clear and robust.
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You may program in either C or C++. The source code provided is in C++, but does not use
advanced C++ features—it should be straightforward to port the code to plain C.

p. This question concerns the files hitme.cc and hit.cc, provided with this assignment.

The program hitme waits for a simple message to be sent by the program hit. When it
receives the message, hitme writes “Ouch!” to standard output.

Currently, the hitme program receives its messages synchronously (i.e., it does nothing
while it is waiting for messages to arrive). Your task is to modify the program so it receives
these messages asynchronously. In your revised version, the program will run the juggle
function while messages are not being received. You may not modify the juggle function.

Modify hitme.cc so that it uses pthread_create to create a thread that will listen for the
messages.

For bonus credit, create an alternate version that uses the Unix SIGIO or SIGPOLL facilities
rather than threads (on systems supporting the bsd programming interfaces or the latest
posix interfaces (Nextstep and Linux), see the description of the FASYNC (or O_ASYNC)
in your reference for the fcntl system call; on System V systems (Solaris), see the I_SETSIG
ioctl in the streamio documentation). Because the LocalPort class hides implementation
details, including the file descriptor it uses to receive messages, you will need to extend it.
Compare the thread-based and SIGIO-based approaches and contrast their strengths and
weaknesses.

Written Exercises

w. What are race conditions? Explain, using the message-server and message-test programs
from the project as examples.

w. Explain why race conditions can still occur even if every data item is protected by a
mutual-exclusion lock and the data item is always locked when it is read or written.

w. Suppose we have a counter which we must increment atomically. Two solutions are pro-
posed:

(a) Protect the variable using a simple spin lock. We assume an atomic test_and_set
operation, where test_and_set(&flag) sets flag to be true and returns the value flag
held just before it was set to true.

struct Counter {
bool mutex;
int value;

void inc() {
while (test_and_set(&mutex)) {

/* do nothing */
}
value = value + 1;
mutex = false;

}
}

(b) Use compare_and_swap, where compare_and_swap(&var, oldval, newval) atomically
compares the contents of var with oldval, and if they are the same, updates var to
hold newval. compare_and_swap returns the original value it found in var. (In other
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words, oldval is our “guess” for the value of the variable var (it is only a guess because
some other process might modify var “behind our backs”). If our guess is right,
compare_and_swap will modify var to hold newval and return oldval. If our guess is
wrong, it will return the value that is really in var, which we can then use as a guess
if we want to try again.)

struct Counter {
int value;

void inc() {
int old_value, swap_value, new_value;

swap_value = value;
do {

old_value = swap_value;
new_value = old_value + 1;
swap_value = compare_and_swap(&value, old_value, new_value);

} while (swap_value != old_value);
}

}

The second method saves the storage space of a boolean variable, since the class does
not need a mutex field, but there is another reason why the second method is better.¹
Determine and explain the problem that exists in (a) that does not exist in (b), and discuss
whether replacing the spin lock with semaphores would address the problem.

w. Consider the following set of running processes, where the arrival time and the length of
the next processing burst are given in milliseconds:

Arrival Burst Priority
Process Time Time (if applicable)

A   
B   
C   
D   
E   

The processes are assumed to have arrived in the order A, B, C, D, E, all at time zero.
This question concerns the behaviour of these processes under the following scheduling
algorithms:

i. First Come, First Served (fcfs)

ii. Shortest Burst First (sbn (aka sjf))

iii. Nonpreemptive Priority (where zero is the highest priority)

iv. Round Robin (rr) (where quantum = )

(a) Draw a Gantt chart illustrating the execution of these processes for each of the four
scheduling algorithms given above.

(b) What is the turnaround time of each process for each of the four scheduling algo-
rithms?

(c) What is the waiting time of each process for each of the four scheduling algorithms?

1. Hint: Assume that processes can be preempted.
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(d) Which of the schedules results in the minimal average waiting time (over all pro-
cesses)?

w. Although state diagrams for processes usually show a single blocked (or waiting) state,
there is rarely a single queue of blocked processes associated with that state. Why?

w. Multiprocessor operating systems often have a ready queue for each processor, with their
designers citing performance improvements for this design. Why should multiple ready
queues improve performance and how does this design complicate matters?

w. Consider the following preemptive–priority-scheduling algorithm based on dynamically
changing priorities. Larger priority numbers imply higher priority. When a process is
waiting for the processor (in the ready queue, but not running), its priority changes at a
rate α; when it is running, its priority changes at a rate β. All processes are given a priority
of zero when they enter the ready queue. The parameters α and β can be set to give many
different scheduling algorithms.

(a) What is the policy that results from β > α > 0 ?

(b) What is the policy that results from α < β < 0 ?

(c) It might seem like updating the priorities of all the processes in the ready queue
could take an amount of time dependent that is on the length of the ready queue
(i.e., if the size of the ready queue is n, it would take O(n) time), but in fact it is
possible to do better. Explain how a clever implementation could make the time to
update these priorities independent of the length of the ready queue.
In your scheme, would the following operations become dependent on the length of
the ready queue, and if so what would be the relationship?

i. Add a new process to the ready queue
ii. Switch from running one process

Express your answer using O notation if you know it. If these operations do not
depend on the length of the ready queue, explain why.

(d) The algorithm above is underspecified—for example, it is unclear exactly when the
priorities of processes are changed.² Similarly, there are some cases that could occur
in which it is not clear how the scheduler should behave. Explain one such case and
specify an appropriate behaviour.

(e) Can this algorithm provide a timesharing scheduling policy?

• If it is possible, state values of α and β that provide such a policy and explain
the scheduling behaviour that will be observed—does it correspond to Round
Robin, or is it different?

• If it is not possible, explain why and suggest an enhancement to the algorithm
that would allow it to support timesharing scheduling policies.

w. Contrast the following kernel designs (which may overlap):

(a) Monolithic non-reentrant kernel

(b) Reentrant kernel

(c) Multi-threaded kernel

(d) Microkernel

(This question may require you to read about some topics we have not covered in class.)

2. Presumably priorities are updated at discrete intervals in time, rather than continuously.
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